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Abstract: In regions under development and facing recurrent droughts, increasing the area of
irrigated agriculture may create additional disruption in water resources management. The present
study was focused on three river sub-basins with the highest agricultural intensity (S. Miguel, Ribeira
Seca and S. Domingos) in Santiago Island (Cape Verde). Sets of wells were selected to evaluate
the influence of salinization and agriculture practices on the hydrochemistry. This assessment
was performed by using data from the bibliography (2003) and a recent campaign (2016). The
water chemistry indicates lower mineralization in the S. Miguel sub-basin. Nitrates and nitrites,
typically associated with diffuse pollution, are present in all sub-basins, but with varying patterns.
Additionally, sodium chloride waters occur in all the three sub-basins, especially those closest to the
coastline. In turn, a bicarbonate-magnesium facies was identified in S. Domingos, at the furthest point
from the coast, indicating a geological control. The comparison between the two periods suggests a
decrease in water quality. The rising extension of the irrigation area associated with aridity should
intensify the already observed soil salinization. Thus, the present review highlights the strategic
importance of water monitoring at the basin level as a management tool for resources preservation in
insular arid and developing regions.

Keywords: river basin; agriculture pressure; hydrochemistry; water quality; salinization risk

1. Introduction

The sustainable use of natural resources, especially water, has assumed an increasing
relevance in unfavorable contexts, such as arid and semi-arid climates. The challenges to
adequate resource management are even greater in territories subject to anthropogenic
pressures associated with population growth and unregulated economic activities, as is the
case in many developing countries.

Current scenarios of climate disruption, characterized by increasingly frequent and
persistent droughts, make the preservation and sustainable management of the territory
and its resources even more pressing in regions such as the west coast of Africa.

Water, a fundamental component of life and essential to a wide variety of economic
activities, is one of the most abundant natural resources on the planet, but also one of the
most susceptible to degradation. The need for its use for human consumption (e.g., drinking
and cooking), and also for the development of activities such as agriculture, transport,
industry and recreation, highlights the critical nature of this resource. It is, however, a
limited and limiting resource, as shown by the recurrent water scarcity problems in many
parts of the world, sometimes with tragic consequences [1].

The Cape Verde Archipelago, together with the archipelagos of the Canary Islands, the
Azores and Madeira, constitutes the region of Macaronesia, known for its biogeographical
specificities, including the floristic and faunistic richness [2]. The state of the art focused
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on this territorial context also suggests similar problems related to water resources man-
agement. For example, the authors of [3–6] presented literature reviews and discussed
problems associated with water quality, with reference to the main threats to supply in the
Canary Islands. There are also several works focusing on hydrogeochemical controls and
salinization of water in several islands from the Azores Archipelago [7–10]. The present
study follows these approaches by reviewing the water quality situation in Santiago Island
(Cape Verde), a developing and semi-arid territory located on the west coast of Africa,
subject to water scarcity and anthropogenic activities, especially agriculture.

Cape Verde is a small country with ten islands (Figure 1). The focus of this article is
Santiago Island, which is the most populated island, since about 55% of the Cape Verde
population lives there [11]. The capital of the country is Praia City.
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Figure 1. Geographic location of Cape Verde and Santiago Island (west coast of Africa).

Several technical and/or scientific studies can be cited (e.g., [12,13]). The first hy-
drogeological survey of the archipelago was carried out by [14], having also contributed
to the discussion of the problem of the water supply, with the objective of advocating
immediate solutions. Additionally, the project CVI 75/001, financed by the United Nations
Development Programme (UNDP), is the source of the greatest hydrogeological knowledge
of the island. The reports prepared by [15,16] should also be mentioned.

As a result of these projects, an extensive list of studies on the hydrogeological behavior
in volcanic terrains can be cited, including [17–34].

