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Abstract: This study compares the efficiency of 3-D transient electromagnetic forward modeling
schemes on the multi-resolution grid for various modeling scenarios. We developed time-domain
finite-difference modeling based on the explicit scheme earlier. In this work, we additionally imple-
ment 3-D transient electromagnetic forward modeling using the backward Euler implicit scheme.
The iterative solver is used for solving the system of equations and requires a proper initial guess that
has significant effect on the convergence. The standard approach usually employs the solution of a
previous time step as an initial guess, which might be too conservative. Instead, we test various initial
guesses based on the linear extrapolation or linear combination of the solutions from several previous
steps. We build up the implicit scheme forward modeling on the multi-resolution grid, which allows
for the adjustment of the horizontal resolution with depth, hence improving the performance of
the forward operator. Synthetic examples show the implicit scheme forward modeling using the
linearly combined initial guess estimate on the multi-resolution grid additionally reduces the run
time compared to the standard initial guess approach. The result of comparison between the implicit
scheme developed here with the previously developed explicit scheme shows that the explicit scheme
modeling is more efficient for more conductive background models often found in environmental
studies. However, the implicit scheme modeling is more suitable for the simulation with highly
resistive background models, usually occurring in mineral exploration scenarios. Thus, the inverse
problem can be solved using more efficient forward solution depending on the modeling setup and
background resistivity.

Keywords: transient electromagnetic method; 3-D forward modeling; explicit scheme; implicit
scheme; initial guess; multi-resolution grid

1. Introduction

The transient electromagnetic (TEM) method is widely used in many geophysical
applications, including exploration for minerals [1–3]. In order to fully exploit the observed
data, the full 3-D quantitative data inversion is warranted. The inversion techniques rely
heavily on accurate and efficient forward modeling algorithms.

The TEM forward modeling can be implemented in frequency-domain and thereafter
transformed to time-domain using the Fourier transform. However, the frequency-domain
approach generally requires a sufficiently dense and wide frequency range to ensure the
accuracy of the solution [4]. Alternatively, the simulation can be implemented directly in
the time-domain so that the electromagnetic (EM) fields are recursively advanced using
time-stepping [5]. The time-domain TEM modeling can be further classified into explicit
and implicit schemes, depending on how the time-stepping is approached.
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The classical explicit scheme discretizes Maxwell equations directly in a leapfrog
fashion. It involves lightweight computations in each time step, alternating between
electric and magnetic fields from Ampere’s and Faraday’s laws, which are merely matrix-
vector operations. However, the time-stepping is conditionally stable in that the length
of the time step is constrained by the Courant–Friedrichs–Lewy (CFL) condition [6], i.e.,
the time that the EM wave spends to pass the minimum length of the model grid at light
speed. This usually small time step needs to be fixed during the whole modeling process,
which is impractical to implement for the time range of the TEM problem. Oristaglio and
Hohmann [7] and Wang and Hohmann [8] applied a modified version of the Du Fort-
Frankel method, which replaces the displacement currents term with a variable artificial
term that can manually slow down the EM wave speed in the late time. Thus, the time step
is allowed to increase gradually with time, whilst the diffusion property of the EM field
propagation is maintained. The stable conditions are determined by the minimum grid
size and conductivity of the model.

The implicit scheme is usually implemented using the backward Euler method to
discretize the time-stepping. This approach is unconditionally stable, allowing arbitrary
time steps [9,10]. However, each time step requires the solution of a system of linear
equations that is often solved using the direct solver (e.g., Cholesky decomposition method)
or the iterative solver (e.g., Krylov methods). The direct solver is expensive at the matrix
factorization stage. However, it is only done once if the model and time step are fixed.
The advantage is that the subsequent computations are simple and fast, and the solution
is accurate [10,11]. The saved factorization can also be utilized when solving the adjoint
problem in the sensitivities computations.

The iterative solver requires relatively lower computational resources. Iterations start
from an initial guess to approximate the solution. A standard initial guess approach uses
the solution from the previous time step [12]. Domnikov [13] proposed starting from a
linear combination of two previous time steps. The coefficients of the linear combination are
determined by minimizing a residual function. A better initial guess together with a proper
preconditioner significantly improves the solving process. The time-stepping generally begins
from a short time step to ensure the solution’s accuracy at the early time. As time progresses,
the variations of the EM fields are smoother, and the larger time step can be used to reduce
the number of steps. However, when the coefficient matrix is altered using a different time
step, additional matrix preconditioning or factorization is required. Um et al. [12] proposed
an Adaptive Time Step Doubling (ATSD) scheme, which is a rather efficient strategy for
enlarging time steps with fewer times of changing the coefficient matrix.

