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Abstract: Mountain headwater streams are still somewhat on the boundary of interest regarding
possible human impact on their morphology or geomorphic processes, which may be caused by our
perception of mountains as islands of relatively preserved natural conditions. This paper summarizes
the past and present human pressure on the headwater streams that drain the highest mountain
ranges of the Outer Western Carpathians in Czechia. Anthropogenic pressure began in this region
in the 16th century during a colonization of the mountains and continued by timber harvesting,
timber floating, and construction of torrent control works until present. Each of these interventions
produced a morphological response of the channels in relation to altered sediment or water fluxes
at the whole catchment scale or within longitudinal stream profiles. Because it is highly unlikely to
reach pre-settlement conditions of the channels, the management effort should be concentrated to
achieve realistic restoration targets under the present socioeconomic circumstances by taking into
consideration the morphodynamical specifics of mountain headwater streams.

Keywords: mountain stream; headwater stream; fluvial geomorphology; human impact

1. Introduction

Practically all rural areas in Europe have been shaped or altered by humans and can
be considered cultural landscapes [1]. Adjustments of channel geometry and morphology
as a response to various human interventions have been frequently studied in the past
decades in relatively wide gravel beds or meandering European rivers, primarily in the
context of river degradation [2–5]. This led to the development of plenty of hydromorpho-
logical assessment protocols, which aim to follow the demands of the Water Framework
Directive [6,7]. This awareness of the present low hydromorphological quality of river
reaches stimulates a still increasing number of complex restoration projects in this part
of the fluvial network [8]. However, mountain headwater streams of the first or second
Strahler’s order are still rather on the boundary of interest regarding the possible human
impact on their morphology or geomorphic processes. This may be caused by our general
perception of mountains as islands of relatively preserved natural conditions in the context
of European cultural landscapes. The second issue is usually the non-fish bearing character
of these streams and thus, a lower motivation to sustain (or increase) their ecological
quality. However, these relatively small streams constitute up to 80% of the total length
of the drainage network and are responsible for the transfer of precipitation, sediments,
organic matter, and nutrients from mountainous areas to downstream river reaches [9–11].
Moreover, we can expect a faster and larger morphological response from such small
channels to alterations in sediment supply or hydrological regime when compared to large
rivers, which underlines the vulnerability of headwater streams to changes of inner or outer
boundary conditions (e.g., represented by decreased sediment production in the catchment
area or construction of an in-channel structure) [11]. In this sense, it would be inconvenient
to marginalize the possible impact of human activities on mountain headwater streams.
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Human impact on fluvial systems can be perceived as indirect or direct [12]. The first
group is represented by any human activity outside the river channel (i.e., in the whole
catchment area), but with a potential to alter the fluxes of water, sediment, or organic
matter (e.g., instream wood) to the channel. As a typical example, deforestation of the
catchment may increase erosion and sediment supply to the channel, which subsequently
leads to the channel aggradation and widening [13]. As for the second group, interventions
in the channel such as construction of dams and weirs, straightening of the channel, or
gravel extraction from the channel bed are among the common representatives of direct
human impact. As a consequence, incision of the channel and sediment coarsening can be
usually observed downstream of transverse structures impermeable for sediment transport,
at the places of gravel extraction, and in the channels altered by artificial straightening and
narrowing, whereas aggradation of sediments prevails upstream where the barriers for
sediment transport [4,14,15]. In the context of mountain headwater streams, namely torrent
control works are emblematic structures planned and built to control erosion processes
and coarse sediment transport [16,17]. Indeed, individual agents often act simultaneously,
which can amplify or reduce their impact on the resulting fluvial processes and the shaping
of fluvial forms [18,19].

Based on the published materials and archival sources, this review article aims to
summarize the past and present human pressure on mountain headwater streams that drain
the highest mountain ranges of the Czech part of the Outer Western Carpathians under the
concept of complex evolutionary trajectory. It attempts to demonstrate that although steep
mountain headwater streams are generally perceived as “pristine streams” when compared
relative to foothill or lowland rivers, various adjustments in geomorphological processes
triggered by indirect and direct human activity can be expected in this part of a fluvial
network. Finally, some implications for the processes of hydromorphological evaluation
and restoration of mountain headwater streams are provided.