In a more or less direct way, these works put forward in evidence the primordial strate-
gic need for protecting the water, due to its scarcity and fragility. Indeed, groundwaters
are one of the main sources of water in regions with surface water deficit or in territories
without a centralized supply system. However, in many cases, the population consumes
groundwater in a disorganized way and without quality control, with consequent risks to
public health.
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In general, the literature review indicates a reduction in water quality, often linked to
salinization in coastal areas, as a direct result of overexploitation of aquifers (e.g., [35]) and
sand extraction on beaches that destroy natural barriers against saline intrusion (Figure 2).
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Santiago Island has five river basins and numerous seasonal streams dependent on
the rainy season. Close to the Atlantic Ocean, the valleys are filled with Quaternary
sediments of alluvium and these are the best for agriculture. Nevertheless, most of these
valleys are intensively cultivated throughout the year, since irrigation water is mostly from
groundwater extraction. Although there are several degradation activities in these basins,
such as the mentioned exploitation of sand and gravel, agriculture is the most important
economic activity on the island. Therefore, it has the strongest impact in some of the
basins. This justifies the approach of focusing the study on the sub-basins with a greater
agricultural intensity (located on the east side of the island): S. Miguel, Ribeira Seca and
S. Domingos.

The present work pursues the main following objectives: (i) general characterization
of the river basins considering the state of the art; (ii) analysis of the hydrochemistry and
evolution trends in one of the most cultivated basins; (iii) evaluation of the influence of
agriculture and other control factors on the water quality.

This review and the obtained results intend to contribute with knowledge that could be
applied in similar territories, for helping decision making on water resources management
in arid insular contexts.

2. General Characterization of Santiago Island
2.1. Geomorphology and Geology

The archipelago of Cape Verde presents, in general, complex morphologies, character-
ized by high altitudes, large terrain slopes, accentuated orography and extensive highlands
(“Achadas”). Santiago Island thus presents a great diversity of relief forms (Figure 3), from
the steepest peaks and slopes with rocky outcrops, often separated by deep valleys (young
relief forms), to flat surfaces, which mainly develop on the outskirts of the island [36]. It
has an average altitude of 278.5 m, with a maximum altitude of 1392 m. The island has two
asymmetrical mountainous areas (Figure 3), the Pico da Antónia (1392 m), to the south,
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and Malagueta mountain (1063 m), to the north, separated by a plateau area at an average
altitude of 550 m, built from cones and other reliefs in various states of erosion [37].
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Faults (NE–SW, WNW–ESE and NW–SE) are responsible for the insertion of the main
valleys, namely, the S. Miguel, Ribeira Seca and S. Domingos valleys that have NE–SW
directions.

The authors of [37,38] considered seven geomorphological units (Figure 3): Southern
“Achadas” (I); Pico da Antónia Mountain Ridge (II); Santa Catarina Plateau (III); Eastern
Flank (IV); Malagueta Mountain Ridge (V); Tarrafal (VI); Western Flank (VII).

The geology of Santiago is mainly composed of volcanic and volcanoclastic materials,
outcropping predominantly basalts and pyroclastic products (≈91%), limburgites (≈5%)
and phonolites (≈2%). Although to a lesser extent, basanites and tephrites, leucitites
and nefelinites and associations of sedimentary rocks grouped in two facies (marine and
terrestrial) can also be found. The magmatic rocks are distributed by different ages and
various geological formations. The oldest formations are mostly located in eroded sectors
(e.g., river beds). Metamorphic rocks are almost non-existent, and their presence is limited
to a small amount of evidence of contact metamorphism phenomena.

The hydrogeological map of Santiago Island is schematized in Figure 4 where the main
units are reported. The three main geological units with hydrogeological importance are
the Pico da Antónia Eruptive Complex (PA), Monte das Vacas Formation (MV) and Recent
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Sedimentary Quaternary Formations (a) ([40]). Based on data from the National Institute
of Water Resources of Cape Verde, and as evidenced by [40], the pillow lavas of the Pico da
Antónia Eruptive Complex (PA) represent the most hydrogeological productive level.
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2.2. Climate

Cape Verde is located between the subtropical Atlantic North high-pressure area
(Azores anticyclone) and the West Africa Intertropical Convergence Zone (ITCZ). The
orientation and position of these systems have a great impact on the archipelago [37].
When the later is shifted to the south, precipitation drops dramatically as the archipelago
stays exposed to the northeast dry winds from the Sahara Desert.