In order to model EM fields accurately around the source location, fine grid discretiza-
tion is usually required. However, EM fields propagate into the subsurface in a diffusive
manner, and the field variations become smoother with depth. Therefore, the horizontal
grid resolution can be coarser with depth. Several approaches with variable model dis-
cretization were proposed, e.g., Octree grid [14,15], unstructured grid discretized by the
tetrahedral cells [4,10] for the finite-element method modeling, etc. Our previous study
developed the Multi-Resolution (MR) gird approach, which has been initially implemented
in the 3-D magnetotelluric forward modeling [16] and extended to the direct current resis-
tivity method [17] and TEM method using the explicit scheme [18]. The MR grid can be
thought of as a subclass of Octree grids adequately discretizing the media.

In this study, we focus on the implicit scheme TEM forward modeling implemented
on the MR grid. The system matrix is symmetric and positive definite. Therefore, a
preconditioned conjugate gradient method together with incomplete Cholesky factorization
as the preconditioner are employed to solve the governing system of linear equations. A
proper initial guess affects the convergence performance of iterative solvers. Hence, we test
various initial guess estimates. One can take two previous time steps to estimate the initial
guess at current time step in a linear extrapolation manner. Based on the linearly combined
approach, we also evaluate the effects of involving more previous steps. Those initial
guess estimates are compared to demonstrate the most efficient one. Finally, a comparison
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between the explicit and implicit schemes modeling on various resistivity scenarios is
present to show the preferable condition for them.

The paper is organized as follows. We first briefly introduce the explicit scheme
modeling. Then we describe the implicit scheme solution in more detail and explore the
effects of the initial guess. The MR grid approach is also shortly explained. Three synthetic
examples are presented to verify the accuracy and efficiency of 3-D TEM forward modeling
using the implicit scheme on the MR grid. Finally, we compare the explicit and backward
Euler implicit schemes for various modeling scenarios.

2. Methods

The electromagnetic field variations in the time-domain are governed by
Maxwell equations:

∇× h = ε0
∂e
∂t + σe + jsrc

∇× e = −µ0
∂h
∂t

, (1)

where e and h denote the electric and magnetic fields, respectively; σ represents the
spatially distributed electric conductivity; ε0 and µ0 are the constant dielectric permittivity
and magnetic permeability of the vacuum, respectively; jsrc indicates the source electric
current density. The displacement currents term ε0

∂e
∂t for the time ranges considered in

TEM modeling can often be neglected. By ignoring ε0
∂e
∂t and substituting Ampere’s law

into Faraday’s law, we also obtain the second-order diffusion equation for electric field e:

∇×
(

µ−1
0 ∇× e

)
+ σ

∂e
∂t

+
∂jsrc

∂t
= 0. (2)

Equation (1) or (2) should be discretized both in spatial and time domains. In this
study, we use the finite-difference method to discretize the spatial coordinates. Thus,
e ∈ RNE and h ∈ RNF are respectively defined on edges and faces of the staggered (SG)
grid [19], where NE and NF denote the amounts of edges and faces in the grid. In order
to satisfy Ohm’s law, the diagonal matrix σ ∈ RNE×NE of the averaged conductivity on
grid edges is also calculated from the cell conductivity σ through the volume-weighted
averaging approach. The curl operators are discretized as C ∈ RNF×NE , which maps from
the grid edges to faces, and its adjoint C† ∈ RNE×NF works in reverse. C and C† are
defined as:

C = A−1
F C LE

C† = Ã−1
F CT L̃E

, (3)

where C ∈ RNF×NE and its transpose are expressed respectively as the topology matrices
of C and C†. The diagonal matrices LE (edge-lengths), ÃF (dual-face-areas) ∈ RNE×NE ,
and AF (face-areas), L̃E (dual-edge-lengths) ∈ RNF×NF are the additional Cartesian metric
elements defined on the grid.

TEM forward modeling starts time-stepping from the initial statues of fields. Here, we
study the ground survey (Figure 1) using square loop source with a step-off excitation, but
the loop source can also be any arbitrary geometry and waveform excitation. The −dbz/dt
response is computed for each site, where b = µ0h denotes the magnetic flux density. The
initial h, generated by the source current (jsrc), is static before the switch-off time and can
be calculated via Biot-Savart law [18]. Correspondingly, the initial e field is zero over the
modeling domain Ω.
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Figure 1. Sketches of the ground TEM survey configuration using the loop source and the dis-
cretization of the multi-resolution grid. Red lines represent the loop source; white points represent
measurement sites; the blue region indicates the air layers.

