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Abstract: In the arid climate area north of Tenth of Ramadan City, southeast of the Nile Delta,
Egypt, it is necessary to search for additional water resources for sustainable developments such as
agricultural and industrial activities. Thirty two vertical electrical soundings (VES) of a electrical
resistivity (DC) survey were carried out along four main profiles by using the Schlumberger array
with electrode distances (AB/2) up to 500 m, to explore the shallow Pleistocene groundwater aquifer.
The collected data was interpreted by a one-dimensional laterally constrained inversion (1D-LCI) and
two-dimensional inversion algorithms to derive a best fit layered-earth resistivity model. The derived
resistivity sections are geologically well interpreted based on information taken from the available
water boreholes (P2-Well and P3-Well). The lateral constraints are part of the inversion where all
data sets are inverted simultaneously, and consequently the output models are balanced between
the constraints and the data-model fit. The 1D-LCI offers good analysis of the model parameters,
which was successfully used to characterize a zone of groundwater aquifer, as it produces a laterally
smooth model with sharp layer boundaries. The 1D-LCI inversion results show that the study area
is subdivided into five geo-electrical layers of varied resistivity and thickness. In particular, the
resistivity values of the last layer range between 9.3 and 110 Ωm representing the existing shallow
Pleistocene aquifer located at depths between 134.5 and 118.4 m. Such results are tied and confirmed
well with the results of the 2D inversion of the DC data. It reveals three interpreted geo-electric
layers along the four profiles and shows that the area is affected by some normal faults striking
nearly in the E–W direction. The very low resistivities of the groundwater aquifer beneath the
agricultural part of the survey area probably indicates contamination due to the possible effect of
irrigation operated in the cultivated lowlands. The results obtained could help the stakeholder to
find additional information about the ground water aquifers in the newly reclaimed arid area and
possible locations of new sites for drilling new water wells as additional water resources.

Keywords: DC resistivity sounding; Schlumberger array; lateral constrained (1D-LCI) inversion;
groundwater aquifer; contamination; Nile delta; Egypt

1. Introduction

The eastern Nile Delta in Egypt has recently become one of the most promising
areas for various developments such as land reclamation for agriculture, new residential
areas, and industrial development. The study area north of Tenth of Ramadan City is
characterized by arid conditions in which wind action leads to the formation of a desert
pavement in soils of the deltaic stage and accumulation of sand dunes. Groundwater
depletion is one of the most common problems in this area, causing many villages and
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cities to be abandoned [1]. Also, lack of surface water due to climatic changes increases
the importance of groundwater as an alternative source. Accordingly, the need for water
resources to meet domestic, irrigational and industrial demands has increased.

The amount of usable surface water in the study area cannot be controlled in accor-
dance with the appropriate requirements. Therefore, the groundwater reserves could be
used as a potential source for irrigational purposes. The main sources of water in the
eastern Nile Delta are surface water, groundwater from the aquifers of Quaternary and
Miocene formations, and the reuse of both treated wastewater and agriculture drainage
water [2]. The study area rests on the Pleistocene permeable sandstone formations that
represent the hosting formations of the most important groundwater aquifer in the Nile
Delta. The good quality of groundwater, its accessibility and its relatively low cost are
factors that stimulate an increasing level of exploitation of this resource [3]. On the other
hand, the development and assessment projects in the area of study such as the construction
of new cities (i.e., Tenth of Ramadan City) and land essentially require the presence and
continuity of groundwater resources.

Structurally, the study area is located in the mobile belt zone [4] including the area
of study. It is already known that the landscape of the study area was greatly affected by
the tectonics of the eastern Nile Delta region as well as climatic changes throughout the
successive wet and dry Pleistocene periods.

Electrical resistivity methods have become very much more widely used since the 1970s,
primarily due to the availability of computers to process and analyze the observed data [5].
The vertical electrical sounding (VES) technique was used for groundwater and shallow
engineering studies [6,7]. The main objective of this paper is to investigate the characteristics
of the shallow Quaternary groundwater aquifer in the study area such as its depth, salinity,
extension and dimension to assess its potential for agriculture and/or industry.

The one-dimensional (1D) inversion results of electrical resistivity (DC) data are
expected to indicate unrealistic geologic boundaries of the subsurface rock units due
to equivalence problems. Therefore, the one-dimensional lateral constrained inversion
(1D-LCI) technique is applied on the DC data to reduce the inherent ambiguities in the
interpretation of geophysical data, to solve that problem, and to examine accurately the
ground water aquifer that existing in the area.

The laterally constrained inversion (1D-LCI) is a profile-oriented technique which is
used for inverting data along a profile line by minimizing a common objective function [8,9]
and it is based on the least-square method. The 1D-LCI method favors structures following
the line direction; neighboring lines are not considered. It is an example of smoothing in
the model space [10]. The 1D-LCI performs 1D parametrized inversion of many separate
models and the data sets where neighboring models during the inversion are tied together
with lateral constraints on the model parameters (resistivity, depths, or thicknesses) [11,12].
The lateral constraints can be considered as prior information on the geological variability
within the investigated area; the smaller the expected variation of a model parameter,
the more rigid (harder) the constraint [12]. Often a 1D solution with lateral constraints is
sufficient in quasi-layered sedimentary environments [11,13], where the subsurface is often
structured with laterally stable layers. Therefore, the use of laterally constrained smooth
models can represent the true subsurface better than smooth minimum structure models
by a 1D conventional inversion [8,14]. These models can be achieved by smoothing the
raw data space before the inversion [8], which is often done for ground DC resistivity data
with a high lateral data density. This study focuses on an improved resolution for models
with slow lateral variations that apply well to the 1D formulation with lateral constraints.
The output model is accompanied by a sensitivity analysis of the model parameters. This
provides a good quality control of the inverted models and enhances the subsequent
geological interpretation.