The study area is characterized by a tropical climate with two distinct seasons: dry
season (December to June), where the influence of the eastern sector of the Azores anticy-
clone is felt, often interrupted by episodes of precipitation of low intensity due to invasions
of polar air; wet season (August to October), where more than 90% of annual precipitation



Geosciences 2021, 11, 263 6 of 22

occurs. The months of June and November are considered the transition months [37]. The
meteorological characteristics, in addition to the geographical conditions, are also strongly
conditioned by local factors, such as altitude, relief and distance to the sea, and the insular
structure. The altitude is one of the geomorphological characteristics that most influences
the temperature and precipitation regime. Irregular rainfall is a typical climate feature, and
there may be years or successive years of extreme dry seasons.

Table 1 shows the maximum and minimum values of precipitation and temperature
for a series of at least 25 years, registered in the different meteorological stations in Santiago
Island. Figure 5 graphically represents the distribution of mean annual precipitation (1990
to 2016) and the distribution of the mean annual temperature in Santiago Island (1981 to
2016) for four stations. These meteorological stations (Figure 4), except Praia-Aeroporto,
cover the river sub-basins under study: S. Miguel, Ribeira Seca and S. Domingos. The only
meteorological station with a regular record of the temperature is Praia-Airport, indicating
a variation between 24 and 26.5 ◦C.

Table 1. Meteorological stations of Santiago Island with the precipitation and temperature maxi-
mum (max) and minimum (min) values: precipitation is based on the temporal series 1990 to 2016;
temperature is based on the series 1981 to 2016.

Meteorological Station
Annual Precipitation (mm) Annual Temperature (◦C)

Maximum Minimum Maximum Minimum

Praia-Airport 410 17.8 26.3 24.2
S. Jorge dos Órgãos 1013 174 23.3 21.5

Chão Bom 664 51,3 26.5 23.8
S. Domingos 707 35.8 25.5 22.2
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The average annual precipitation has not exceeded 300 mm in about 65% of the
territory, located at less than 400 m altitude, while in the areas located at more than 500 m
altitude (Pico da Antónia and Malagueta), the total annual precipitation can reach more
than 700 mm [43]. Precipitation, though scarce, can occur in a torrential manner, causing
floods. In addition, a marked irregularity during the year leads to long periods of drought,
with almost no precipitation. The periods of heavy rains are usually accompanied by a
large surface runoff along the slopes and rivers (dry most of the year because there are no
restraints that prevent the flow of water into the sea).

In Santiago Island, the atmospheric temperature is also determined by a combination
of factors, such as the exposure of the reliefs relative to the dominant winds (N to NE), the
altitude and the distance to the sea.

2.3. Land Use

The authors of [44] presented the situation of agricultural production in the archipelago,
highlighting the importance of this activity in Santiago Island, which occupies more than
50% of its surface area. More than 90% of the arable surface in Santiago is used for rain-fed
agriculture, particularly staple crops (maize and beans), and about 5% is used for irrigated
crops (sugarcane, fruits, vegetables, cassava and sweet potato) [45].

According to the General Census of Agriculture [46], the land use types in Santiago
Island have been classified into five classes (Figure 6), each one corresponding to a specific
behavior towards soil erosion.
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The five classes are described as follows [48]:

1. Irrigation zone—low erosion rate;
2. Rain-fed zone—rain-fed agricultural activities (essentially maize and beans);
3. Bare soils;
4. Forest zone (old trees)—low erosion rate except in cases of steep slopes. The vegetal

cover generates organic matter and, also, a root mechanical action, which gives
structure and cohesion to the soil;

5. Arbored zone (recent arborization).

3. River Basins

For the author of [49], the river basin can be defined as "the area drained by a given
river or by a fluvial system, functioning as an open system", where each of the elements,
materials and energies present in the system has its own function, and where these compo-
nents are structured and intrinsically related to each other.

The hydrographic network, responsible for the drainage of a basin, has configurations
or spatial arrangements that reflect the geological structure and morphogenetic composition
of the basin area.

Regarding the conservation of natural resources, the concept has been extended, with
a scope beyond hydrological aspects, involving knowledge of the biophysical structure
of the river basin, as well as changes in land use patterns and their environmental impli-
cations. In this sense, they emphasize the importance of using the concept of a basin as
analogous to that of an ecosystem, as a practical unit, both for study and for environmental
management [50].