2.1. Explicit Scheme in the Modified Version of the Du Fort-Frankel Method

We implemented the explicit scheme using the modified version of the Du Fort-
Frankel method, which can be expressed by discretizing and reorganizing Equation (1) in
an iterative form:

en =
2γn − ∆tnσ

2γn + ∆tnσ
en−1 +

2∆tn

2γn + ∆tnσ

(
C†hn−1 − jsrc

n

)
hn = hn−1 −

∆t̃n

µ0
C en

, (4)

where en and hn are defined at the time instants tn and t̃n, respectively. The iterations
between en and hn are progressing in a leapfrog fashion, ∆tn and ∆t̃n denote the lengths
of time steps, respectively. The time axis and iterations are depicted in Figure 2. The
displacement currents term often has negligible effects. Therefore, the original ε0 is replaced
with a variable artificial factor γn to enable increasing ∆tn with time and maintain the
stability of the forward modeling [8]. The stability criterion is expressed as:

∆tn � min(LE)
√

µ0 min(σ)tn−1
6

∆t̃n = (∆tn + ∆tn+1)/2

γn ≥ 3
µ0

[
∆tn

min(LE)

]2
. (5)

Time step ∆tn is allowed to increase gradually. However, it is determined by the
minimum conductivity and minimum edge-length of the grid. Thus, if a model is relatively
conductive, ∆tn will be relatively large, and the explicit scheme’s performance will be
superior (we show comparison thereafter).

The Dirichlet boundary conditions are used for the surrounding and bottom distant
boundaries Γ∞, where the tangential en are assumed to be zero, i.e., (n× e)Γ∞

= 0 [5]. Since
involving a low air conductivity (σair ≈ 0) would significantly suppress ∆tn in Equation (5),
we use the upward continuation boundary condition [8,20] for the top boundary. Thus,
the Earth’s surface is assumed to be flat, and the model requires only one air layer. The
horizontal components hx and hy in the air layer (z < 0) are derived from the vertical com-
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ponent hz on the ground (z = 0) through the Fast Fourier transform (FFT) [18]. Therefore,
∆tn is determined only by the subsurface conductivity.

Because of the rich null space of curl operators, the numerical errors can accumulate
during the time-stepping and cause the late time response to be inaccurate. The divergence
correction is a standard way to cope with this problem. Wang and Hohmann [8] proposed
a scheme to explicitly involve the divergence-free condition of h in the forward modeling
(i.e., ∇ · h = 0). At each time instant t̃n, the vertical component hz is computed from the
horizontal hx and hy in the subsurface layers [18], ensuring the divergence-free of the
magnetic field.

The explicit scheme is initiated from the static fields e0 and h0 and runs through the
recursion of Equation (4). Each time step only consists of lightweight matrix computations.
When the time-stepping is passing a time gate, the −dbz/dt data response is computed
using µ0(hn−1 − hn)/∆t̃n.

 

   

    

    

  

   

  

   
           

               

               
  

        

  
       

Figure 2. Sketch of time-stepping using the explicit scheme in the modified version of the Du
Fort-Frankel method and the implicit scheme based on the second-order backward Euler method.

2.2. Implicit Scheme Using the Backward Euler Method

The implicit scheme is based on solving Equation (2). In order to improve the accuracy,
the second-order backward Euler method is used to discretize time derivatives [4], e.g., ∂e

∂t
is approximated as:

∂en

∂t
≈ 3en+1 − 4en + en−1

2∆t
. (6)

Consequently, Equation (2) is discretized to an iterative form:(
C†µ−1

0 C +
3σ

2∆t

)
en =

(
σ

4en−1 − en−2

2∆t
−

3jsrc
n − 4jsrc

n−1 + jsrc
n−2

2∆t

)
Aen = bn

, (7)

where A ∈ RNE×NE represents the coefficient matrix of the system of linear equations
determined by ∆t. The right-hand-side term bn ∈ RNE consists of source term and the
field solutions from previous time steps. Equations are only solved for en during the time-
stepping (Figure 2). The nonsymmetric curl-curl A can be symmetrized by multiplying
with the diagonal matrix of edge-volumes VE = LEÃF,∈ RNE×NE :

(VEA)en = VEbn(
LECT L̃E µ−1

0 A−1
F C LE +

3VEσ

2∆t

)
en = VEbn

Ãen = b̃n

, (8)

where b̃n denotes the new weighted right-hand-side term, accordingly. The above system
of equations is usually large for the 3-D problem and can be solved using Krylov sub-
space iterative methods. In our implementation, we use the Preconditioned Conjugate
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Gradient (PCG) method, which is an efficient solver for the equations with a symmetric
coefficient matrix. The Incomplete Cholesky factorization (ICHOL) method is used as
the preconditioner.

