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Abstract: Tokyo, which is located near the boundary between the North American and Philippine Sea
plates, has been frequently struck by large earthquakes throughout the Holocene. The 1923 Taisho
Kanto Earthquake is a rare historical earthquake that can be reconstructed in detail because abun-
dant datasets were collected by investigations performed just after the earthquake. We examined
13,000 borehole logs from the Tokyo and Nakagawa lowlands to clarify the distribution and thickness
of incised-valley fills and soft marine mud that had accumulated since the Last Glacial Maximum
(LGM) on a grid with a resolution of 150 m × 150 m. We compared these datasets with the distribu-
tion of wooden house damage ratios caused by the Taisho Kanto Earthquake. Our results showed
that the thickness of the soft mud, but not that of the incised-valley fills, was strongly correlated with
the wooden house damage ratio. The mud content was >60%, water content was >30%, and S-wave
velocity was ca. 100 m/s in the soft Holocene marine mud. The wooden house damage ratio was
highest where the soft mud thickness was 20 m, because in those areas, both the soft mud and the
wooden houses resonated with a natural period of ca. 1 s.

Keywords: Kanto Plain; buried terrace; incised valley; N-value; earthquake damage; soft sediments

1. Introduction

Tokyo is one of the largest cities in the world with a population of 37.4 million (2021) [1].
Seismic hazard is high in the Tokyo area due to its proximity to an active plate boundary
and its underlying geological structure [2]. Tokyo is located near the triple junction of the
North American Sea, Philippine Sea, and Pacific plates, and it lies 80 km northeast of the
Sagami Trough, where the Philippine Sea Plate is subducting beneath the North American
Sea Plate. Subduction zone earthquakes have struck Tokyo at 500- to 2800-year intervals
since the middle Holocene [3,4]. The 1703 Genroku Kanto Earthquake (M8.2) and the 1923
Taisho Kanto Earthquake (M7.9) are well-known historical earthquakes with epicenters
in the Sagami Trough. The Taisho Kanto Earthquake was especially well investigated by
the Geological Survey of Japan and the Earthquake Research Institute of the University of
Tokyo beginning just after the earthquake (e.g., [5–7]), and these investigations produced
abundant data on the distribution of the incised-valley soft sediment fills that accumulated
after the Last Glacial Maximum (LGM), tectonic movements, and earthquake damage,
which make it possible to reconstruct the earthquake disaster in detail. As a result, it has
been revealed that 370,000 houses collapsed and 105,000 people were killed due to the
Taisho Kanto Earthquake [8].
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The 1923 Taisho Kanto Earthquake disaster has been mainly assessed on the basis
of the collapse ratios of houses because most houses were wooden at the time of the
earthquake. Kawazumi [9] and Ohsaki [10] were the first to relate wooden house damage
to characteristics of the shallow subsurface by showing that the damage ratio of wooden
houses increased with the thickness of the post-LGM incised-valley fills. Kaizuka and
Matsuda [11] compiled damage ratios of wooden houses across the entire Kanto Plain and
showed that, although house damage was generally small in areas far from the epicenter,
damage to houses on the alluvial plains could be great, even far from the epicenter. In
the Tokyo Lowland, the damage ratio of wooden houses was largest in areas where post-
LGM incised-valley fills were ca. 30 m thick because both the wooden houses and the
incised-valley fills resonated with a natural period of ca. 1 s [12–15]. Recently, earthquake
simulations have also clarified that ground motion with a period of ca. 1 s is amplified
in areas with thick post-LGM incised-valley fills [16]. However, less is known about the
distribution of post-LGM incised-valley fills and their relation to the earthquake damage in
the Nakagawa Lowland, to the north of the Tokyo Lowland, where the post-LGM incised-
valley fills consist mainly of notably soft mud. In general, it is known that near-surface
geology and earthquake damage are strongly related, as is clarified from the studies in
southern Italy for example [17,18].