The laterally constrained inversion (1D-LCI) was applied on different types of electrical
and electromagnetic data [15–17]. One-dimensional and two-dimensional (2D) inversion
were presented with lateral constraints and sharp boundaries for DC resistivity data [8,11,12].
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The 1D-LCI inversion technique on different geophysical data such as electrical resistivity
tomography (ERT) and controlled source magnetotelluric (CSRMT) were recently applied
and discussed by researchers [18,19]. A 2D inversion technique is applied on DC data
using Fortran code of Schlumberger array [20–22]. The literature available for the area of
study refers to very different topics [23–25]. These authors were directly interested in the
studying of the shallow groundwater investigation by using electrical resistivity method in
the same area considered in this study.

2. Location and Geology of Survey Area

The study area is located on the southeastern fringe of the Nile Delta region
(Figure 1a). It is bounded by Belbies City and Ismailia Canal from the north and the
Tenth of Ramadan City from the south (Figure 1b). It covers an area of about 108.6 km2.
This area includes an agricultural zone in the north (low lands) and a desert zone in
the south (high lands). Geomorphologically, the area is considered part of the Tenth of
Ramadan–El Salhiya gravelly and sand plains. It is characterized by mild topography
ranges between (25.5 m amsl) in the northwest and (99.5 m amsl) in the southeast, with a
general slope towards the north. The desert climate with arid, hot, rainless summers and
moderate winters with a little amount of precipitation predominating.
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Figure 1. (a) Google map of Egypt, (b) Surface geological map of the study area and the location of the vertical electrical
sounding (VES) stations along four main profiles, and (c,d) lithostratigraphic column of nearby boreholes from the study
area (P2-Well and P3-Well).

Geologically, the investigated area has sedimentary succession ranges in the age from
Miocene to Quaternary (Figure 1b–d) which represents the main groundwater-bearing
zone in this area (Pleistocene sediments, 200 m thick) [26]. Quaternary deposits in the
Delta and its adjacent desert fringes show variable proportions of gravel, sand, and clay in
lateral and/or vertical directions [4,27,28], resulting in variations of hydraulic properties
throughout the aquifer. The total saturated thickness of the Quaternary aquifer increases
from south to north and northwest and becomes about 250 m near the Ismailia Canal [26,28].
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Hydrogeologically, the depth of the groundwater varies from 60 m inside the Tenths
of Ramadan City to 90 m in the wells along Belbies road [29]. The groundwater salinity in
the investigation area varies between 750 to 950 mg/L [30,31]. Near to Ismailia Canal, the
aquifer is fairly directly connected with the canal, and the wells located nearby show less
than 7 m depth to the groundwater [32,33]. In the south of Ismailia Canal, the change in
the depth of the groundwater increases dramatically from 67.5 m to 73 m in the east and
north of Tenth of Ramadan City, respectively [33], that might be explained by the increase
of the ground elevation southward (180 m) above mean sea level and by the presence of
fault systems dominating the area.

The eastern Nile Delta region is divided into three different structural zones (Figure 2)
which are the metastable belts to the south, the hinge belt in the middle and the mobile
belt covering the area of study to the north [4]. Major non-conformities exist between the
Mesozoic and Tertiary as well as between the Tertiary and Quaternary sections in the region
east of the Nile Delta. Some intraformational non-conformities also occur between the
Pliocene and Pleistocene sediments [4]. A number of geologically mapped normal surface
faults (Figure 2) are detected in the study area striking E–W and NW–SE directions [4].
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3. Groundwater Vulnerability

Tenth of Ramadan City and its surroundings are located within a medium to high
groundwater vulnerability zone [29,34]. These pollution zones are based on the absence of
a thick clay cap/or the shallow depths to the aquifer layers, the rate of recharge and the
direction of groundwater flow. The groundwater in the study area is probably polluted
artificially due to human activities such as reclamation projects, waste disposal, damping
from industrial projects as well as leakage from the drains of Belbies, or naturally due
to the existence of some trace metals in the formation. The area is served by the drains
of Belbies which collect the agriculture drainage water, but they are also used to collect
untreated wastewater. The unofficial use of agriculture drainage water for irrigation and
uncontrolled use of fertilizers and pesticides affects the quality of the groundwater. The
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collected wastewater from the industrial areas in Tenth of Ramadan City is discharged
to oxidation ponds resulting in a direct recharge to the underplaying groundwater by
seepage through the unsaturated zone [35]. The increasing population and industrial
development in Tenth of Ramadan City have resulted in some problematic variations in
the hydrogeological and environmental conditions which are represented by raised soil
water levels in the central parts of the City and increasing groundwater salinity in some
drilled wells. These problematic conditions must be treated before they worsen and affect
the future development plan in this area [36]. The thickness and type of the clay in the
upper parts of the subsurface are important factors for the speed of water infiltration
and, thus, the vulnerability of underlying aquifers to pollution [35,36]. Geologically, the
Quaternary deposits within the area are represented by clay intercalations and lenses of
limited extent. Thus, the groundwater could be easily polluted, and extreme caution must
be exercised when planning such sites [35,36]. For this reason, we derived information
about the pollution of the groundwater in the study area as low resistive zones inside the
aquifer by the 1D-LCI inversion of the observed DC data.