An initial guess x0 of en solution affects the performance of the iterative solvers.
Usually, the standard initial guess approach adopts the solution from the previous time
step to start PCG iterations [12], i.e., x0 = en−1. However, we have found that this
approach might be too conservative. Instead, we first propose a linearly extrapolated
approach that calculates a linear extrapolation of x0 under the simple assumption that there
is a gradual change between adjacent time steps, i.e., en − en−1 ≈ en−1 − en−2. Therefore,
x0 = 2en−1 − en−2 is taken as the new initial guess vector of en. Domnikov [13] proposed
a linearly combined approach that approximates en as x0 = α1en−1 + α2en−2. Unlike
the linearly extrapolated approach, the coefficients α = (α1

α2
) are determined from solving

min ‖Ãeprevα− b̃n‖2 at each time step where eprev = (en−1, en−2), and α is obtained using

the least-squares solution as α =
(

eT
prevÃTÃeprev

)−1
eT

prevÃTb̃n. We also consider a linear

combination of more previous steps (Nprev = 2, 3, 4) as x0 = ∑
Nprev
i=1 αien−i, in order to

improve the approximation to en. Note that the matrix inverse
(

eT
prevÃTÃeprev

)−1
∈

RNprev×Nprev of normal equations is fast to compute.
The time-stepping usually starts with a sufficiently small ∆t to ensure accuracy at

early times. Using a constant ∆t with fixed model parameters does not require modifying
Ã and recomputing matrix preconditioning (or full matrix factorization when using a direct
solver). We only need to update b̃n in order to advance the time-stepping. However, the
small ∆t is not needed at late times; therefore, it is more efficient to increase ∆t gradually.
However, this should be compromised with the number of updates of Ã. We follow the
Adaptive Time Step Doubling (ATSD) scheme proposed by Um et al. [12]. The forward
modeling starts with a suitable ∆t at the beginning, e.g., 1× 10−7 s, and progresses a certain
number of time steps N∆t. Afterwards, we increase ∆t and verify the solution’s accuracy. If
it satisfies the predefined tolerance, we accept the new ∆t. This procedure is repeated until
the end, as shown in Figure 2.

In contrast to the explicit scheme, the Dirichlet boundary conditions, (n× e)Γ∞
= 0,

are used for all boundaries, including the top face. Therefore, the model contains several
air layers to move the top boundary away from the study region. Even though air layers
increase the computations, they also allow for the simple implementation of topography
into the forward modeling, which is an advantage compared to the upward continuation
boundary condition.

The implicit scheme suffers from the same numerical errors during the time-stepping
as the explicit scheme. Accumulated errors may cause slow convergence at late time, and
this also leads to nondivergent solutions [21]. Therefore, we use an additional step of
divergence correction [22] to maintain the divergence-free condition of the current density.
This correction significantly accelerates the convergence rate of the iterative solution. When
solving Equation (8) in each time step, we compute the correction δe by solving a Poisson
type equation: (

ṼC G†σ G
)

φ = ṼC G†
(

σen −
2∆t

3
bn

)
Kφ = R

, (9)

where K ∈ RNN×NN indicates the coefficient matrix of the above Poisson equations set; NN
represents the number of grid nodes; R ∈ RNN denotes the corresponding right-hand-side
term; the unknown set φ ∈ RNN represents the potential defined on the grid nodes, and
δe = ∇φ; G† ∈ RNN×NE and G ∈ RNE×NN are respectively the discrete divergence and
gradient operators defined as:

G = L−1
E G

G† = −Ṽ−1
C GT ÃF

, (10)
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where G ∈ RNE×NN denotes the topology matrix of G, and its transpose also works as the
topology matrix of G†; the diagonal matrix ṼC ∈ RNN×NN represents dual-cell-volumes
(volumes around nodes). Note that ṼC is multiplied on both sides of Equation (9), and it
also makes K symmetric. In this case, the combination of ICHOL and PCG is also used
to solve the above equations set. Solving Equation (9) is similar to the direct current
resistivity forward modeling problem. More details of implementations can be found in
Cherevatova et al. [16] and Gao et al. [17]. Since K is independent of ∆t, the preconditioning
for Equation (9) only needs to be done once.

Similar to the explicit scheme, we start from the initial condition of e0 = 0 and run
the recursion of solving Equation (8) alternating with solving Equation (9). Each time
step involves significantly more computations than the explicit scheme, but it may require
fewer time steps. Because only e is estimated during the time-stepping, Faraday’s law
∇× e = −µ0∂h/∂t in Equation (1) is used to calculate the −dbz/dt response.

3. Multi-Resolution Grid

In the previous sections, we described TEM forward modeling on the SG grid. How-
ever, the multi-resolution (MR) grid (MR3DMod framework) has been shown to be a
better-suited choice for such type of problem [16,18].