2. Materials and Methods
2.1. Study Area

This study primarily focuses on the headwater streams of the Moravskoslezské
Beskydy Mountains (MSB), which represent the highest mountain range (up to 1328 m a.s.l.)
of the Outer Western Carpathians in Czechia (Figure 1). Local temperate climate is one of
the most humid in Central Europe, with an annual mean precipitation exceeding 1200 mm
and the duration of snow cover exceeding 95 days annually [20]. Flood events are connected
to long-term cyclonic precipitation or to convectional storms in the spring and summer
months, whereas floods caused by snow melting are rare [21]. The highest flow during
a common year usually occurs in spring owing to the combination of snow melting and
rainfalls, but some channel reaches can indicate intermittent flow regime by their complete
drying in July and August during relatively dry years [22]. The Mesozoic and Cenozoic
flysch lithology predisposes the area to the frequent occurrence of various types of land-
slides [23,24]. Lack of in-channel boulders and the supply of relatively fine-sized material
from adjacent hillslopes lead to frequent bedload transport in mountain streams [25,26].
This had led to the common occurrence of wandering river patterns in the foothills before
extensive regulation works (e.g., channel straightening and narrowing, construction of
grade-control structures, gravel extraction) in the 20th century, as was typical also for the
Polish and Slovakian Carpathian foothills [27–30].

The first inhabitants came to the MBS during Wallachian colonization in 16–17th
century, which led to intensive timber harvesting and spreading of pastures and mead-
ows [31]. However, since the second half of the 19th century, this mountain range has been
almost completely reforested [31,32]. The present forest canopy predominantly consists
of monocultures of Norway spruce (Picea abies) and European beech (Fagus sylvatica) as
a result of the rigid forest management. Although the MSB and surrounding mountain
ranges are included in the Beskydy Protected landscape area (1160 km2) in the context of
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the Czech legislative, the areas without this strict forest management cover approximately
only 320 km2 [33].
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Figure 1. Geographical position of the studied mountain range; the GPS coordinates correspond to
the Lysá hora Mt., the highest peak (1328 m a.s.l.) of the Outer Western Carpathians in Czechia.

2.2. Data Sources

This review study summarizes and synthetizes the published material on fluvial
geomorphic processes in the mountain catchments of this well-studied region and puts
it into a broader context under the concept of the complex evolutionary trajectory. This
concept emphasizes the fact that a river or stream represents a complex system which
adjusts its morphology to variable boundary conditions over time, such as changes in
flow and sediment fluxes [7,34]. To complete this inventory, the archival materials of the
Czech Forests State Enterprise were studied with a primary focus on the construction of
torrent control works during the 20th century to understand the extent and motivation
of heavily managing a major part of the local fluvial network. Digitalized imprints of
the Stable Cadastre (1826–1843; 1:2880 scale) and archival postcards mainly from the first
half of the 20th century were among the additional sources of information about the
historical evolution of land use and fluvial landscape (e.g., presence of instream wood or
riparian vegetation).

3. Overview of Human Impact on Geomorphic Processes of Mountain Headwater Streams
3.1. Land Cover Changes

Historical changes of land cover produced alterations of the catchment-scale hydro-
logic processes and sediment supply into channels. The lowest terraces developed along
some of the less steep headwater streams of the MSB are interpreted as legacy sediments
due to slash-and-burn deforestation and intensive shepherd activity during the Wallachian
colonization (16–17th century), which was supported by radiocarbon dating and pollen
analysis of the terrace sediments [35,36]. Therefore, this colonization presents a beginning
point of the human impact on the local headwater streams, although the aggradation
tendencies might be accelerated by the effect of increased precipitation during the Little
Ice Age [37]. Later, gradual reforestation after the abandonment of pastures and decreased
demand for timber since the second half of the 19th century likely reduced the supply of
sediments and related aggradation trends in the channels. For example, the forested area
in the intramountain Slavíč catchment (18.4 km2) increased from 64% to 92% between the
years of 1836 and 2006 [38], although extensive grazing activities persisted into the 20th
century in some catchments, especially in the southern part of the MSB and neighboring
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mountain ranges (Figure 2a). As a result of the reforestation, nowadays we observe a
gradual incision of the channels on the former floodplain, in some specific cases up to
several meters [32,35]. However, there had been a lag response between the reforestation
and decease of intensive bedload transport in the channels, and at least in the first half of
the 20th century some of the streams were still quite overloaded by gravel- and cobble-
sized sediments. These high bedload transport rates accompanied by large morphological
changes in the active channels were likely the main motivation to plan and construct
extensive torrent control works in the MSB during this time (Figure 2b,c). This is believed
to be why many of these managed streams are nowadays incised down to the bedrock due
to low sediment supply conditions in the present (for more details, see Section 3.3).
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Figure 2. Historical and present stages of headwater streams in relation to the sediment supply
conditions: (a) pre-regulation state of the Pluskovec Stream without riparian vegetation as a result
of shepherd activity (probably 1920s–1930s); contrast sediment loading of the headwater channel
between (b) the 1920s and (c) the present (check dam in the Malý Lipový catchment).