4. Material and Method
4.1. Data Acquisition

VES data were measured at 32 VES sites along four main profiles (Figure 1b) using
the Syscal/R2 acquisition system. We used a Schlumberger electrode configuration where
the current electrode separation (AB) begins with 2 m and extends to reach a maximum
distance of 1000 m in order to access the depth range of the shallow groundwater aquifer
which is expected at a depth of 80 m (P2-Well and P3-Well, Figure 1c,d). Part of the profiles
are located on the agriculture zone and part of them on the desert zone of the survey area
(Figure 3a) where there were difficulties in injecting currents. To overcome this problem, we
put some water around the current electrodes to reduce contact resistance. The VES sites
were chosen according to the accessibility and applicability of the Schlumberger array. The
Schlumberger line was oriented parallel to the profile direction. The distance between the
VES sites varies between (883) and (2965 m) according to the topography, land feasibility
and the applicability of the array. Table 1 shows the examples of raw DC data at some
selected VES stations along the four main profiles.

4.2. Presentation of the DC-Resistivity Data

The observed apparent resistivity data from some selected VES sites along four main
profiles were presented conventionally as a function of electrode distance (Figure 3b).
There is a clear difference between the soundings observed on the northern part of the
study area (agriculture zone) and its southern part (desert zone) where the observed
apparent resistivities of the desert zone in general are larger than the apparent resistivities
of the agriculture zone because of the arid desert region and the nature of dry sediments.
Selected soundings on the profiles of the agriculture and desert zone of the survey area
are presented in Figure 3b. All soundings show decreasing apparent resistivities for large
electrode spacings indicating a conductive groundwater aquifer at larger depths. Apparent
resistivities for larger electrode spacings of the soundings on the agriculture zone indicate
much smaller values than for the soundings of the desert zone.
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Table 1. Example of raw electrical resistivity (DC) data (apparent resistivity and AB/2) at some
selected VES stations along the main profiles.

Stations VES-01 VES-12 VES-17 VES-19

AB/2 (m) Apparent Resistivity (Ωm)

1 145.5 96 373.3 198
1.4 130.7 86.2 365.5 163.8
2 102.4 65.7 405.6 146.1
3 67.8 49.6 317.7 133.6
4 45.7 40.3 202.4 114.4
3 81.9 54.4 220 142.2
4 55.8 43.6 141.3 121.3
6 39.5 36.9 120.4 80.5
8 32.5 30.2 80.8 57
10 30.3 27.6 62 43.7
14 29.8 26.9 61.2 30.6
10 30.9 29.2 72.7 52.7
14 29.9 28.3 67.5 35.6
20 32.5 29.9 68.1 36.1
30 40.5 33.9 73.9 44.8
40 41.4 39.1 66.9 52.4
30 36.9 29.7 46.6 40.3
40 37.9 34.3 42.6 46.3
60 48.8 42.7 44.8 56.8
80 61.3 45.8 45.7 58.1

100 71.4 50.1 44 57.4
140 77.4 58.6 43.1 52.8
100 64.7 55.3 43.1 56.6
140 70.8 60.9 42.6 50.7
200 76.7 46.8 36.9 36.7
300 57.8 49.4 30.8 19.7
400 91.8 33 23.8 13.1
500 201 10.6 17.5 4

On the other hand, the DC sounding data observed on different subsurface geological units
(Figure 1b) indicate no correlation to such units. The surface geological units do not influence
the shape of the sounding curves as expected. In order to illustrate the spatial distribution of
the observed apparent resistivities, pseudo-apparent resistivity maps were presented for six
AB/2 values (3, 10, 40, 100, 400, 500 m) and were demonstrated in Figure 4. They illustrate the
lateral variation of resistivity values at different depths qualitatively. The Kriging method
was chosen for the interpolation between the data points [37]. The apparent resistivity has
relatively high values at the shallow part (e.g., Figure 4a–d) for the whole survey area due
to the effect of dry sand and gravel at the top. Higher apparent resistivities than those
in the northern part (agriculture area) were observed in the southern part (desert area).
There is a general decrease of resistivity values as a function of depth due to a variation in
lithology and the presence of a groundwater aquifer in Quaternary sand (Figure 4e,f) which
is expected at a depth of 80 m according to the well no. P2 and P3 (Figure 1c,d). There
is a general decrease of resistivity values laterally (Figure 4a–c) from the south into the
other parts of the study area for shallow pseudo-depths, especially in the north/northwest
near the Ismailia canal and in the eastern direction near the El Shabab canal due to the
effect of irrigation operated in the cultivated lowlands, and the presence of some clay
lenses. The recharge from these canals in the eastern direction is the main reason for the
resistivity decrement beneath Quaternary deposits. In particular, low resistivity values for
large pseudo-depths characterize the northern half part of the study area (AB/2 = 400 and
500), which may indicate a contaminated aquifer because pollution can be interpreted as
low resistive areas inside the aquifer layer.
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4.3. Inversion Theory
4.3.1. One-Dimensional Lateral ConstrainedInversion (1D-LCI) Method