Since 2002, the Geological Survey of Japan has been investigating the post-LGM
incised-valley fills beneath the Tokyo and Nakagawa lowlands on the Kanto Plain, central
Japan, with the aim of mitigating earthquake disasters (e.g., [19,20]). These studies have
examined: (1) sedimentary facies, depositional age, and physical properties of the post-
LGM incised-valley fills by referring to stratotype cores; (2) the temporal and spatial
distribution of the stratigraphy and physical properties of the post-LGM incised-valley
fills by comparing thousands of borehole logs obtained for geotechnical purposes with the
stratotype cores; and (3) simulated earthquake ground motions in relation to the spatial
distribution of physical properties of the post-LGM incised-valley fills.

In this study, we examined 13,000 borehole logs, which were previously reported by
Tanabe et al. [21] and Tanabe and Ishihara [22], to compile the distribution and thickness
of the post-LGM incised-valley fills and to investigate the distribution and thickness of
the soft mud in the Tokyo and Nakagawa lowlands. Subsequently, we compared these
datasets with the damage ratio distribution of wooden houses following the Taisho Kanto
Earthquake [11]. The physical properties of the soft mud were in three stratotype cores
obtained from areas with high house damage ratios in the Nakagawa Lowland [20]. This
study is a first attempt to reveal the relationship between the stratigraphy, distribution,
and thickness of post-LGM incised-valley fills and soft mud and the house damage ratio in
a relatively wide area that includes both the Tokyo and Nakagawa lowlands although a
part of this study is initially reported by Stafleu et al. [23].

2. Study Area

The Kanto Plain is situated to the northeast of the Sagami Trough in a sedimentary
basin filled with a 3-km-thick sequence of Neogene and Quaternary deposits. The plain
mainly comprises uplands that formed after Marine Isotope Stage (MIS) 5e and alluvial
lowlands that formed after the LGM (Figure 1).

Our study area included the Tokyo Lowland east of Tokyo Station and the Naka-
gawa Lowland, which lies to the north of the Tokyo Lowland (Figure 2). The Tokyo and
Nakagawa lowlands are bounded on the east by the Shimosa Upland. On the west, the
Nakagawa Lowland is bounded by the Omiya Upland, and the Tokyo Lowland by the
Musashino Upland. Marine terraces situated on the Shimosa and Musashino uplands at
20 m above Tokyo Peil (TP) formed during MIS 5e, when the relative sea level was 14 m
TP [24]. Therefore, the study area has been practically tectonically stable since MIS 5e. The
study area lacks any active faults. Beneath the Omiya Upland, relatively soft MIS 5e age
mud (lower Kioroshi Formation) fills the valleys that were incised during MIS 6 [25]. The
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uplands in the study area comprise, in descending order, the MIS 5e Shimosueyoshi, the
MIS 5a Musashino, and the MIS 3 Tachikawa terraces (e.g., [26]).