MR grid consists of several vertically assembled SG sub-grids (Figure 1). Each sub-
grid is a regular SG grid but has a different horizontal resolution Ni

x × Ni
y, where i denotes

the sub-grid index. MR grid can be easily created from a fundamental SG grid with the fine
grid resolution Nfine

x × Nfine
y × Nfine

z . The horizontal resolution of a sub-grid is controlled
by a coarseness parameter Csi and determined as:

Ni
x × Ni

y =
Nfine

x

2Csi ×
Nfine

y

2Csi . (11)

The most important part of the MR implementation is the definitions of differential
operators C, C†, G, and G† on the interfaces between sub-grids. In the interiors of the
sub-grids, the structures of those operators are the same as the inside of the SG grid.
Following the development of Cherevatova et al. [16], we adopt the Coarse Active scheme
and reconstruct the topology matrices C and G on the common interfaces. Therefore, those
operators can also be used in the MR grid. More details of the implementations can be
found in Cherevatova et al. [16], Gao et al. [17,18].

4. Results

In this section, we present three synthetic examples to verify the accuracy and effi-
ciency of TEM forward modeling using the implicit scheme on the MR grid. The first and
second examples are used to validate the modeling in 1-D and 3-D, respectively. The com-
parison of SG and MR grids and comparison of using different initial guess (x0) approaches
are also shown. In the last example, we compare explicit and implicit schemes to show
which one is more suitable under certain conditions. In the examples, the air resistivity is
106 Ωm. The ∆t selection strategy in the implicit scheme is as follows: ∆t starts with 10−7 s,
and it is enlarged after every N∆t = 50 steps with a factor of 5. The tolerance of relative
residual in PCG is specified as 10−6.

4.1. Example 1

We start with a simple 1-D model for which the semi-analytical solution is avail-
able [23]. The model consists of four layers with resistivity and thickness from top
to bottom as (ρ, ∆z) = (100Ωm, 80 m; 1000Ωm, 60 m; 5Ωm, 60 m; 100Ωm,∼). We place
a 200 m × 200 m loop source on the ground with a step-off current waveform. A site
located at (x, y) = (5 m, 5 m) measures −dbz/dt response at 30 time gates covering[
10−5 s, 10−2 s

]
in a logarithmic interval. The model and survey setup are shown in

Figure 3. The SG grid is designed with a resolution of 80× 80× 55, where the center
of the model is discretized with 10 m uniform cells. The grid has 15 air layers start-
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ing with a 10 m thickness at the surface and increasing upwards. Furthermore, we cre-
ate an MR grid from the SG grid with five sub-grids having coarseness parameters as[
Csi, Ni

z;
]
|i=1,5 = [2, 5; 1, 5; 0, 22; 1, 14; 2, 9]. The finest horizontal resolution (80 × 80) is

only around the air–earth interface (z ∈ [−310 m, 170 m]) and gradually roughening in the
Earth with depth. Horizontal resolution in the air layers is also gradually decreased. The
common interfaces between the sub-grids are located at z = −10, 230 m, −310 m, 170 m,
and 558 m (Figure 3).

-10230

100

101

0

50

100

150

200

250

z 
(m

)

5

102

103
( m)

-150 -100 -50 0 50 100 150
x (m)

558

102

103
string

–310

100

101

102

...
...

...

–10,230

–150 –100 –50

Figure 3. Example 1: model, measurement configuration, and MR grid discretization (central region).
Yellow line and black cone denote loop source and observation site, respectively. Air resistivity
(106 Ωm) is not shown with color.

The forward modeling responses are shown in Figure 4a, and the anomalies caused by
the resistivity changing are clear to see. We compare solutions based on SG and MR grids
against the 1-D solution. Our 3-D solutions agree well with the 1-D solution, and relative
differences are shown in Figure 4b. The maximum relative differences are around 3.4%
at the t = 2.21× 10−4 s time gate. The differences might be caused by the high resistivity
contrast between layers in the 3-D modeling. The SG and MR grid approaches have similar
accuracy in the early time. In the late time, the relative difference of the MR solution is
slightly higher than the SG solution. This result is expected, as the MR grid has coarser
horizontal resolutions at depth, but the accuracy reduction is negligible.
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–

–2–3–4

–9

–8

–7

–6

–4

–5

–2–3–4

Figure 4. Example 1: (a) forward modeling responses; (b) relative differences of the 3-D SG and MR
grid solutions against the 1-D semi-analytical solution.