The hydrographic basins, due to the orographic conditions of Santiago Island and
the limited rainfall, play a central role in the water supply and in the development of
agricultural practices. The island’s population is heavily dependent on agriculture for
self-sustainability, and, therefore, as stated by [44], the sector plays a bacillary role in
economic development.

The Santiago Island topography is characterized by a great density of deep valleys
(Section 2.1), starting from the highest zones towards the ocean, facilitating the transport of
the residues by erosion, which consequently causes difficulties in the development of the
vegetal cover.

These structures are fed by the Pico da Antónia massif, which is the most important
drainage area, with a dense network of valleys to the east. In the same way, numerous
valleys cut Malagueta mountain; in its evolution, some of the headwaters of the drainage
network approach the scarp morphology (Figure 3). The headwaters of the basins con-
tiguous to Malagueta mountain are sectors of great rainfall; therefore, floods are frequent
during the rainy season, since the beds of these basins are relatively flat, increasing their
altitude very gently upstream.

Santiago Island has five main hydrographic basins with different total precipitation
surfaces and volumes (Figure 7, Table 2).

Table 2. The main river basins of Santiago Island total area and precipitation volumes (adapted
from [29].

River Basin Basin Area
(km2) Precipitation Total Volume (hm3)

Tarrafal 188 45
Santa Cruz 355 121

Santa Catarina 128 62
S. João Batista 155 47

Praia 179 33
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Among these river basins, Santa Cruz is the one with the largest area (355 km2) and
the largest total precipitation volume (121 hm3). It is known for its agricultural importance
(e.g., [51–53]. Within this basin, due to its greater agricultural potential, the river sub-basins
of S. Miguel, Ribeira Seca and S. Domingos were selected for a more detailed analysis
(Figure 7; river sub-basins 1, 2 and 3).

3.1. General Description of the River Sub-Basins

The S. Miguel sub-basin (14.4 km2) is limited, both in the north and in the south, by
slopes in the order of 20◦. In the interior, the width of the valley varies between 500 m and
1.5 km, narrowing to the sea.

In this sub-basin, the Quaternary alluvium sediments are very shallow and thin,
except for the downstream locations, that is, near the shoreline. Together with the common
basalt structures (more or less fractured), there are also pillow lava and greenish tuff layers.
Agriculture activities are restricted to the areas near the coastline. It is agriculture of a "high
level of intuition and little technical apparatus" [54].

The sub-basin of Ribeira Seca—located on the east-central part of Santiago Island
(Figures 2 and 7), 10 km north of the S. Domingos valley, near the village of Santa Cruz—is
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the largest sub-basin of the island and has the largest agricultural extension. According
to [55], it has a drainage area of about 72 km2 and represents four agro-climatic zones: semi-
arid (49%), arid (20%), sub-humid (20%) and humid (11%), based on altitude, vegetation
and relief. This sub-basin also has the highest rate of soil use, thus requiring more water for
irrigation. However, the dominant land use is rain-fed agriculture, particularly the staple
crops (maize and beans) and groundnut, occupying 83% of the area. The remaining area is
used for: irrigated crops (banana, sugarcane, fruits, vegetables, cassava and sweet potato)
at 5% (362 ha), and forest at 4% (251 ha). In addition, 1% of the area is rock outcrops, and
7% is built environments. Livestock is an important activity as most families depend on
animals, such as cows, goats, pigs and chickens that often graze freely [45].

The soils, developed on a basaltic substrate, are mainly shallow and low in organic
matter (OM), generally with low to medium fertility [56,57] and medium to coarse texture,
and exhibit marked symptoms of degradation by erosion (i.e., rills and gullies). Deeper soils
with a higher OM content can be found on the plateaus of less steep slopes (“Achadas”). In
the valley bottoms, alluvial soils are predominant and used for irrigated agriculture.

The S. Domingos stream valley is the southernmost of the surveyed sub-basins. The
surface area is 44.3 km2 including part of the Southern “Achadas” plateau, and it has an
extension of 16 km. In this sub-basin, the rainfall has a value close to the annual average of
Santiago Island, about 360 mm. This region depends on agricultural practices, although
green vegetable production is in decline, especially in the sector closest to the shoreline.
The work found in [58] indicated a cultivated area of 694 ha (dry: 594 ha; irrigated: 100 ha),
values that would not have changed significantly in the last decade [46].