From east to west in the study area, the Edo, Naka, and Ara rivers flow southward
into Tokyo Bay (Figure 2). The Tone River flowed along the course of the present Ara
River prior to 5 ka, and then along the course of the present Naka River until the 17th
century, when in order to prevent flooding in Tokyo, it was diverted to flow directly into
the Pacific Ocean instead of Tokyo Bay [20,27] (Figure 1). The present Tone River is the
largest distributary in Japan (catchment area, 16,840 km2), with a discharge of 8.7 km3/yr
(290 m/s) and a sediment yield of 3 Mt/yr (95 kg/s) [28].
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Figure 1. Index map. (a) The tectonic setting of the Japanese islands. EU, Eurasian Plate; NA, North
American Sea Plate; PH, Philippine Sea Plate; PC, Pacific Plate. (b) Kanto Plain. The house damage
ratio refers to damage caused to wooden houses by the 1923 Taisho Kanto Earthquake [9]. In general,
the house damage ratio decreased outward from the epicenter, but it was great in northeast of the
Tokyo Station (Tokyo and Nakagawa lowlands), despite their distance from the epicenter.
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Until the LGM, the Ara River and the Naka River valleys converged in the Tokyo
Lowland to form the Paleo-Tokyo River, which flowed into Tokyo Bay [21,26,29–31]. The
valleys of these rivers became filled with fluvial and marine sediments deposited during
the deglacial sea-level rise. The post-LGM incised-valley fills in the Tokyo and Naka-
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gawa lowlands unconformably overlie the Middle to Late Pleistocene Shimosa Group;
in stratigraphical order, they comprise gravel beds deposited by a braided river system,
alternating beds of sand and mud deposited by a meandering river system, upward-fining
sand and mud beds of an estuary system, upward-coarsening sand beds of a spit system,
and upward-coarsening sand and mud beds of a delta system [20]. The spit system is
distributed locally along the western margin of the Shimosa Upland. The unconformity
between the Shimosa Group and the post-LGM incised-valley fills can be regarded as
the sequence boundary (SB). The boundary of the braided/meandering river system is
the transgressive surface (TS), that of the meandering river and estuary systems is the
initial flooding surface (IFS), and the estuary/delta system boundary is the maximum
flooding surface (MFS) [32,33]. The MFS has been dated to 7 ka in the Tokyo and Nakagawa
lowlands [20].

Sea level was 2–3 m higher than the present level in the area north of Tokyo Bay during
7–4 ka [34]. Marine beds deposited during that period are distributed 70 km inland along
the Naka River and 50 km inland along the Ara River [35,36].

3. Materials and Methods

We used 7021 and 5767 borehole logs (total, 12,788 borehole logs), reported by
Tanabe et al. [21] and Tanabe and Ishihara [22], respectively. These borehole logs were
obtained during standard penetration tests conducted before building construction, and all
data were prepared as JACIC-formatted XML data [37]. Borehole logs in this format contain
information on the location (latitude, longitude, and elevation measured by leveling or
GPS), and on the observed lithology and measured N-values at 1 m intervals. Although
details of the lithological descriptions differ depending on the driller, the lithologies are
roughly classified into gravel, sand, muddy sand, sandy mud, mud, peat, loam, artificial
soil, and bedrock. The lithological descriptions also contain information on color and
whether molluscan shells, burrows, and plant material are present. The N-value, which is
used in Japan to test ground stiffness, refers to the number of times a 63.5 kg weight must
be dropped from a height of 75 cm onto a sample tube for it to penetrate the soil to a depth
of 30 cm [38]. N-values are usually high in coarse sediments and low in fine sediments,
and they increase with depth because of the effect of compaction. Vertical changes in the
N-value are roughly indicative of fining and coarsening trends [39].

The XML dataset of the borehole logs was converted into a voxel model with
150 m × 150 m × 1 m grid cells using the interpolation method of Ishihara et al. [19]. Ishi-
hara et al. [19] used data points from eight directions and interpolate them by the inverse
distance weighting (IDW) method. Lithologic and N-value cross-sections and isopachs of
mud with an N-value of 0 and 1 were constructed using this voxel model.

The stratigraphy of four lithological and N-value cross-sections was interpreted
through correlations with 18 stratotype cores and comparisons with previous studies [20].
The base of the post-LGM incised-valley fill was identified manually in each borehole log
by comparison with the stratigraphic sequence of the four cross-sections. In this study, we
regarded the top of the basal gravel bed (BG) of the post-LGM incised-valley fill as the floor
of the incised valley because few of the borehole logs entirely penetrated the BG, which
constitutes a firm ground for building foundations. The spatial distributions of the LGM
incised valleys were reconstructed by mathematically interpolating the depth values of
the top of the BG using the Kriging interpolation method in Esri’s 3D Analyst Toolbox in
ArcGIS 10.6. All ages reported here are cal kyr BP (ka).