Next, we compare the efficiency of iterative solver by showing the computational time
at each time step tstep in Figure 5a, the total run time ttotal in Figure 5b, and the number of
PCG iterations of each time step Niter in Figure 5c. The SG and MR grid cases are presented
separately on the left and right columns in Figure 5. The time-stepping involves 270 steps
in total, and ∆t has been enlarged five times. The general trend is that, once ∆t is enlarged,
tstep is also increased, which means using a larger ∆t requires more iterations to solve
the system of equations. Subsequently, tstep is gradually decreasing in the following time
steps. This phenomenon can be interpreted as the drastic variations of en being gradually
attenuated as time passes and the equations becoming easier to solve. The performances
of using different initial guesses (x0) to initialize the iterative solver are also shown. The
standard approach (x0 = en−1), the linearly extrapolated approach (x0 = 2en−1 − en−2),

and the linearly combined approach (x0 = ∑
Nprev
i=1 αien−i) arrive in the same modeling

accuracy (the maximum relative differences between them are less than 0.005%). However,
the latter two approaches require much less time for solving the equations. The linearly
combined approach with Nprev = 3 works more efficiently that requires much less Niter,
and thereby significantly reduces tstep and ttotal compared to the standard approach, e.g.,
ttotal = 613.7 s→ 201.8 s for the SG grid and ttotal = 328.6 s→ 84.8 s for the MR gird. For
the linearly combined approach, the Nprev = 4 case was expected to be superior to the
Nprev = 3 case because the former case involves one more previous time step and can be
more flexible. However, the result is on the contrary. One can see that for tstep and Niter of
the Nprev = 4 case, there exists many more perturbations in Figure 5. We may interpret this
phenomenon as too much early time information dragging down the convergence on the
new time step.

In addition, we compare the computational time of SG and MR grids using the linearly
combined x0 approach (Nprev = 3 case). The numbers of Degrees of Freedom (DoF) to
solve the main system of equations DoFe and the divergence correction equations DoFφ for
the SG gird are 1,025,815 and 337,014 in contrast to 506,615 and 165,014 on the MR grid
(i.e., 49.39% and 48.96% of the SG grid).

As shown in Figure 5, the MR grid is undoubtedly more computationally efficient
than the SG grid approach. The ratios of the averaged tstep (t̄step) and ttotal between the
MR and SG modelings are 0.31 s/0.75 s and 84.8 s/201.8 s, respectively. As a result, the MR
grid requires only 42% computational time of the SG grid.
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n–1 n–1

–2–3–4–5–6

n–1

–7 –3–4–5–6–7 –2

n–1

n–1 n–1

Figure 5. Example 1: efficiency comparison between SG (left column) and MR (right column) grid
approaches. Abbreviations denote different initial guess (x0) approaches: (i) en−1, standard approach,
x0 = en−1; (ii) LE, linearly extrapolated approach, x0 = 2en−1− en−2; (iii) LC, Nprev = 2, 3, 4, linearly

combined approach, x0 = ∑
Nprev

i=1 αien−i. Rows 1–3 show the time usage of each time step, the run
time during time-stepping, and the number of PCG iterations of each time step, respectively.

4.2. Example 2

In the second numerical test, we consider a 3-D example. The model has a 1-D back-
ground consisting of 3-layers: (ρ, ∆z) = (200Ωm, 50 m; 100Ωm, 90 m; 50Ωm,∼). Two
conductive blocks are also embedded. A block with the resistivity of 10Ωm is located at
x ∈ [−80 m,−20 m], y ∈ [−30 m, 30 m], and z ∈ [20 m, 80 m]. Another bigger and more
conductive block (ρ = 1Ωm) is placed at x ∈ [0 m, 80 m], y ∈ [−40 m, 40 m], and the depth
of z ∈ [100 m, 180 m]. A 200 m× 200 m loop source is placed at the surface. A total of
400 measurement sites distribute inside the loop x, y ∈ [−95 m, 95 m] with 10 m interval
and collect −dbz/dt data in the time range of

[
5× 10−6 s, 10−2 s

]
. The SG grid has a

resolution of 80× 80× 60, where the central area is discretized with 10 m uniform cells.
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The model grid includes 15 air layers with the same discretization as in Example 1. MR
grid is designed from the SG grid and has 5 sub-grids with the coarseness parameters:[
Csi, Ni

z;
]
|i=1,5 = [2, 5; 1, 5; 0, 19; 1, 20; 2, 11]. Note that the third common interface is lo-

cated at the place between two background layers, and it also crosses the deeper conductive
block. The MR grid discretization is shown in Figure 6.

10

50

100

200

1

1 Firs

ρ (Ωm)

-150
-100

-50
0

50
100

150

0

50

150

200

934

x (m)

z (m)

100

0

-100

100

y (m)

...