A detailed description of the 1D-LCI inversion algorithm and the practical implemen-
tation of the constraints have been given by the authors (Auken et al., 2005 [8] and Auken
and Christiansen, 2004 [11]). Figure 5 illustrates the flowchart of the Aaarhus algorithm.
The dependence of apparent resistivity on subsurface parameters is, in general, described
as a non-linear differentiable forward mapping. They use a linearized approximation by
the first term of the Taylor expansion as in Equation (1), where (dobs) denotes the observed
data, (eobs) denotes the error on the observed data, (G) denotes the Jacobian matrix, and (g)
is the non-linear mapping of the model to the data space [8]. The delta true model (δmtrue)
is defined as the difference between true and reference model (mtrue-mref). The true model
(mtrue) has to be sufficiently close to the arbitrary reference model, (mref) so that the linear
approximation is valid. The covariance matrix for the observation errors is (Cobs) which we
assume to be a diagonal matrix [8]. In short, we write as in Equation (2) where the symbol
(∗) refer to multiplication between matrices.

dobs + eobs = G (mtrue −mref) + g (mref) (1)

G ∗ δmtrue = δdobs + eobs (2)
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The Jacobian matrix (G) contains the partial derivatives of the forward mapping
(elements of d with respect to the model parameter m) as in Equation (3), for the ath datum
and the bth model parameter and [8], which also ensures positivity of the data and the
model parameters [38,39].

Gab =
∂da

∂mb
=

∂ log(da)

∂ log(mb)
=

mb
da
∗ ∂da

∂mb
(3)

4.3.2. The Constraints

The chosen constraints need to reflect the geological variations of the subsurface
suitably that are expected to occur in the measurement area. If the constraints are chosen
strongly, the resulting inversion model will be extremely smooth and local information can
be lost in the process and vice versa.

In the 1D-LCI approach, we only operate with lateral constraints and not with vertical
constraints. The constraints are ideally determined for each data set. The constraints are
included into the inversion via a roughness matrix (R) and a covariance matrix (CR). The
strength of the constraints is described in a covariance matrix (CR), and it depends on the
expected variation in the underlying geological model. Small constraints allow only for
small model changes and vice versa. Model calculations with synthetic data show that
constraint values between 1.1 and 1.3 are good starting options [8]. A constraint value of
1.1 means that model parameters can vary 10% between neighboring models.

The constraints are connected to a true model as in Equation (4), where (er) is the error
of the constraints, which is assumed to be 0 as expected value [8], (δr) provides the identity
between the parameters tied by constraints in the roughening matrix (R) which is used to
include the constraints in the inversion problem. Therefore, R contains 1 and −1 for the
constrained parameters and zero in all other places [8].

R ∗ δmtrue = δr + er . . . ..where (δr = −R ∗mref) (4)

Every DC model is constrained to its nearest neighboring DC models in both directions.
For the 1D-LCI inversion of our DC data, we used reference constraints of (0.3) which are
applied on resistivities and thicknesses, as those values proved to be best suited.

4.3.3. The Inversion Problem

Combining Equations (2) and (4) gives an expression for the inverse problem (Equa-
tion (5)) and this can be expressed more compactly as in Equation (6), where (G′) refers to
the joint between Gacobian (G) and roughening (R) matrices, (δd′) refers to the joint matrix
which includes the delta observation data and the parameters tied by constraints in the
roughening matrix (δr = −R ∗ mref), and (e′) is the matrix for the joint observation (eobs)
and constrains (er) error [8].[

G
R

]
δmtrue =

[
δdobs
δr

]
+

[
eobs
er

]
(5)

G′ ∗ δmtrue = δd′ + e′ (6)

The model estimate is written as in Equation (7) and the model estimate minimizes
as in Equation (8), where A is the number of constraints, N is the number of data and the
covariance matrix for the joint observation error [40].

δmest =
(

G
′T ∗G

′−1 ∗G′
)−1
∗G

′T ∗G
′−1 ∗ δd′ (7)

Q =

√
1

N + A

[
δd
′T ∗C

′−1 ∗ δd′
]

(8)
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All data sets from all VES sites along the profile are inverted simultaneously, minimiz-
ing a common object function, and the number of output models is equal to the number of
input data sets (1D soundings included). Both the measured data and the lateral constraints
are all part of the inversion and consequently, the output models are balanced between the
data, constraints, and general physics. Model parameters that have little influence on the
data will be controlled by the constraints, and vice versa. Due to the lateral constraints,
information from one model will spread to the neighboring model.

4.3.4. Analysis of Model Estimation Uncertainty

The inversion result is supported by a full sensitivity analysis of the model parameters
which can be used to assess the resolution of the inverted model and to ascertain the
quality of the inversion result. The parameter sensitivity analysis of the final model is the
linearized approximation of the covariance of the estimation error (Cest) (Equation (9)) [41].
Because the model parameters are represented as logarithms, the analysis gives a standard
deviation factor (STDF) on the model parameter (ms). Standard deviation on model
parameters (Equation (10)) are calculated as the square root of the diagonal elements in Cest.
Thus, the theoretical case of perfect resolution has STDF = 1 [8]. Well resolved parameters
have a STDF < 1.2, which is approximately equivalent to an error of 20%, moderately
resolved parameters fall between 1.2 < STDF < 1.5, poorly resolved parameters between
1.5 < STDF < 2, and unresolved parameters have a STDF > 2 [8].