4. Geological Cross-Sections

In this section, we describe the stratigraphy of the Shimosa Group and post-LGM
incised-valley fills and the basal distribution of the latter in the Tokyo and Nakagawa
lowlands in four geological cross-sections, from south to north, sections AA′, BB′, CC′, and
DD′ (Figures 2–4).
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4.1. Section AA′

Section AA′ extends from the Musashino Upland in the west to the Edo River mouth
in the east (Figure 2). The Paleo-Tokyo River Valley is in the center of this section, and
buried terraces are located on both sides of the valley. The lithology below the buried
terraces consists of laterally continuous sand and mud beds with relatively high N-values
(>20). In contrast, the lithology above the buried terraces consists of laterally discontinuous
sand and mud beds with relatively low N-values (<20) (Figures 3 and 4). The former
lithology is characteristic of the Shimosa Group, whereas the latter is characteristic of the
post-LGM incised-valley fills [40]. Based on the comparison with stratotype cores obtained
in the axis of the valley, the alternating sand and mud beds (N-value < 30) filling the
2-km-wide valley are interpreted as having been deposited by a meandering river system,
the sand and mud beds (N-value = 5–20) extending widely above the buried terraces are
interpreted as an estuary system, and the sand and mud beds (N-value = 0–10) distributed
widely above the estuary system are interpreted as a delta system [20]. Gravel beds of the
braided river system are presumably distributed beneath the meandering river system
(Figures 3 and 4). Where the meandering river system fills the narrow valley, the ground
is relatively stiff, whereas ground composed of the delta system, which consists mainly
of mud, is very soft (N-value = 0). The N-value of the estuary (delta) system decreases
(increases) upward, which suggests the fining-upward (coarsening-upward) trend of the
lithological successions. The buried terraces at average heights of −10 m TP and −45 m TP
on the east side of the valley are, respectively, called the T1 and T3 surfaces in this study,
and the buried terrace at an average height of −35 m TP on the west side of the valley is
called the T2 surface (Figures 3 and 4). Details of these surfaces are explained in the next
section. The T1 surface overlies the Shimosa Group, and the T2 and T3 surfaces overlie the
pre-LGM buried terrace gravel beds (BT).

4.2. Section BB′

Section BB′ extends from the Musashino Upland in the west to the Shimosa Upland
in the east (Figure 2). On the west side of this section, the Ara and Naka River valleys
merge to form the Paleo-Tokyo River Valley, whereas the east side is dominated by the
Shimosa Group, which forms the Shimosa Upland. The Shimosa Group consists of laterally
continuous sand and mud beds with relatively high N-values (>20), as in section AA′

(Figures 3 and 4). The post-LGM incised-valley fills consist in stratigraphical order of
gravel beds (N-value >40) of the braided river system, alternating sand and mud beds
(N-value = 10–20) of the meandering river system, sand and mud beds (N-value = 5–20) of
the estuary system, and sand and mud beds (N-value = 0–10) of the delta system. Sand
and mud beds (N-value = 5–10) at the western margin of the Shimosa Upland are regarded
as a spit system (Figures 3 and 4) [20].

4.3. Section CC′

Section CC′ extends from the Omiya Upland in the west to the Shimosa Upland in
the east (Figure 2). The Naka River Valley is in the east central part of this section, and the
Ayase River Valley, a branch of the Naka River Valley, is on the west side. The T1 buried
terraces are distributed both east of the Naka River Valley and between the Naka and Ayase
River valleys. In this section, the Shimosa Group consists of laterally continuous sand and
mud beds. However, the N-values of the uppermost mud of the Shimosa Group between
the Naka and Ayase River valleys are lower (5–20) than typical N-values of the Shimosa
Group (Figures 3 and 4). In the Naka River Valley, gravel beds of the braided river system
are absent. The post-LGM incised-valley fills consist in stratigraphical order of alternating
sand and mud beds (N-value = 10–20) of the meandering river system, sand and mud
beds (N-value = 5–20) of the estuary system, and sand and mud beds (N-value = 0–10) of
the delta system. In the Naka River Valley, thick estuary system deposits are accreted on
the western slope of the incised valley, but they are thinly distributed in the valley axis,
because tidal currents occurred in the elongated bay where the estuary system developed
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(Figures 3 and 4) [20]. In the Ayase River Valley, the post-LGM incised-valley fill consists of
a thick mud bed with a very low N-value of 0–1. In the stratotype core from the Ayase River
Valley, the estuary/delta system boundary (MFS) is at −10 m TP (Figures 3 and 4) [20].

