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Abstract: Common industry practice means that geological or stratigraphic boundaries are estimated
from exploration drill holes. While exploration holes provide opportunities for accurate data at a high
resolution down the hole, their acquisition is cost-intensive, which can result in the number of holes
drilled being reduced. In contrast, sampling with ground-penetrating radar (GPR) is cost-effective,
non-destructive, and compact, allowing for denser, continuous data acquisition. One challenge with
GPR data is the subjectivity and challenges associated with interpretation. This research presents
a hybrid model of geologist and machine learning for the identification of geological boundaries
in a lateritic deposit. This model allows for an auditable, probabilistic representation of geologists’
interpretations and can feed into exploration planning and optimising drill campaigns in terms of
the density and location of holes.

Keywords: ground-penetrating radar; Gaussian processes; uncertainty modelling; hybrid intelli-
gence; optimised exploration

1. Introduction

The accurate modelling of geological boundary transitions is important to ensure mine
feasibility, with particular reference to maximising tonnages. Typically, these boundaries
are estimated from exploration holes. The incorporation of ground-penetrating radar
(GPR) into the modelling of boundary transitions is an attractive idea, as GPR is a non-
destructive technology, and GPR data acquisition is relatively cost-effective compared
to executing a drilling program for data acquisition. One of the challenges related to
GPR data is that it does not inherently inform the geologist of the location of a boundary
transition. The inference of transition locations from GPR data is subjective and open
to geological interpretation. This is especially true in regions that have nondefinitive
mineralogically extensive transition zones, where the change from one assay suite to
another is a gradual one.

GPR is a non-destructive technology that can detect subterranean objects through
the scattering of electromagnetic waves. It is a versatile technology that can be applied
to a variety of fields, such as land mine detection [1,2], archaeology [3,4], the detection of
buried people [5], civil engineering and construction [6,7], soil surveying [8], and mining
and geology [9-11]. An overview of GPR and its applications in civil engineering is
presented in reference [12]. A more broad analysis of early (1995-2014) GPR research
and developments is presented in reference [13]. Advantages that GPR has over other
non-destructive sampling methods such as seismic, acoustic, infrared, and optical are that
it has a low survey cost, compact equipment, and an excellent trade-off between resolution
and depth of detection [14].

This work introduces the idea of a “geologist in the loop” process that combines
subject matter expert (SME) interpretations with Gaussian processes (GPs) [15], a machine
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learning algorithm, to represent these SME interpretations of the transition from one assay
suite to another in a laterally extensive deposit. Specifically, this work is demonstrated in
an extensive tropical region, a lateritic bauxite deposit in Cape York, Australia. The use of
GPR, particularly in the pisolithic deposits of Cape York, has the potential to overcome the
limitations of bauxite resource estimations from sparse exploration holes [16]. To obtain
their interpretations, SMEs are provided with GPR data augmented with exploration
hole data. The exploration hole data contains ground truth observations, such as the
compositional percentages of all present assays. Of particular interest to this work is the
percentage of 5iO,. Such data can be useful for pinning down interpretations of geological
boundaries and removing potential ambiguities in the GPR domain. It should also be noted
that, while the results presented in this paper are acquired from GPR data augmented with
exploration hole data, the process can work on GPR data augmented with alternate data
sources or simply on just GPR data.

SME interpretations are provided with some measure of uncertainty as an input into
the GP model. The GP model then returns a mathematical representation of the location
of the geological boundary. A GP model is ideal for this task, as the returned estimate
is continuous, nonparametric, and probabilistic [15]. GPs have also been used in other
geological tasks, such as the mapping of landslide susceptibility [17] and distinguishing
geological units from measure while drilling data [18]. Having a mathematical represen-
tation of SME interpretations is attractive, as it allows for the incorporation of these data
with other sources, such as exploration holes, gravimetric data, or aeromagnetic data,
into further modelling processes. The inclusion of mathematical uncertainty in such a
representation is also critical, as it allows for SMEs to highlight regions where they are
unsure about where a boundary transition might lie. This is information traditionally
not captured in the interpolation of boundary transition locations from GPR data. This
mathematical representation of SME interpretations with uncertainty can influence mine
planning decisions. One such example is the optimisation of drill hole locations, allowing
mine site planners to best choose the location of exploration holes given the objective
criteria and constraints related to their particular mine site.

While automated machine learning models have been applied to modelling from
GPR data, such as the classification of a geological structure [9] or the estimation of
the water content in soil [19], this paper presents a hybrid intelligence model for the
identification of geological boundaries. Hybrid intelligence models employ a combination
of human and machine intelligence, allowing for the strengths of each to be exploited [20].
The employment of a hybrid intelligence model in geological boundary identification is
appealing, as it allows for the SME interpretations to be auditable and properly scrutinized.
The review of a hybrid intelligence boundary estimate allows for an independent reviewer
to not only understand the final boundary estimation but, also, to understand the thought
process of the original geologist when they were generating the boundary estimate. This is
especially true if both the SME inputs and boundary estimate outputs are represented with
some uncertainty of measure.