3.2. Hydrochemistry and Water Quality

The author of [29] pointed out the compositional variability of the groundwater in
Santiago Island that is dependent on the geological characteristics and residence time.
Besides geological control, it should be noted that other factors may influence the chemistry
of water, particularly anthropic activity that manifests, for example, in overexploitation of
water and soil.

The scarcity and lack of a controlled public supply force populations to use water from
boreholes and dug wells without monitoring. Often, water points known for their lack of
quality are used for irrigation. These aspects justify the approach presented in this section
on the hydrochemical characteristics of wells located in the three sub-basins subjected to
higher anthropic pressure.

3.2.1. Methodological Approach

The hydrochemical evolution and possible changes in water quality over time are
reviewed and discussed by comparing data from the bibliography, specifically the works
by [29,40], with a recent campaign conducted for the present study. Therefore, this analysis
comprehends two periods: summer of 2003 [29] and summer of 2016. For the recent
campaign, the pH, electrical conductivity (EC) and temperature (T) were measured in situ
with a portable meter, Thermo Scientific Orion. Dissolved major metals were obtained by
inductively coupled plasma optical spectroscopy (ICP-OES) after filtration with 0.45 µm
syringe filters and acidified until pH < 2 to assure the preservation of the samples. Anions
were determined by ionic chromatography with suppressed conductivity, while alkalinity
was analyzed by potentiometric titration. Samples were kept refrigerated (<4 ◦C) until the
laboratory analysis.

Figure 8 illustrates the distribution of the water points analyzed in the three sub-basins
evaluated in the Santa Cruz basin. The blue circles represent points from the work of [29],
while the red circles are for the summer of 2016.
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3.2.2. Hydrochemical Classification

Table 3 presents the general water properties in the river sub-basins, obtained from
campaigns held in the summer of 2003 [29] and in the present work (summer 2016).

Table 3. Hydrochemistry in the most cultivated sub-basins of Santa Cruz river basin: T in ◦C; EC in µS/cm; ions in mg/L;
DL—detection limit of the analytical method. Rows in gray are from [29]; the others were obtained in the summer of 2016
(present work).

S. Miguel

Samples T pH CE Na K Ca Mg Si Cl HCO3 SO4 NO3 NO2
51-201 24.2 7.2 527 77.9 8.9 27.2 23.3 16.9 56.7 220.0 9.1 21.7 <DL
FBE-18 27.5 7.1 525 68.1 9.9 27.2 22.0 17.3 70.9 188.0 4.6 21.7 <DL
FBE-144 27.8 7.4 1289 78.8 8.8 77.1 60.3 23.1 218.8 285.8 35.7 23.6 <DL

FT-39 27.0 7.8 1711 130.0 12.7 79.5 82.3 24.7 315.1 327.5 82.8 13.6 <DL
FT-39* 26.0 6.9 1439 113.0 9.9 57.0 70.7 30.0 248.7 276.0 50.3 16.8 <DL

Ribeira Seca
FT-21 26.7 7.1 1351 243.0 6.4 24.8 53.5 16.9 85.1 556.0 81.9 <DL <DL
FT-23 26.7 7.2 1041 166.0 17.9 40.0 31.3 16.7 106.4 312.0 63.7 53.6 <DL

FST-877 27.9 7.8 1467 230.0 8.4 54.7 19.7 11.8 168.1 321.5 230.9 14.8 6.17
FST-871 32.0 7.3 1311 232.0 4.8 34.1 5.7 12.3 144.5 286.1 218.2 8.73 4.16

FT-12 25.2 7.1 1311 66.4 5.9 82.8 64.7 23.3 229.3 176.0 23.1 25.9 <DL
FT-63 28.6 7.9 1213 67.0 7.3 95.5 49.9 20.1 185.9 320.9 57.5 45.5 5.6
FT-09 27.9 7.9 975 54.7 5.7 82.0 42.0 19.5 134.0 286.2 44.4 46.9 3.9
SP-17 28.2 8.0 1370 67.2 7.4 111.0 56.2 19.0 232.7 320.9 63.7 41.5 5.8