The reforestation by monocultures (usually Norway spruce or European beech) has
serious consequences for the recruitment and potential geomorphic function of instream
wood. This rigid forest management leads to the lack of instream wood pieces in the
channels as a result of timber harvesting activities, including riparian strips or removal of
large wood from the channels, except some inaccessible steep valleys or nature reserves
with a higher degree of protection. More than ten-fold lower volumes of instream wood
were reported from the streams adjacent to managed forest when compared to those in
unmanaged old-growth forests [39]. These small wood loads correlate with the low number
of log steps as important morphologic features of instream wood in steep streams, which
may otherwise stabilize stream longitudinal profiles and trap sediments (Figure 3). In the
stream-draining managed forests, the mean log step frequency was 1.3 steps per 100 m
channel length, whereas 3.0–5.6 steps per 100 m channel length were found in the streams
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located in old-growth forests located in nature reserves [40,41]. Moreover, the changed tree
species composition led to different residence times of instream wood, while slower decay
rates were expected for conifers [42].
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Figure 3. Geomorphic impact of a log step in a stream surrounded by an unmanaged forest (the Satina
catchment). Such log steps are rare in the streams surrounded by forests under intensive management.

3.2. Timber Floating

The first signs of direct human impact on the headwater streams can be related to
timber floating, when the first splash dams were constructed at the turn of the 18th and
19th century (Figure 4a). A few of these dams allocated in the headwater segments were
reconstructed in the past decades (Figure 4b), and now they serve as recreational facilities
and refugia for amphibians, but many others are almost completely extinct. Timber was
usually floated during snow melting (March or April) with additional supply of water from
opened splash dams, which produced annual artificial flooding of many local channels
until the Second World War [31]. Together with regulation works (removal of obstacles,
cutting of riparian vegetation to increase access to the banks, or construction of stone
embankments), such artificial floods likely produced accelerated erosion of the channels,
and nowadays some local streams still indicate quite regular trapezoid cross-sectional
profiles with low geomorphic heterogeneity of the channel bed.

3.3. Torrent Control Works

The first complex torrent control works were planned and built in the MSB at the
beginning of the 20th century, when previous experiences coming from the Austrian
Alps were fully adapted for local medium-high mountain settings [44]. These torrent
control works consisted of (i) up to several meters-high retention check dams in the
uppermost parts of steep streams or in deeply incised gullies, (ii) lower-grade control
structures downstream, and (iii) bank reinforcement by ripraps. The spatial extend of
these structures along the managed stream longitudinal profile depends on the channel
slope and protection aims, while a closer spacing of check dams (up to 20 transversal
structures per 1 km stream length) with artificial embankments frequently occurs at lower
channel slopes about 2–3% [45]. Nowadays, these measures are widespread in mountain
channels of the MSB and practically all catchments with ≥1–2 km2 area are managed by
sediment and/or erosion control structures (see examples on Figures 5 and 6). While (i)
are used to decrease bedload transport rates by trapping sediments during flood events,
(ii) and (iii) control vertical and lateral channel stability. Therefore, a different response to
fluvial processes and resulting morphology is expected in the dependence of the structures,
original channel geometry (mainly bed slope), and catchment-scale sediment supply [46].
Namely, the decreased bed sediment heterogeneity due to missing coarse fractions (trapped
by retention structures) was measured in a steep stream (channel slope ±10%) with higher
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check dams, which was demonstrated by better sediment sorting in comparison with an
unimpacted stream. Cross-sectional and longitudinal heterogeneity was degraded in a
managed foothill stream with channel slope about 2% and presence of additional bank
stabilizations, which corresponds to the geometric simplification of cross-sectional and
longitudinal profiles [39]. This alteration of channel morphology accompanied by the
loss of a mosaic of bedforms, and armoring processes of the channel bed produce an
acceleration of downstream sediment transport due to low channel roughness and limited
space for the development of bar deposits [47].
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Figure 4. Features connected with historical timber floating: (a) timber floating in Dolní Bečva in
the 1890s, noting the lack of riparian vegetation on the stream banks (source: [43]), (b) splash dam
Kyčerov, used for timber floating until the 1920s and completely reconstructed in the 2010s (reservoir
capacity is 1500 m3).
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Figure 5. Examples of the torrent control works in the Vysutý catchment (catchment area is 2.47 km2):
(a) remnants of the old retention check dam, (b) ca. 2.5 m-tall new retention check dam built in 2011,
(c) ca. 1.0–1.5 m-tall grade control structures, (d) low bed sills in the downstream part, (e) 3 m-tall
retention check dam in the small recipient.
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Figure 6. The first construction plan of the torrent control works in the Vysutý from the beginning
of the 20th century as an illustrative example of the morphological alteration of local mountain
headwater streams. Original active channel with extensive gravel and cobble out-of-channel deposits
((A) the red arrows show the extend of the deposits) was replaced by a narrow (~5 m) channel
stabilized by a dense sequence of grade control structures (B).