The remainder of the paper is structured as follows: Section 2 explains the bauxite
domain that we are using for the model. Section 3 provides a quick overview of how GPR
works, with Section 4 following on how the data used in this paper was collected. Section 5
then describes the modelling process and how an interpretation of the boundary transition
is generated. The paper then follows with Section 6 presenting the results and discussion,
Section 7 covering the limitations and future works, and concludes in Section 8.

2. Geological Background and Profile of the Test Site

The bauxite province surrounding Weipa is found on the west coast of Cape York
in Queensland, Australia, and the location of interest is noted (Figure 1). The laterally
expansive bauxite region is roughly 14,000 km? and estimated to be around 50 Ma ([21-23]).
Weipa bauxite deposits are noted to be substantially different to other bauxite deposits, so
far as they mostly comprise “free” pisoliths, which are therefore not matrix-bound [21].
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Further to this, there are also areas of pisoliths hosted in kaolin-rich horizons and areas of
cementation [24].

Characteristic pisoliths (pisoid—singular) are described as the following: round to
subrounded concreted particles of concentric mineralogies, created from the surrounding
bauxite materials. All pisoliths vary in mineralogy and size, and therefore, no two are the
same. Generally speaking, pisoliths are >2 mm in diameter, and particles below this size
are known as oolites [23]. Figure 2 provides an example of pisoliths from the Weipa region.

IR Sl s Snan
- North Queensland

Radiometric Image
Ternary 80m

eXE W N W
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Figure 1. A radiometric image of the Weipa area of interest in North Queensland, Australia. The
blue colouring around Weipa reflects the bauxite covering of the Weipa plateau. This image was
reproduced from reference [23] and was originally prepared by M. A. Craig (Geoscience Australia).
The inset image (from www.google.com/maps, accessed 30 June 2021) shows the site location relative
to Australia, with the arrow indicating north.

4

Figure 2. Two examples of pisoliths from the general region of interest. (a) a 25 mm nodule and (b) a 20 mm pisolith. These

images were reproduced from reference [24].
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The following are general minerals of bauxite deposits but may not be known at all
bauxite deposits and may comprise many of the profiles described: béehmite (AIO(OH)),
diaspore (AIO(OH)), gibbsite (AI(OH)3), goethite (x-Fe3*O(OH)), hematite (Fe,O3), and
kaolinite (Al (5i05)(OH)4) [25]. The Weipa deposits range between 49% and 53% Al,O3
and are known to be some of the world’s highest grades [26].

Depth Profiling

The depth of the bauxite deposits is known to be around 15 m from the top to the
ironstone basement, though this varies within the site [24]. The image shown in Figure 3
demonstrates a typical bauxite deposit regolith horizon in the area of interest for the GPR
studies. Although individual horizons may vary in thickness over this particular bauxite
deposit, the horizons are present throughout.

Bauxite

Transition Zone
- { ?'y '

Rolling Downs:G

]

Figure 3. Regolith zone examples from the Weipa area. The image was reproduced from refer-
ence [27].

The lateral profiles forming boundaries within the bauxite deposits form via a chemical
weathering process known as lateritisation and take place in tropical zones. Lateritisation is
a leaching process [28] that takes place in high rainfall locations [23]. Tropical environments
provide the catalyst for oxidation and the dissolution of minerals within an existing parent
rock. Un-leached elements (immobile) remain as the constituents of soil. The lateritisation
process leads to the oxidation of any mineral sulphides that may have been present in the
parent rock material. In the right conditions, the relic soil left behind can reach thicknesses
in excess of 10 m. The lateritisation process leads to the formation of relic soils rich in
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aluminium hydroxides, iron oxides, clays (kaolinite), and immobile elements such as
titanium and zircon [23]. It is the high proportion of aluminium hydroxides that make
this material sought after as a raw material for aluminium production. This process has
taken place since the upper Cretaceous (approximately 100 million years b.p.) when the
hot, humid climate resulted in extensive weathering of the Rolling Downs Group, forming
deep lateritic profiles with gibbsite nodules and pisoliths in a kaolinitic matrix in the upper
weathering horizon and oxyhydroxides and kaolinitic peds in the lower mottled zone.
Uplift and erosion of the Rolling Downs Group resulted in the deposition of the Bulimba
Formation, which continued to develop a new lateritic profile in situ [23].