S. Domingos

FST-924 30.7 7.1 1927 281.0 8.7 61.5 69.2 17.6 26.3 546.1 172.9 317.0 9.8
55-555 22.8 8.0 433 34.2 6.6 19.3 21.0 20.8 41.2 176.0 7.2 7.5 <DL
PT-29 24.6 7.0 2110 438.0 9.9 8.0 43.7 21.7 127.6 661.0 227.6 21.7 <DL
FT-81 25.5 6.9 1282 84.5 7.5 85.7 50.9 24.4 198.0 288.0 38.4 52.3 <DL
FT-40 27.7 7.2 1394 93.0 5.7 82.2 63.3 22.6 259.3 193.0 36.8 15.9 <DL

In general, mineralization is lower in the samples from the S. Miguel sub-basin, which
have electrical conductivities between 525 and 1711 µS/cm. Between the two periods, an
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increasing trend can be observed in Ribeira Seca (with values above 975 µS/cm) and S.
Domingos, where the two highest values are recorded (1927 and 2110 µS/cm, respectively,
in the samples FST-924 and PT-29). This behavior follows the general tendency of the
parameters Ca and Na. The same is observed for sulfate, with generally lower values in S.
Miguel (4.6–82.8 mg/L), and higher values in Ribeira Seca (23.1–231 mg/L).

Nitrates and nitrites, typically associated with diffuse pollution phenomena, are
present in all sub-basins, but with varying patterns. In the sub-basin of S. Domingos, the
sample FST-924 stands out, with high concentrations of these anions. It should be noted
that the values established in the Cape Verdean legislation are 50 mg/L and 0.3 mg/L,
respectively, for nitrate and nitrite. Therefore, this well reveals the existence of a phe-
nomenon of organic contamination. This can be of fecal, agricultural or even industrial
origin, given its location in a heavily agricultural area (bananas, and sugar cane) and in the
vicinity of a cane distillery. Agriculture should also be controlling the water chemistry in
Ribeira Seca (the most cultivated sub-basin), as suggested by the systematic occurrence of
nitrate and nitrite.

In terms of hydrochemical classification, the previous work from [29] indicated
bicarbonate-sodium (HCO3-Na) waters in the highest areas of the island, where the interme-
diate aquifer formations appear (Figure 4). The same author indicated magnesian-chloride
(Mg-Cl) or sodium-chloride (Na-Cl) classifications in the areas closest to the coast.

The results achieved in the present work with the most recent data (2016 summer
campaign) in these three sub-basins indicate a general trend that is close to that detected in
other works, namely, [40] for the whole Island, [59] for the Santa Cruz basin and [34] for
the S. Domingos sub-basin.

Thus, Piper’s diagram (Figure 9) suggests that waters of a mixed nature predominate
(Group 1—Na+Ca+Mg-HCO3+Cl, and Na+Ca+Mg-Cl; Group 2—Na-Cl waters; Group
3—all samples are Na-HCO3; the sample located out of groups is of Na+Ca+Mg-HCO3
facies).
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The author of [59] also showed this dispersion of facies in the valleys of S. Domingos,
Ribeira Seca and S. Miguel, with a predominance of mixed classifications. According to
this author, in S. Miguel, the waters are bicarbonate-sodium or sulfate or calcium-chloride
or magnesium. Similarly, in S. Domingos, the same author indicated bicarbonate-sodium
or sulfated or sodium-chloride waters. In the case of Ribeira Seca, the facies identified are
sulfated-sodium or, also, calcium-chloride or magnesium.

In the present study, Piper’s diagram (Figure 9) confirms this dispersion of clas-
sifications, not indicating a clear trend of differentiation between the three sub-basins.
Sodium-chloride waters occur in all three cases, corresponding to the water points closest
to the coast. In turn, the most bicarbonate sample was identified in the S. Domingos river
sub-basin, at the furthest point from the coast (55-555, Figure 8), suggesting a geological
control to the detriment of the marine one.