Furthermore, note that many torrent control works have recently been abandoned and
at various stages of destruction, which is a similar trend across many European mountain
ranges [16,48]. Therefore, the morphological response of the streams is also dependent
on the present stage of torrent control works and their maintenance (e.g., Figure 5a). For
example, a decrease of check dam height by erosion of its crest may increase bedload
transport rates by increasing the bed slope upstream the crest or evacuation of stored
sediments. Similarly, gradual destruction of artificial embankments leads to a gradual
restoration of sediment connectivity between the channel and adjacent hillslope.

The specific interventions are crossings of streams by forest roads, which are usually
realized by the construction of culverts. The local road density is relatively high (up to 3 km
per 1 km2), which is related to the intensive forest management [44]. Recent observations
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documented a frequent underestimation of the culverts’ capacity during high flows, which
causes their frequent clogging, sediment accumulation upstream, and propagation of
channel incision several ten meters downstream from the crossings [49]. In the perspective
of flood risk, these alterations produce overbank flows and occasional flooding of forest
roads and damages of culverts by their undermining [50]. Moreover, erosion of unpaved
forest roads has been recognized as an important source of suspended sediments for local
streams during surface runoff events [51].

3.4. The Complex Evolutionary Trajectory of Mountain Headwater Streams

Of the documented examples of geomorphologically effective human alterations
of mountain headwater catchments and based on this list, it can be inferred that even
small steep catchments in Central Europe cannot be perceived as completely pristine
landscapes in view of fluvial processes and resulting channel morphologies. Figure 7
aims to summarize the main human-induced driving factors on the morphology of the
studied streams based on the concept of the complex evolutionary trajectory, but the specific
response in the individual catchment (i.e., the intensity or duration of the aggradation
and degradation trends in the channel) will differ in relation to the timing and intensity of
these interventions and the position of the reach within the fluvial continuum (i.e., greater
aggradation can be expected in the less confined valleys). This implies recent general
degradation of headwater channel reaches as the consequence of management practices,
which alter catchment-scale sediment fluxes and limit recruitment of large wood. The list
of alterations does not include some representatives of a rather wider regional indirect
human impact such as the occurrence of acid rains produced by industrial complexes
(iron works, power plants), which caused decease of forest in some ridge parts of the
MSB and other mountains in Czechia in the 1970s and 1980s or a bark beetle calamity,
which led to the contemporary collapse of local spruce monocultures in the last few
years. Indeed, both forest disturbances may produce increased sediment supply in some
catchments by temporary loss of vegetation cover. Moreover, global climate change driven
by human-induced emissions of greenhouse gases impacts the precipitation regime and
evapotranspiration, which, among other things, alters flood magnitudes as drivers of
sediment transport and morphological changes [52].
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Intensive anthropogenic pressure on headwater streams in the MSB began in the 16th
century during a colonization of the mountains, which was quite late in the context of
other small European catchments affected by ancient or medieval deforestation [53,54]
or mining activities [55]. However, a similarity of the main driving factors can be found
across the European mountains, where the phase of general deforestation with timber
exploitation (sometimes connected also with timber floating) and agricultural practices was
replaced by depopulation of mountainous areas and spontaneous reforestation [53,55–58].
These variations in land cover and land use were reflected in the sediment fluxes and
morphodynamics of headwater streams by the gradual transition from rich sediment
supply conditions to a decrease in sediment productivity. Some European mountain ranges
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(e.g., Italian Alps, French Prealps, or White Mountains in Crete, Greece) have undergone
repeated cycles of deforestation and reforestation in relation to the historic fluctuations
in demographic, political, and cultural aspects [53,57,59]. Moreover, many of the small
mountain catchments have recently been impacted by the presence of check dams and
additional in-channel structures to control downstream sediment transport rates and
channel morphodynamics [16,58,60], although not all of these structures are nowadays
regularly maintained. Note that the morphological response of the channels can be of
different intensity across Europe, which is dictated by various hydrological regimes (e.g.,
rather semiarid conditions of Southern Europe vs. the mild wet climate of Central Europe)
and the resistance of lithology (e.g., unconsolidated sediments or soft flysch vs. resistant
crystalline rocks). Moreover, some other unmentioned human activities (e.g., prescribed
fires) occur in specific or spatially limited areas, but they may influence the hydrological or
sediment regimes of mountain catchments as well [61].