4.4. Section DD′

Section DD′ extends from the Omiya Upland in the west to the Shimosa Upland in
the east. The Naka River Valley is at the west side of this section, and the Shimosa Group,
constituting the Shimosa Upland, is on the east side. Here, the Shimosa Group consists of
sand and mud beds with N-values > 10, and it is unusual in that the N-value of the sand
beds is smaller than that of the mud beds (Figures 3 and 4). The post-LGM incised-valley
fill in the Naka River Valley consists in stratigraphical order of gravel beds of the braided
river system (N-value >40), sand and mud beds of the estuary system (N-value = 0–10),
and sand and mud beds of the delta system (N-value = 0–10). The MFS is within a mud
bed with an N-value of around 0, as in the Ayase River Valley (Figures 3 and 4; section
CC′). The buried terrace at−10 m TP is correlated to the T1 surface on the basis of its depth
and the absence of the pre-LGM buried terrace gravel beds.

5. Incised Valleys, Buried Terraces, and Soft Mud

Figure 5 shows the distribution of the incised valleys that formed until the LGM
beneath the Tokyo and Nakagawa lowlands. The Naka and Ara River valleys converge in
the northern part of the Tokyo Lowland to form the Paleo-Tokyo River Valley. Furthermore,
small branches of the incised valleys can be observed: the Gyotoku and Saka River valleys
dissect the Shimosa Upland; the Ayase River Valley dissects the Omiya Upland; and the
Paleo-Kanda River Valley dissects the Musashino Upland. The Paleo-Tokyo River Valley
is the deepest valley in the study area; its floor is at −77 m TP in the area adjacent to the
present Ara River mouth.

The LGM incised valleys are bordered by the T1, T2, and T3 buried terrace surfaces.
The T1 surface occurs at a height above −10 m TP, and its depth is shallower at more

inland locations (Figure 5). The T1 terrace deposits are finer grained than the other terrace
sediments and lack gravel beds. In the southern Tokyo Lowland, a buried terrace surface
can be correlated to the T1 surface, which is overlain by the Hk-TP tephra (MIS 4) [41].
This surface was previously regarded as an abrasion platform formed during the middle
Holocene sea-level highstand [30,40,42], but it is now regarded as the MIS 5a Musashino
Terrace [43]. The terrace surface is slightly eroded by wave action during the middle
Holocene sea-level highstand, but only the loam bed on the T1 surface was eroded away
at that time, exposing the original topographic surface formed during MIS 5a [26,39,44].
In this study, we consider that most of the T1 terrace surface was formed during MIS 5a,
and that it consists in part of an abrasion platform formed during the middle Holocene
highstand. Wave energy was presumably high in the southern Tokyo Lowland, which was
near the center of Tokyo Bay. The T1 terrace deposits lack gravel beds because the eustatic
sea level was around 20 m below the present sea level during MIS 5a [45], and the river
gradients were relatively low.