3. Ground-Penetrating Radar

GPRis a geophysical technique that provides a reflectance from below the surface,
which is displayed as a greyscale image to the end user. GPR uses propagating electro-
magnetic waves that respond to changes in the subsurface electromagnetic properties of
the materials—in this case, bauxite. The dielectric permittivity, conductivity, and magnetic
permeability of the shallow subsurface are the so-called responses [29-31]. The schematic
“diagram” in Figure 4 provides a simple illustration of how GPR technology works.

|  Control Unit
\ 4 : 3
Display Unit
Transmitter Receiver

Figure 4. Schematic block diagram of the GPR surface function [32].

Electromagnetic waves are radiated into the ground from a transmitting antenna at the
surface. When propagating electromagnetic waves encounter any contrast in the electrical
properties, they reflect off the interface of subsurface materials. The reflected signal is then
received by a receiving antenna and recorded as a function of time [33].

4. Data Collection

There are two data sources used in this paper: exploration holes and GPR data. The
methods for acquiring data relating to each of these sources is described in the remainder
of this section.

4.1. Exploration Holes

The exploration holes are drilled using the Rotary Air Blast (RAB) technique and are
drilled on a regular 50-m by 100-m grid. RAB uses compressed air to remove rock samples
from the drill hole in a controlled manner. These samples are then sent to a laboratory for
analysis, resulting in chemical and mineralogical information. A detailed explanation on
drill cores in surface mines is provided in reference [34] for the interested reader. While
several outputs of the data are supplied from the laboratory (assay compositions, hardness,
etc.), expert geologists have indicated that SiO; is the primary dimension of interest for the
identification of the bauxite transition. The incorporation of the other data outputs into
this model is scoped out for future works.
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4.2. Ground Penetrating Radar (GPR)

For this work, GPR data was collected using a frequency of 45 MHz. The choice of
GPR frequency is dependent on the domain being modelled and the use of the data—for
instance, a frequency of 50 MHz in a limestone deposit [35] or a lower frequency of 25 MHz
for better subsurface resolution in a lateritic bauxite deposit [36]. The analysis of alternate
frequencies at this Weipa site is for future works beyond the scope of this paper. The GPR
data was collected along the same lines as the exploration holes at 50-m spacing between
GPR lines. The lines are run in a north—-south direction. Due to some environmental or
heritage constraints, the GPR lines may deviate to accommodate this but will revert to
north-south and in parallel with the adjacent GPR lines. To acquire the GPR images used
in this work (and shown in this paper), raw GPR data was passed through a high-pass
dewowing filter and amplified with an attenuation compensation gain [37]. Dewowing
is used to eliminate low-frequency and DC bias in the data [38], while attenuation gain is
used to help better visualize deeper targets [39].

5. Modelling Process

There are three main stages in determining a probabilistic boundary estimates from
geologist-picked point data: GPR data representation, geologist point picking, and the
training of the regression model from the geologist data. In the data representation step, a
potentially augmented GPR image is presented to the geologist. It is this image that the
geologist uses to identify boundary transitions. Note that non-GPR data is optional, but it
allows the geologist to construct a more informed mental understanding of the transition.
Exploration holes, or even another GPR image collected at a different frequency, are two
examples of how an initial GPR image might be augmented. Once the geologist has selected
the points that they have identified to sit on the boundary transition, the regression model
can then be trained. This process of the geologist selecting a set of points and then training
the model is an iterative one and can be repeated until the geologist is satisfied that the
resulting model accurately represents their SME understanding of the boundary transition
in a mathematical format. The employment of these three steps in this paper are described
in the following subsections.

5.1. Data Representation

The GPR data for a “single line” is presented to the geologist as a two-dimensional
image. This is a greyscale image that shows the radar response from different depths at
different positions. We augmented this GPR with data from exploration holes that were
“near” the GPR track. In this instance, we chose “near” to mean exploration holes that are
within 2 m of the GPR track. An example image is shown in Figure 5. The exploration
holes were coloured by relative SiO; values (Please note that, while these are the images
that were shown to geologists, numerical information was abstracted away for commercial
sensitivity reasons. Likewise, the spatial information was similarly altered).

200
Distance (m}

Figure 5. Example of a GPR track augmented with exploration hole data. The exploration holes are coloured by relative

SiO, values. From low to high percentages, SiO, is coloured as: light blue, green, yellow, orange, and red.
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5.2. Geologist Point Picking

From the provided image (Figure 5), the geologist selects a set of points that they
believe lie on the boundary transition. For each of the chosen points, the geologist also
provides a vertical measure of uncertainty, representing their understanding of where the
vertical boundary transition might lie for the given horizontal coordinate. An example of
this is shown in Figure 6. The geologist’s chosen points are presented with the augmented
GPR image. Each of the geologist’s chosen points has an associated uncertainty, with
points near the exploration holes having significantly less uncertainty due to the included
exploration hole data. With these points and the associated uncertainties defined, a model
can now be trained.