The hydrochemical processes that control the chemistry in these sub-basins can be
inferred from the relationships represented in Figures 10–12. These relationships propose
the contribution of major ions to the mineralization (expressed through the EC). For this
representation, the Na, Mg, Si, Cl, HCO3 and SO4 ions were selected in order to evaluate the
type of signature: predominantly marine, geological (water–rock interaction) or anthropic.
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In the S. Miguel river sub-basin (Figure 10), there are high correlations between EC and
Na (R2 = 0.7406), EC and Mg (R2 = 0.9984) and EC and Cl (R2 = 0.9968). In turn, the EC–Si
correlation is lower (R2 = 0.4329). This pattern could be indicating a marine contribution
that could be associated with saline intrusion, or deposition and leaching of marine aerosols.
This signature is also recognized by the high Na–Cl correlation (R2 = 0.7438). Similar trends
were observed by [40], for samples from the main valleys of Santiago Island and, also,
by [7], in a study carried out in islands of the Azores Archipelago.

In the Ribeira Seca river sub-basin (Figure 11), the correlations do not highlight specific
mechanisms of hydrochemical control. The highest correlation is observed between Na
and Cl (R2 = 0.382) (Figure 11E), possibly indicating some marine contribution. The low
correlations between EC and Si and Si and HCO3 (Figure 11C,D) could suggest a reduced
influence of water–rock interaction processes. It should be noted that the EC measured here
is higher than in the other two sub-basins. Additionally, the intense agricultural activity in
this area may be responsible for this apparent anomaly.
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In the S. Domingos river sub-basin (Figure 12), the marine signature is not evident,
although there is a high EC–Na correlation (R2 = 0.7625). The low EC–Cl and Na–Cl
correlations seem to corroborate higher geological and/or anthropic contributions. In
turn, the bicarbonate ion appears here with a high correlation (EC–HCO3 of R2 = 0.7487),
suggesting the influence of phenomena of water–rock interaction associated with the
weathering of silicate volcanic rocks, with release of alkaline and alkaline earth metals
and production of alkalinity. As [60] and [7] stated, the Mg/Ca relationship may also help
clarify this predominance of geological control over the marine influence. In fact, in this
sub-basin, the ratio varies between 5 and 0.8, with the lowest values being near the coast
(FT-81 and FT-40, Figure 8). The cited authors indicated that Mg/Ca ratios of ≥ 1, in the
context of volcanic rocks, are in agreement with the contribution from the parental rock.
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The highest correlation is observed between EC and SO4 (R2 = 0.7859). Thus, in
addition to geological control, high sulfate and nitrate concentrations may indicate pol-
lution associated with agricultural and industrial activity, in agreement with the location
mentioned above.
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3.2.3. Water Quality and Risk of Soil Salinization

The data presented in Table 3 can serve, in an expeditious manner, to evaluate the
evolution of water quality between the summer of 2003 and 2016. Figure 13 shows a set
of quality parameters, which aim to show the evolution over time and from upstream to
downstream, i.e., in order to detect differences with the proximity to the coastline.
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Nitrates and nitrites are analyzed here as potential indicators of agricultural and fecal
contamination. All samples analyzed in 2003 show nitrite values below the detection
limit of the method (therefore, they do not appear in the graphs of Figure 13). On the
contrary, those analyzed in 2016 have concentrations above the legal limit (0.3 mg/L).
The same situation applies to nitrate, sulfate and chloride, which generally occur with
higher concentrations in the 2016 samples. This behavior can be seen in sample FT-39,
which is the only well coincident in the two campaigns, with the exception of nitrate that
is smoothly greater in the 2003 campaign. This assessment should be carefully analyzed,
taking into account the small number of samples and the fact that, although close, they are
not coincident water points (except FT-39, in the S. Miguel river sub-basin). Nevertheless,
the pattern, visible in all three sub-basins, generally seems to indicate a decrease in water
quality between the two periods under consideration.

The S. Miguel sub-basin reveals some oscillation in the spatial evolution of anthropic
indicators, specifically nitrate and sulfate (Figure 13A). However, chloride reveals a growing
trend along the valley, from upstream to downstream. This could be confirming the marine
influence pointed out by other authors (e.g., [40,61]).
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The Ribeira Seca sub-basin (Figure 13B) is intensely cultivated in all its extensions,
although with great variation in intensity and in the more or less rudimentary type of
practices. This may explain the irregularity detected in the indicators, namely, nitrite and
sulfate, avoiding the observation of a clear pattern of spatial variation.