Cest =
(

G
′T ∗G

′−1 ∗G′
)−1

(9)

STDF(ms) = exp
√

Cest,ss (10)

5. Results

The conventional 1D inversion of DC data was realized using the IPI2WIN soft-
ware [42]. The necessary starting models were automatically derived using an inversion
algorithm, and they were adjusted to obtain a best fit between the observed data and
the model response [42]. The inversion problem is solved using Marquardt’s method.
Firstly, we have interpreted all the DC data with a conventional 1D inversion algorithm.
Afterwards, we applied laterally constrained (1D-LCI) inversion on DC data. The inversion
code for a 1D-LCI, was developed by the Hydro-geophysics Group of the University of
Aarhus, Denmark [43]. A 2D inversion of DC data was applied by using the Fortran code
of the Schlumberger array (Uchida algorithm) [44].

5.1. Correlation between VES-10 with Nearest Boreholes (P2-Well and P3-Well)

Before presenting the 1D-LCI inversion results of the VES-curves observed on four
profiles of the survey area, the 1D inversion results of VES-10 on profile one (Figure 6b)
and of VES-25 along profile four (Figure 6d) with the nearest boreholes P2 and P3 Wells,
respectively (Figure 1c,d), are displayed in Figure 6. Figure 6a,c shows the observed and
calculated apparent resistivities as a function of electrode spacing (AB/2) of VES-10 and
VES-25, while Figure 6b,d shows the 1D model response for them. A relatively good fitting
between observed and calculated data (root mean square (RMS) = 6.8% for 1D response of
VES-10 and RMS = 7.8% for 1D response of VES-25) was achieved. The resistivity of the
bottom layer from the 1D model of VES-10 indicate a very low resistivity (1.4 Ωm) and at a
depth between 89 m, indicating that the aquifer at this region is polluted. The layers above
the aquifer indicate the resistive sand and gravel. Also, the resistivity of this layer from
the 1D model of VES-25 is equal to 16 Ωm and begins at depth 100 m. Therefore, there is
a good agreement between the top depth of the groundwater aquifer derived from these
boreholes and from the 1D inversion results of the VES-10 and VES-25.
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From the 1D inversion results, the indications of formation boundaries are seen, but
they have a geologically unrealistic appearance (Figure 7a) mainly because of equivalence
problems [45]. Also, the geometry of depth to top of the last layer and the thickness
of a high resistive layer (forth layer) are not clear and poorly defined along all profiles.
Therefore, we applied the 1D-LCI inversion on field data to solve this problem (Figure 7b).

5.2. 1D-LCI Models

Five layers were used in the 1D-LCI section. The choice of this number of layers
was based on three factors: the result from the conventional 1D inversion, the number of
geological units in the generalized geological profile and the sensitivity analysis of model
parameters in 1D-LCI. The 1D-LCI model clearly describes the horizontal layer interfaces of
the different geological units. The constraints between resistivities and depth interfaces of
neighboring VES sites, used in the 1D-LCI inversion along four profiles form a (0.3) factor.

Figures 8 and 9 show the laterally constrained (1D-LCI) inversion models of VES DC
data along main profiles (a and c) and the analysis of model parameters (b and d). The
lithologies of the main resistivity regime vary between surface clastic deposits, sandy clay,
dry sand and gravel, and a saturated sand aquifer.



Geosciences 2021, 11, 248 13 of 23
Geosciences 2021, 11, x FOR PEER REVIEW 13 of 24 
 

 

 

Figure 7. Inversion result from conventional 1D inversion model (a) and synchronized 1D–LCI 

inversion model (b) using five layers, constructed from VES soundings along profile one. 

5.2. 1D-LCI Models 

Five layers were used in the 1D-LCI section. The choice of this number of layers was 

based on three factors: the result from the conventional 1D inversion, the number of ge-

ological units in the generalized geological profile and the sensitivity analysis of model 

parameters in 1D-LCI. The 1D-LCI model clearly describes the horizontal layer interfaces 

of the different geological units. The constraints between resistivities and depth inter-

faces of neighboring VES sites, used in the 1D-LCI inversion along four profiles form a 

(0.3) factor. 

Figures 8 and 9 show the laterally constrained (1D-LCI) inversion models of VES DC 

data along main profiles (a and c) and the analysis of model parameters (b and d). The 

lithologies of the main resistivity regime vary between surface clastic deposits, sandy 

clay, dry sand and gravel, and a saturated sand aquifer. 

The models along all profiles contain five layers with smooth transitions in resistiv-

ities and layer boundaries, but the thin top layer is barely visible in this section. These 

models give a clear indication of a top variable resistive layer (40.4–257 Ωm), while still 

picking up the near surface resistivity changes overlying a second layer of high resistivity 

(11.5–486.3 Ωm), and a third layer of more resistivity (12.1–637 Ωm), underlain by a re-

sistive layer (29.1–256.1 Ωm). A conductive layer is identified at the bottom with low re-

sistivity values between (9.3–110 Ωm) along all profiles and a high resistivity value (237 

Ωm) only below VES-24. This decrease of resistivity values emphasizes the effect of a 

shallow Quaternary groundwater aquifer in the saturated sand zone in the study area. 