–150
–100

–100

–50

Figure 6. Example 2: model, measurement configuration, and MR grid discretization (central region).
Yellow line and black points denote loop source and observation sites, respectively. Discretization of
air layers is the same as in Example 1 and is omitted here.

Since the differences between the SG and MR grid modeling responses are hardly
visible, only the MR grid solution is shown in Figure 7a. The anomalous responses caused
by the conductive blocks are clearly visible. The 3-D solution using the Lanczos spectral
decomposition method (SLDM) [24] was chosen as the reference to verify the accuracy of
our solutions. The relative differences between SG and MR solutions against the SLDM
solution are shown in Figures 7b,c, respectively. The maximum relative difference of the SG
and MR grid solutions are 3.44% at 5.29× 10−5 s in Figure 7(b1) and 3.59% at 2.55× 10−4 s
in Figure 7(c2), respectively.

The same efficiency parameters tstep, ttotal, and Niter in Example 1 were also evaluated
here (Figure 8). Similarly, the iterative solver using either the linearly extrapolated x0
approach or the linearly combined x0 approach results in much shorter run time than the
standard x0 approach. The linearly combined approach with Nprev = 3 works best again,
e.g., for the SG grid case, ttotal: 213.17 s versus 759.32 s, and t̄step: 0.79 s versus 2.81 s in
contrast to the standard x0 approach.

Benefiting from using the MR grid that involves much less DoFe = 480, 060 and
DoFφ = 156, 139 in contrast to the SG grid (DoFe = 1, 120, 220 and DoFφ = 368, 219), we
can solve a much smaller forward modeling problem and consequently further reduce the
modeling time: t̄step = 0.79 s→ 0.4 s, ttotal = 213.17 s→ 107.67 s.
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Figure 7. Example 2: (a) Forward modeling response (−dbz/dt) of MR grid approach. Relative
differences of SG grid solution (b) and MR grid solution (c) against the SLDM solution. Rows 1–3
correspond to the time gates at 5.29× 10−5 s, 2.55× 10−4 s, and 7.27× 10−4 s, respectively.
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Figure 8. Cont.
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n–1 n–1

Figure 8. Example 2: efficiency comparison between SG (left column) and MR (right column) grid
approaches. Abbreviations denote different initial guess (x0) approaches: (i) en−1, standard approach,
x0 = en−1; (ii) LE, linearly extrapolated approach, x0 = 2en−1− en−2; (iii) LC, Nprev = 2, 3, 4, linearly

combined approach, x0 = ∑
Nprev

i=1 αien−i. Rows 1–3 show the time usage of each time step, the run
time during time-stepping, and the number of PCG iterations of each time step, respectively.

4.3. Example 3

In the last example, we compare explicit and implicit schemes for different back-
ground model resistivity. Three models are tested that have a conductive block located
in the same position: x, y ∈ [−200 m, 200 m] and z ∈ [200 m, 400 m]. The resistivity of
the models are different in that the anomaly block and background are (3Ωm, 100Ωm),
(30Ωm, 1000Ωm), and (300Ωm, 10, 000 Ωm), respectively. We use the same survey de-
sign as in Example 1, i.e., 200 m× 200 m loop source and measurements of −dbz/dt in[
10−5 s, 10−2 s

]
at (5 m, 5 m). For simplicity, we only compare the modeling on SG grid

with the resolution of 88× 88× 65. Model and grid discretization are shown in Figure 9. In
previous examples, we have found that the implicit scheme modeling using the linearly
combined x0 approach with Nprev = 3 has much better performance than the other initial
guess approaches. Therefore, only the former approach is presented in this example.

1,000,000

–100–200

Figure 9. Example 3: 100Ωm model, measurement configuration, and the grid discretization (central
region). Yellow line and black cone denote loop source and observation site, respectively. The
explicit scheme modeling grid is shown here in which only one air layer exists; the implicit scheme
modeling grid has 15 air layers like the other examples. The other two models have the same grid
discretization, only the resistivity of background and anomaly block change to (30Ωm, 1000Ωm)

and (300Ωm, 10, 000 Ωm).
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The modeling responses are shown in Figure 10a. As expected, the amplitude of
the response of the conductive model (e.g., 100Ωm) is generally higher than the resistive
one (e.g., 10,000 Ωm). The anomaly response in the conductive model is observed at a
later time, whilst anomaly responses are visible at an earlier time for the resistive models.
This phenomenon is due to the different skin depths of EM fields in those three models.
The modeling responses of explicit and implicit schemes are compared, and their relative
differences are shown in Figure 10b. For the models with 100Ωm and 1000Ωm background
resistivity, the relative differences between explicit and implicit schemes are small, which
are 2.34% and 3.07% respectively. For the 10,000 Ωm model, the relative difference is
slightly higher (5.05%).