The T2 terrace surface occurs at a height above −35 m TP, and at shallower depths
at more inland locations (Figure 5). Gravel beds underlie the T2 surface. In the western
Tokyo Lowland, the T2 surface is covered by a loam bed containing the Aira Tn (AT)
tephra that was dated to 30.0 ka [46]. Therefore, this surface can be correlated with the
MIS 3 Tachikawa Terrace. The eustatic sea level during MIS 3 was 80 m below the present
level [45]. Thus, the river gradients were relatively steep leading to the formation of the
buried terrace gravel beds.
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The T3 surface occurs at a height of around −45 m TP only in the vicinity of the
present Ara River mouth (Figures 2 and 5). The T3 terrace deposits contain gravel beds.
The T3 surface occurs at a height below the T2 surface, which is covered by the AT tephra,
and above the floor of the LGM incised valley. Therefore, it might have formed during the
sea-level plateau in the first half the LGM (30.0–21.5 ka) [47,48]. However, the age of T3
and its distribution further upstream must be clarified in future.
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Figure 6 is an isopach map of soft mud with an N-value of 0 and 1 (“N1 mud”) in
the Tokyo and Nakagawa lowlands. The N1 mud is thin along the western margin of
the Shimosa Upland and up to 20 m thick close to the axes of the Naka and Ayase River
valleys. The N1 mud is thin along the western margin of the Shimosa Upland because of
the occurrence of the sandy beds of the spit system instead of mud beds of the delta system
(Figures 3 and 4) [20]. It is also relatively thin in the Ara River Valley compared to the
Naka River Valley because the Tone River, which flowed along the course of the present
Ara River until 5 ka, deposited coarse sediment. As a result of the postglacial sea-level rise,
a bay environment developed after 10 ka in the Naka and Ayase River valleys. The Naka
and Ayase River valleys were sediment starved, and an inner bay environment with low
wave and tidal energies existed until the Tone River shifted its course from the present Ara
River to the Naka River at 5 ka [20]. This allowed the deposition of the thick N1 mud in
the Naka and Ayase River valleys.
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6. Relation between the Thicknesses of the Post-LGM Incised-Valley Fills and N1
Mud and Earthquake Damage

Figure 7 shows the distribution of wooden house damage ratios following the 1923
Taisho Kanto Earthquake in the Tokyo and Nakagawa lowlands. Kaizuka and Matsuda [11]
calculated the house damage ratio in each village as follows: house damage ratio = collapse
ratio of wooden houses + half-collapse ratio of wooden houses ÷ 2. The construction
quality of the wooden houses was almost the same during the 1920s [11,13]. Comparison of
the damage ratio distribution (Figure 7) with the thicknesses of the post-LGM incised-valley
fills (Figure 8) and N1 mud (Figure 9) indicates that the house damage ratio corresponds
better to the thickness of the N1 mud rather than to that of the post-LGM incised-valley fills.
In the inner portions of the Ayase and Naka River valleys, the N1 mud is up to 20 m thick,
and the house damage ratio is over 20% (Figures 5 and 9). In contrast, the house damage
ratio was 0% along the western margin of the Shimosa Upland where the spit system is
distributed and N1 mud is absent (Figure 9). The spit system corresponds to relatively stiff
sandy ground. The fact that the post-LGM incised-valley fills thicken to more than 50 m
in the area where the spit system is distributed indicates that the house damage ratio was
not necessarily high in areas where the post-LGM incised-valley fills are thick (Figure 8).
The house damage ratio was also relatively high along the eastern margin of the Omiya
Upland, where the post-LGM incised-valley fills are thinner than 10 m (Figure 8). In this
area, the high damage ratio might be related to the distribution of soft mud of the MIS 5e
lower Kioroshi Formation. The lower Kioroshi Formation occasionally contains soft mud
with an N-value of ca. 5 [25]. In this study, we ignored the relationship between the house
damage ratio and liquefaction.

Plots of the house damage ratio against the thicknesses of the post-LGM incised-valley
fills and the N1 mud (Figure 10) show that the house damage ratio was highest in areas
where the post-LGM incised-valley fill is 30 m thick and the N1 mud is 20 m thick. The
average S-wave velocity is 150 m/s in the post-LGM incised-valley fills and 100 m/s in the
N1 mud (Figure 11). The natural resonance period T of each sediment can be calculated
as follows:

T =
4H
Vs

where H is thickness and Vs is S-wave velocity [13]. Therefore, the natural period of both
the 30-m-thick post-LGM incised-valley fill and the 20-m-thick N1 mud is 0.8 s. This value
roughly matches the natural resonance period of wooden houses (ca. 1 s). Therefore,
based on this simplified one-dimensional model [13], resonance would have caused strong
shaking and vibration during the earthquake. The majority of wooden houses collapsed
due to this resonance [12–15]. According to Kanai [12], Ogawa and Nakayama [14], and
Kuritsuka and Ogawa [15], where the post-LGM incised-valley fills are thicker or thinner
than 30 m, and the Holocene marine mud, which corresponds to the N1 mud, is thicker
or thinner than 20 m, the house damage ratio decreases because the natural period of the
sediments deviates from 1 s (Figure 10).
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In the Nakagawa Lowland, the GS-SMB-1 stratotype core was obtained from the
region where the house damage ratio was over 50%, GS-KBH-1 was obtained where the
house damage ratio was 20–50%, and GS-MHI-1 was obtained where the house damage
ratio was 10–20% (Figure 7) [20]. The N1 muds are 28 m, 21 m, and 19 m thick in cores
GS-SMB-1, GS-KBH-1, and GS-MHI-1, respectively (Figure 11). The depositional age of the
N1 mud is 10–3 ka [20]. In these cores, the N1 mud consists of estuarine and deltaic bay
muds with a mud content of more than 60% and a water content of more than 30%, and
around the MFS, the mud content is as high as 100% and the water content is as high as 50%
(Figure 11). This extremely soft mud is at it thickest (5 m) in core GS-KBH-1. However, the
house damage ratio at the GS-KBH-1 site was not as high as that at the GS-SMB-1 site. The
minimum S-wave velocity of the post-LGM incised-valley fills is around 80 m/s (Figure 11).
With this S-wave velocity, the sediments must be thicker than 20 m for the natural resonance
period to be 1 s. When the S-wave velocity is higher than 80 m/s, the sediments must be
thicker to obtain a natural resonance period of 1 s. It is widely known that the near-surface
geology and earthquake damage are strongly related (e.g., [17,18]). However, we argue
that the thickness of soft sediments is more important than the stiffness of the sediments
(e.g., the presence of extremely soft mud) for predicting earthquake damage in the alluvial
lowlands where post-LGM incised-valley fills occur.
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Figure 11. Physical properties of the N1 mud in the stratotype cores. Blue shadings indicate the intervals of the N1 mud.
SB, sequence boundary; TS, transgressive surface; IFS, initial flooding surface; MFS, maximum flooding surface. The SB
corresponds to the unconformity between the Shimosa Group and the post-LGM incised-valley fills. The TS, IFS, and MFS
correspond to the braided/meandering river, meandering river/estuary, and estuary/delta system boundaries, respectively.

7. Conclusions

In this study, we mapped isopachs of the post-LGM incised-valley fills and N1 mud
beneath the Tokyo and Nakagawa lowlands by using 13,000 borehole logs. The N1 mud
consists of Holocene muds of the estuary and delta systems that were deposited in an inner
bay environment where the wave and tidal energy was low. The N1 mud is not always thick
in areas where the post-LGM incised-valley fills are thick. Comparison of the thicknesses
of the post-LGM incised-valley fills and the N1 mud with the wooden house damage ratio
following the 1923 Taisho Kanto Earthquake suggests that the house damage ratio related
better to the thickness of the N1 mud rather than to that of the post-LGM incised-valley
fills. Furthermore, the house damage ratio was highest where the post-LGM incised-valley
fill thickness is 30 m and the N1 mud thickness is 20 m because in those areas, the natural
resonance period of the sediments corresponded to that of the wooden houses (ca. 1 s).
Where the post-LGM incised-valley fills and the N1 mud are thicker or thinner than these
values, the house damage ratio was smaller because the natural period of the sediments
deviated from 1 s. Previously, knowledge of the resonance period of the post-LGM incised-
valley fills in relation to the house damage ratio was based mainly on data from the Tokyo
Lowland. However, by incorporating data from the Nakagawa Lowland, we showed that
the thickness of the N1 mud is especially important for predicting earthquake damage in
alluvial lowlands where post-LGM incised-valley fills occur in the subsurface.
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