In the S. Domingos sub-basin (Figure 13C), the spatial behavior seems to be controlled
by the location of sample FST-924, which, as mentioned above, is located in the vicinity
of an industrial plant and in a heavily farmed area. Thus, nitrite, nitrate and sulfate have
the highest concentrations upstream. On the other hand, chloride increases steadily with
proximity to the coastline, revealing the marine influence.

The water quality in such agriculture areas is a key issue for potential soil degradation,
namely, by salinization. According to [62], salinization may not significantly influence
the soil texture. However, the occurrence of superficial saline crustification processes
affects water and air circulation, with consequences on productivity, since they create
unfavorable conditions for root penetration and water retention capacity. The authors
of [63] also pointed out that saline soils have imbalances in nutrient availability, thus
interfering with fertility.

The SAR diagram (Figure 14) suggests quality problems, in this case associated with
the risk of salinization and sodification caused by the use of this water for irrigation pur-
poses. The projection in this diagram puts all the samples at high risk of salinization,
although at low to medium risk of sodium absorption, with the exception of one of the
samples from the S. Domingos sub-basin (PT-29), in agreement with the high sodium
concentration obtained in this sample (Table 3). The samples with a lower risk of sodifi-
cation are located in the S. Miguel sub-basin, in concordance with what has already been
described in terms of hydrochemistry.
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Saline deposition (white efflorescence of sodium chloride) and retraction cracks are
recurrently observed in the irrigated fields of these river sub-basins (Figure 15).
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With increasing irrigation practices, salinization tends to continue and even intensify,
especially with the persistence of dry conditions.

4. Conclusions

The present study characterized three river sub-basins that are subject to agriculture
pressure in Santiago Island, which is facing recurrent droughts and increasing aridity.
Hydrochemistry and water quality were assessed through data obtained from wells used
for drinking and irrigation purposes in the region with a higher intensity of agriculture
practices.

In general, mineralization was lower in the samples from the S. Miguel sub-basin,
which was indicated by the electrical conductivity, with lower values than those observed
in Ribeira Seca and S. Domingos. This behavior followed the general tendency of the param-
eters Ca and Na. The same was observed for sulfate, generally with lower concentrations
in S. Miguel and higher concentrations in Ribeira Seca.

Nitrates and nitrites, typically associated with diffuse pollution, were present in
almost all river sub-basins (except the nitrite samples of the S. Miguel river sub-basin), but
with varying patterns. In S. Domingos, one of the samples (FST-924) stood out, indicating
the occurrence of organic pollution.

The hydrochemical classification revealed dispersion, not indicating a clear differenti-
ation between the three sub-basins. Na-Cl waters occurred in all cases, corresponding to
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the water points closest to the coastline. In turn, a bicarbonate-magnesium sample was
identified in the S. Domingos sub-basin, at the furthest point from the coastline, suggesting
a geological control to the detriment of the marine contribution.

The evolution of water quality was performed by comparing data from the bibliogra-
phy with results from a recent sampling campaign. This assessment, between 2003 and
2016, aimed to show the evolution over time and from upstream to downstream, i.e., in
order to detect differences with the proximity to the coastline. Nitrates and nitrites were
analyzed as potential indicators of agricultural and/or fecal contamination. All samples
analyzed in 2003 showed nitrite values below the detection limit of the analytical method.
On the contrary, most of the samples analyzed in 2016 had concentrations above the legal
limit (0.3 mg/L). The same situation applies to nitrate, sulfate and chloride, which generally
occurred with higher concentrations in the 2016 samples. This behavior can be seen for the
parameters in sample FT-39, except for nitrate, which represents a well coincident in the
two campaigns. This pattern, visible in the three river sub-basins, suggests a decrease in
water quality between the two periods under consideration.

The three river sub-basins are at high risk of salinization, although at low to medium
risk of sodium absorption, with the exception of one of the samples from the S. Domingos
sub-basin, in agreement with the high sodium concentration obtained in this sample.

The increase in the irrigation area, due to the persistence of dry weather conditions,
may promote an intensification of the salinization risk. Thus, water monitoring in these
three sub-basins is an essential aspect to counteract the potential environmental degrada-
tion, with the threat of soil quality loss, with strong implications for food productivity.

The present results intend to contribute with knowledge that could be applied in simi-
lar insular territories, for helping decision making on water and soil resources management
in arid and semi-arid contexts.
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