–

–5 –4 –3 –2

–4

–6

–8

–10

–12
1,000,000

1,000,000

–5 –4 –3 –2

1,000,000

Figure 10. Example 3: (a) forward modeling responses; (b) relative differences between the solutions
of explicit and implicit schemes.

The efficiencies of the forward modeling using explicit and implicit schemes are
compared and shown in Table 1. The explicit scheme usually requires more time steps
(Nstep) than the implicit scheme, but each time step is faster.

It is clearly visible for the conductive (100Ωm) model that the explicit scheme took
only 97.61 s to finish the job, which is more efficient than the implicit scheme (265.72 s).
However, the explicit scheme is strongly affected by the background resistivity. As the
resistivity increases, Nstep is increased accordingly (3089 → 9724 → 30, 296), and the
modeling speed is degrading (97.61 s → 1205.11 s → 14, 244.9 s). The reason is that the
EM fields propagate faster in the resistive media, and ∆tn must be suppressed to stabilize
the modeling. In addition, the upward continuation boundary condition used in the
explicit scheme requires the inclusion of a large area for 2-D FFT. Since FFT requires an
equidistant grid that is usually discretized by the minimum horizontal edge-length to
match the short wave variations of the fields, the larger area, especially at the padding cells,
significantly increases the computations [5]. The same influence on t̄step can also be found
(0.032 s→ 0.12 s→ 0.47 s), which is also mainly caused by the heavier FFT computations
in the resistive models. In contrast, the implicit scheme is less affected by the model’s
resistivity. Even though ttotal is also gradually increasing for the resistive models, which
means the equations took a longer time (t̄step) to be solved, the run time fluctuations are
relatively stable.

Thus, the explicit scheme modeling is more efficient for the model with a conductive
background, whilst the implicit scheme modeling is preferable for the resistive one.
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Table 1. Example 3: comparison of forward modeling speeds between explicit and implicit schemes.

Scheme Parameter 100 Ωm Model 1000 Ωm Model 10,000 Ωm Model

explicit DoF DoFe = 1, 144, 050, DoFh = 1, 168, 112
Nstep 3089 9724 30, 296
ttotal 97.61 s 1205.11 s 14, 244.9 s
t̄step 0.032 s 0.12 s 0.47 s

2-D FFT area (x, y ∈) [−2555 m, 2555 m] [−10, 235 m, 10, 235 m] [−20, 475 m, 20, 475 m]

implicit DoF DoFe = 1, 471, 953, DoFφ = 484, 416
Nstep 270 270 270
ttotal 265.72 s 297.92 s 356.81 s
t̄step 0.98 s 1.1 s 1.32 s

5. Discussion

We have implemented the 3-D TEM implicit scheme forward modeling based on the
second-order backward Euler method on the multi-resolution (MR) grid. The implicit
scheme forward modeling requires the solution of the system of linear equations, which is
often done using iterative solvers. We have found that initializing the iterative solver with
a better guess has a profound influence on iterations. The standard initial guess approach
usually uses the previous time step’s solution, which is too conservative. We have tested
the linearly extrapolated and linearly combined approaches based on the solutions from
several previous time steps to derive a better initial guess. We show that it improves the
convergence rate significantly and therefore reduces the modeling time. Our result also
shows the linearly combined initial guess using three previous time steps works the best.
Involving more previous time steps to predict the current solution does not improve the
performance further.

The implicit scheme modeling is tested using three synthetic examples against other
algorithms to verify the accuracy and efficiency. The MR grid substantially decreases
the number of degrees of freedom and results in better computational efficiency without
compromising the accuracy.

Finally, we compare 3-D TEM forward modeling using the explicit and implicit
schemes on different models and derive strategies to choose the more efficient solution.
The explicit scheme generally requires more time steps than the implicit scheme, but the
computational costs at each time step are lower. The result shows that the explicit scheme is
more suitable for the simulation in a conductive environment, e.g., environmental studies
or sedimentary basins.

In contrast, the modeling speed of the implicit scheme is less affected by the back-
ground resistivity. Hence, the implicit scheme is preferable in a resistive environment, e.g.,
shield areas. Future studies will implement the forward modeling into the inversion and
use the real field data to examine the algorithms. We would use an initial run to verify
which modeling scheme would be more efficient for certain prior model conditions. This
testing can allow us to choose the modeling scheme and optimize the inversion algorithm
with respect to speed and accuracy. In the previous work, we also used time-domain
electromagnetic modeling to simulate electric fields at the surface for the geomagnetically
induced currents simulation. Based on the results presented in this study, we expect that
the implicit scheme modeling would be more suitable for this purpose.
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