The depth of this layer varies considerably along all the profiles from (34.5) m below 

VES-21 at the north to (118.4) m below VES-09 at the south. 

The sensitivity analysis of the final models from 1D-LCI inversion results reveals 

well-determined model parameters in most parts of all the profiles, especially those 

concerning the resistivity parameter of five layers along profiles one, three and four 

Figure 7. Inversion result from conventional 1D inversion model (a) and synchronized 1D–LCI inversion model (b) using
five layers, constructed from VES soundings along profile one.Geosciences 2021, 11, x FOR PEER REVIEW 15 of 24 

 

 

 

Figure 8. (a,c) Inversion result from synchronized 1D–LCI inversion model using five layers, constructed from DC VES 

soundings along profiles one and two, respectively. (b,d) Detailed plot of the solution analysis of model parameters, 

calculated from final model of 1D– LCI inversion (resistivities; Res.1–Res.5 and thicknesses; Th.1–Th.4) along profiles one 

and two, respectively. The color-coding of the analysis ranging from red (well resolved parameter, STD factor = 1) to blue 

(moderately resolved parameter, STD Factor = 1.2). 

Figure 8. (a,c) Inversion result from synchronized 1D–LCI inversion model using five layers, constructed from DC VES
soundings along profiles one and two, respectively. (b,d) Detailed plot of the solution analysis of model parameters,
calculated from final model of 1D– LCI inversion (resistivities; Res.1–Res.5 and thicknesses; Th.1–Th.4) along profiles one
and two, respectively. The color-coding of the analysis ranging from red (well resolved parameter, STD factor = 1) to blue
(moderately resolved parameter, STD Factor = 1.2).
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The models along all profiles contain five layers with smooth transitions in resistiv-
ities and layer boundaries, but the thin top layer is barely visible in this section. These
models give a clear indication of a top variable resistive layer (40.4–257 Ωm), while still
picking up the near surface resistivity changes overlying a second layer of high resistiv-
ity (11.5–486.3 Ωm), and a third layer of more resistivity (12.1–637 Ωm), underlain by a
resistive layer (29.1–256.1 Ωm). A conductive layer is identified at the bottom with low
resistivity values between (9.3–110 Ωm) along all profiles and a high resistivity value
(237 Ωm) only below VES-24. This decrease of resistivity values emphasizes the effect of a
shallow Quaternary groundwater aquifer in the saturated sand zone in the study area. The
depth of this layer varies considerably along all the profiles from (34.5) m below VES-21 at
the north to (118.4) m below VES-09 at the south.

The sensitivity analysis of the final models from 1D-LCI inversion results reveals
well-determined model parameters in most parts of all the profiles, especially those
concerning the resistivity parameter of five layers along profiles one, three and four
(Figures 8b and 9b,d, respectively), and the resistivity parameter of the first and sec-
ond layer along profile two (Figure 8d). However, the thickness of the fourth layer (Th.4)
along all profiles, the thickness of the second layer (Th.2) along profiles one and three
(Figures 8b and 9b), and the thickness of the third layer (Th.3) along profiles three and
four (Figure 9b,d), are moderately resolved. In the 1D-LCI model, the upper boundary of
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the last conductive layer is sharp and well defined, and the thickness of its overlay are
evident along the profile sections due to the constraints. So, the 1D-LCI produces a laterally
smooth model with sharp layer boundaries where it describes the horizontal interfaces of
the different geological units. The data error for the 1D-LCI inversion at VES stations along
profile two reveals a misfit generally up to 20%, while the one along the other profiles
reveals a misfit generally between (8–10.8%).

Table 2 shows the values of model parameters (resistivity and thickness) resulting from
the lateral constrained (1D-LCI) inversion along all profiles. Figure 10 shows the observed
and calculated apparent resistivities of 1D-LCI inversions for some selected VES sites along
all profiles where a good fitting between the observed and model data were achieved.

Table 2. The range of the parameters values (resistivity and thickness) resulted from 1D-LCI inversion
models along the main profiles.

Profiles Layer
Number

Resistivity
(Ωm) Thickness (m) Depth of Last Layer (m)

Profile One

Layer one (40.4–257) (1.04–4.32)
Layer two (22.5–316) (3.48–11.1)

Layer three (13.6–183) (12.5–28.7)
Layer four (29.1–169) (29.6–66.8)
Layer five (9.3–79.7) (48.3–98)

Profile Two

Layer one (63.7–171) (1.3–2.54)
Layer two (23.8–418) (7.78–13.9)

Layer three (54.1–637) (28.7–57.2)
Layer four (61.8–143) (43.9–65.5)
Layer five (9.6–110) (89.7–118.4)

Profile Three

Layer one (54.4–246) (0.79–2.53)
Layer two (11.5–143) (3.72–6.86)

Layer three (29.8–481) (14.3–31.7)
Layer four (51.2–241) (19.5–69.7)
Layer five (11.3–237) (38.3–108.5)

Profile Four

Layer one (14.9–388) (066–2.92)
Layer two (27.08–486.3) (1.83–6.05)

Layer three (12.08–147.1) (7.98–16.39)
Layer four (71.48–256.1) (17.2–59.24)
Layer five (12.79–93.32) (34.5–82.6)
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Figure 10. Comparison of the observed and 1D-LCI synthetic data of some selected VES sites such as VES-12 (a), VES-01 (b),
VES-19 (c), and VES-17 (d) along all the profiles.