3.5. Implications for of Hydromorphological Assessment and Restoration of Mountain
Headwater Streams

Fast and simultaneously extensive responses to the change of boundary conditions
and missing floodplain segments in the case of strictly confined valleys belong to the
main specifics of mountain headwater streams in the context of their hydromorphological
quality and evaluation [35,62]. In addition, one should consider large variations in channel-
reach morphologies of headwater streams, which arises from the (dis)balance between the
sediment supply (i.e., frequency, magnitude, and grain size) and the transport capacity
(frequency and magnitude of transport events such as floods or debris flows) with the
additional impact of vegetation (primarily the presence of instream wood) [63–65]. For
example, the occurrence of plane beds with prominently low channel heterogeneity can
correspond to unaltered natural conditions of the balanced sediment supply and transport
capacity as well as to the degradation of the channel reach between subsequent consoli-
dation check dams [47,64,66]. Therefore, hydromorphological assessments of mountain
headwater streams have to precisely focus on the cause-response links at the catchment
scale, when detailed fluvial geomorphic mapping and analysis of historical sources (e.g.,
old maps and aerial photos to assess land cover changes, documentation about flood events)
is necessary to put the present ‘snapshot’ of the evaluated channel reach into wider spatial
and temporal context. Such a procedure does not substantially differ from the modern
process-based hydromorphological assessment protocols, which are generally based on
the evaluation of temporal morphological variability to delimit current morphological
conditions or to determine future channel evolution [6,7].

With particular reference to the land cover of mountain catchments, it is highly unlikely
that the planting of trees will be stopped in the future and thus, that we will reach pre-
settlement, old-growth forest conditions. Similarly, some degree of protection against large
morphological changes or intensive bedload transport during extraordinary flood pulses is
often necessary in inhabited mountain valleys. It implies that the management effort should
be concentrated to achieve realistic restoration targets under the present socioeconomic
circumstances. Nevertheless, there are still several ways how we can significantly improve
the hydromorphological quality of mountain headwater streams by (at least partially)
restoration of fluvial processes, for example:

• Restoration of downstream sediment connectivity as much as possible by removal of
longitudinal barriers (check dams, unfitted culverts) or artificial embankments, but
with careful evaluation of possible flood risk in the inhabited valleys and alluvial
cones;

• protection of riparian tree buffers and thus, improvement of the potential for instream
wood recruitment and its consequent geomorphic function in the channels;

• complex restoration of managed and/or degraded channel reaches by addition of in-
stream wood elements or close-to-natural-grade control structures that mimic natural
step-pool morphology [67,68].
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4. Conclusions

On the example of the highest parts of the Outer Western Carpathians in Czechia, this
review demonstrated that even headwater mountain streams cannot be considered as really
unaltered by human impact in the context of the European cultural landscape. Moreover,
there is usually more than a single alteration, which implies the complex morphological
response of these small streams. Mountain headwater streams are key, but sometimes
undervalued elements of the fluvial continuum and more conservation efforts should be
put on this part of the fluvial network. Although it is practically impossible to restore
pristine pre-settlement conditions in European mountains, there still exists the potential
to substantially improve the hydromorphological state of small mountain streams by the
implementation of complex restoration measures, which take into consideration the present
socioeconomic circumstances and requirements of targeted aquatic species for their habi-
tats. Crucially, any process-based restoration efforts should take into account the natural
morphodynamics of mountain streams, namely, their fast and extensive morphological
response to the changes of boundary conditions or individual disturbances.
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