5.3. Two-Dimensional (2D) Inversion Results of the DC Data

Where multi-electrode device was not available for the survey, the field setup is
designed for 1D interpretation. Although the distances between the VES sites were too
large and no overlap of the VES data of neighbouring VES sites could be realized, a 2D
inversion of the same DC data along the main profiles were achieved using the algorithm
of Uchida (1990) to interpret all these VES data by one conductivity model simultaneously.
The basic theory and the detailed description for inverting (2D) Schlumberger data using
the Uchida algorithm has been discussed by the following authors [44]. The inversion
problem is solved using damped non-linear least squares inversion or Marquardt’s method.
A forward calculation is made at each VES by using the initial model which is assumed to
be 30 Ωm homogeneous earth, and the topography is incorporated into the models.

Figure 11 shows the cross sections of the two dimension (2D) inverted model from DC
data along all profiles (a and b and c and d). The RMS misfit becomes nearly stable with
minimum values equal to 0.2, after the second iteration along the four main profiles. The
presence of different geo-electrical layers of variable resistivity values is mainly governed
by the variation of lithology composed of alternations of gravel, sand and some clay of the
Pleistocene deposits.
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(a) Profile One; (b) Profile Two; (c) Profile Three; (d) Profile Four.

The correlation between 2D inverted cross-sections (Figure 11), some spots of high
resistive anomaly (300 Ωm) are characterized in their shallow zones, southern part of
the study area. These spots represent the dry sand lenses and/or conglomerates of the
Nile deposits that dominate in the desert zone, concerned below VES-11 and VES-31 and
between VES-30 and VES-10 (profile one, Figure 11a), below VES-08 and VES-01 and
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between them (profile two, Figure 11b), below VES-24 (profile three, Figure 11c), below
VES-03 and VES-22 and between VES-29 and VES-26 (profile four, Figure 11d). These
inverted sections show that the lower layer of decreasing resistivity values reaches up
5 Ωm at 100 m depth that may reflect shallow Quaternary groundwater-bearing formation
in the study area. A lateral change in resistivity in the shallow part of these sections from
the south (arid desert zone) toward the north (moisture agriculture zone) is noticed due
to the infiltration effect of El-Shabab Canal (north-east) and Ismailia Canal (north-west),
and the presence of some clay lenses. Also, the senses of normal faulting are expected
below the VES-28 and VES-24 along profile three and below VES-25 along profile four are
observed trending generally E-W. Such interpreted faults agree well with the previous
studies [4] (Figure 2). Figure 12 shows the observed and calculated apparent resistivities of
2D inversions for some selected VES sites along all profiles where a good fitting between
the observed and model data were achieved.
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5.4. The Resistivity and Top Depth to Aquifer Layer

The spatial variation of the resistivity of the Quaternary groundwater aquifer derived
by the 1D-LCI inversion of all VES sites on the four profiles of the study area is displayed
in Figure 13a. In addition, the spatial variation depth of the groundwater aquifer from
this inversion is displayed in Figure 13b. According to the 1D-LCI inversion results, the
resistivity values range from (9.3 to 110 Ωm) in the study area. These values are high in the
central part of the map, especially below VES-24 (237 Ωm), which may be related to the
collection of some dry sand and conglomerates below these VES sites in the aquifer zone.
The resistivity values decrease in the other part of the map (Figure 13a). This decreasing
resistivity values may result from the high salinity of the groundwater and from the effect
of oxidation ponds and infiltration of wastewater from industries in Tenth of Ramadan City.
The recharge of fresh water from the Ismailia Canal is the main reason for the resistivity
decrement beneath the Quaternary deposits. The depth to the top saturated zone aquifer
in the study area varies from 34.5 m to 118.4 m. This depth increases in the central and
southern parts (high topography) of the map, especially below VES-04, VES-09 and VES-15,
while it begins to decrease towards the north (low topography), towards the Ismailia Canal
in the northwest direction, to the northeast and to the east (Figure 13b). Finally, these
results cope with the information from the boreholes (Well-P2 and P3-Well).
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6. Discussion

The eastern Nile Delta in Egypt has recently become one of the most promising areas
for various developments such as land reclamation for agriculture and new residential areas.
The groundwater reserve in this area could be used as a potential source for irrigational
and industrial purposes.

Revision of the previous geophysical work in the study area, mainly 1D inversion of
DC resistivity, showed that the subsurface formation boundaries have sometimes geologi-
cally unrealistic appearance due to the equivalence problems. Therefore, we applied the
1D-LCI inversion of the DC resistivity data to solve the problem of inherent ambiguity and
model equivalence.

In this work, the model parameters of poorly resolved individual data sets could be
well resolved through the spreading of the constraint information from one model to the
neighboring models. The lateral reference constrains of (0.3) proved to be best for identi-
fication of resistivities and thicknesses of the subsurface layers. From 1D-LCI inversion
for some selected VES sites, a good fitting between the observed and model data were
achieved. The final models from 1D-LCI inversion results reveal well-determined model
parameters in most parts of all the profiles, especially those concerning the resistivities
of the five layers well identified along all profiles with smooth boundaries. However,
the thicknesses of these layers are moderately resolved. So, the 1D-LCI offers a good
analysis of the model parameters, which was successfully used to characterize a zone of
groundwater aquifer. There is good agreement between the 1D-LCI inversion models and



Geosciences 2021, 11, 248 20 of 23

the information from the nearest boreholes of P2-well and P3-well where the depth of the
shallow aquifer begins at (80 m) depth. The resistivity of such a bearing water layer ranges
between 9.3 and 110 Ωm and depth vary between 34.5 m 118.4 m with average depth
approximately equal to 77.5 m in the area of study. The low resistivity in some zones within
this aquifer, could be attributed to groundwater polluted irrigation drains, especially zones
of thin or no clay cap.

It is generally shown that the depth topography of the water bearing zone is relatively
related to the surface topography, and the general flow of groundwater is in the northerly
direction. That depth ranges between 34.5 m and 118.4 m along the four main profiles in
the area of study. The irregularity of the boundary surface along profile four, especially
below VES-25 (Figure 9c), may be related to the fault effect which is clearly identified on
the 2D inversion results (Figure 11d).

From the previous literature reviews, the area is affected by some normal faults.
However, the 1D-LCI inversion failed to show the effects of the faults, as the 1D-LCI
inversion technique is focused on the lateral smoothing of the models and produces sharp
layer boundaries. Therefore, the 2D inversion results of the DC data have been considered
to fill this gap below VES-23 and VES-28 along profile three (Figure 11c), and VES-25 along
profile four (Figure 11d).

The 2D inverted models reflect generally three main layers which include a high
resistive surface layer, relatively high resistive intermediate layer and low resistive layer
(5 Ωm) at the deeper part of the sections. The later layer may reflect the saturated zone
of groundwater aquifer at depth that reaches up to 100 m. This gives a good agreement
between the 2D inverted models and the information from the nearest boreholes of P2-well
and P3-well.

7. Conclusions

The present work aimed to delineate the shallow Quaternary groundwater aquifer
in the study area. The 1D-LCI inversion is applied to VES DC resistivity data which are
measured at 32 VES sites in the study area by using a Schlumberger array.

A general overview of the calculated 1D and 1D-LCI models from VES curves reveals
five layers interpreted geo-electric layers along four long profiles. The 1D-LCI produces
a laterally smooth model with sharp layer boundaries which describes the horizontal
interfaces of the different geological units. The lithologies of the main resistivity regime vary
between surface clastic deposits (high-resistive layer), sand with some clay (moderately
resistive layer), dry sand and gravel (high-resistive layer), and saturated sand aquifer
(conductive layer), respectively.

Results of the 1D-LCI inversion showed that the resistivity values of the last layer vary
between (9.3 and 110 Ωm) and the depth to the top ranges between (34.5 and 118.4 m), and
reflect a shallow Quaternary groundwater aquifer in the study area. However, the high
resistivity value below VES-24 at profile three (237 Ωm) may reflect dry sand and gravel
intercalation. The average depth to the top of the shallow groundwater aquifer in the study
area approximately equals 77.5 m based on the 1D-LCI results agree well with the nearest
boreholes of P2-well and P3-well (aquifer begins at 80 m depth).

The 2D inverted model reflects generally three main layers which include a high
resistive surface layer that reaches up to 300 Ωm, relatively high resistive intermediate
layer, and low resistive layer reaching up to 5 Ωm at the deeper part of the sections. The
later layer may reflect the saturated zone of groundwater aquifer at depth reach up to
100 m. This gives a good agreement between the 2D inverted models and the information
from the nearest boreholes of P2-well and P3-well. Some resistive spots in the shallow
parts represent dry sand lenses and conglomerates of the Nile deposits that dominate in
the desert zone.

Furthermore, the decrement of the resistivity value inside the aquifer may result
from the high salinity of the groundwater or from the effect of oxidation ponds and the
infiltration of wastewater from industries in Tenth of Ramadan City. The general decreases
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in the resistivity values from the south into the north direction in the shallow part of
the interpreted sections are also due to infiltration from El Shabab canal (north-east) and
Ismailia Canal (north-west), irrigation operated in the cultivated lowlands, and presence of
some clay lenses. This average depth to the top of the shallow groundwater aquifer agrees
well with these boreholes (aquifer begins at 80 m depth) while DC inversion results showed
that the depth of the saturated groundwater aquifer reaches up to 100 and decreases
towards Ismailia Canal in the north.

Some normal faults striking nearly E-W are interpreted in the southern part near
Tenth of Ramadan City are observed from 2D inversion results that agree with the pervious
known geology.

Finally, it is recommended that the applications of 1D-LCI in coordination with 2D
inversion of DC data could successfully help to identify the groundwater aquifer and
its extension. This result could help the stakeholders add new water wells in the newly
reclaimed arid area. Other geophysical tools including magnetotelluric (MT) and elec-
tromagnetic (EM) are also recommended to identify the deeper groundwater aquifers
(Miocene aquifer) and to clarify the interaction between the deep and shallow aquifer in
the area of study.
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