200
Distance (m}

Figure 6. Augmented GPR image overlaid with geologist estimations of the boundary transition. The geologist identified

several locations along the GPR track where they believe the boundary exists and provided a measure of uncertainty in

their estimations.

5.3. Machine Learning Model

Given the supplied geologist points, GPs are used to estimate the boundary transition.
GPs are a Bayesian machine learning model that define a distribution over a function space,
with inferences occurring in this function space [15]. Inferred functions from a GP model
are continuous and use observation data to help describe the function performance in the
“nearby” region. These model properties allow for GPs to model arbitrary, continuous
spatial functions in a probabilistic manner, making them ideal for modelling geological
boundary transitions.

A GP model requires a covariance function, a function that partially describes the
relationship between the model inputs and outputs. The choice of a covariance function
is defined by the user and defines the hyperparameters of the model. When training a
model, the aim is to optimize these hyperparameter values to generate a model that best
represents the training data. In this work, a squared exponential covariance function was
used to spatially relate the input coordinates x and x':

(x—x’)z)

k(x,x") :U%*exp(— 7

, )
where (TJ% is the variance, and [ is the characteristic length scale. Given this covariance
function and a set of observation or training data, T = ({x;},{y;}), i = 1: Nof N
input points, where y; is the height of the observed boundary transition at location x;,
and the function of interest, f(x), can be sampled at a point of interest, x, to infer the
corresponding predictive distribution, f(x.).

To achieve a predictive distribution, the GP model maps the input space to the output
space by placing a multivariate Gaussian distribution over the function variable space.
The GP model can then be defined by its mean function m(x) and covariance function
k(x,x"): f(x) ~ GP(m(x),k(x,x")). By denoting inference points of interest as T =
({x4i},{y«i}), i =1: N, the joint Gaussian distribution with a zero mean is defined as

[J]: ] - N(O’[ 15((2,}2) 1<K((>}<(§,}§i)) D )
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where f and f, are the noise-free values of the function. N'(y, X) is a multivariate Gaussian
distribution with a mean y and covariance ¥, and K is the covariance matrix computed
between all points in the set. For example, the covariance matrix for K(X, X) is

k(xy,x1) - k(x1,xN)
K(X,X) = : : . 3)

k(xn,x1) -+ k(xn,xN)

By incorporating point-based uncertainty into the model with variance ¢, the joint
distribution of Equation (2) becomes

4]~ o[ MG KX )), "

where y is the set of noisy observations, and # is a column vector of individual observation
offsets. In this work, # is the set of uncertainties that geologists supply with their observations.
The predictive distribution for the points being estimated can then be defined as

p(fel (Xe, X), y) = N (e, 24), ®)
where the predictive mean and covariance are, respectively, calculated as

-1
e = K(Xe, X)KX,X) + (7 + o)1)y (6)

2, = K(Xs, X.) — K(Xs, X)[K(X, X) + (;7 + (72)1]_1K(X, X,). @)

To learn the GP hyperparameters values that fit the given geologist observations, the log of
the marginal likelihood with respect to 7 is maximized:

logp(y|X,0) = —%yT [K(X, X) + (17 + 02)1] _1y - %IOg\K(X, X) + 021\ - glog% ®)

From left to right, the terms in Equation (8) represent how well the model fits the
data, a complexity penalty, and a normalization constant. Strategies for determining
6 must be able to handle the nonconvex nature of the log of the marginal likelihood.
Example optimization strategies to achieve this include: simulated annealing [40,41],
stochastic gradient descent [42,43], and the limited memory Broyden-Fletcher—Goldfarb-
Shanno (LBFGS) algorithm [44]. The LBFGS algorithm was used in this work. For further
information on GPs, the interested reader can refer to references [15,45,46].

Figure 7 shows the resulting GP model estimate of the boundary location given the
geologist input data shown in Figure 6. The black line represents the mean location of the
boundary transition, with the shaded green region representing the model uncertainty.
Once this model is generated, the process of choosing/adjusting geologist inputs and
generating a boundary estimate can be iterated until the geologist is satisfied with the
mathematical representation of their interpretation of the boundary transition.

200
Distance (m}

Figure 7. Resultant GP model from the geologist’s observations.
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6. Results and Discussion

In this section, we present multiple interpretations of two different sets of augmented
GPR data. These examples demonstrate how interpretations can change from geologist
to geologist, how different levels of SME can alter GPR interpretations, and how the final
interpretations from each geologist can be audited by an independent source.

6.1. Location 1

The augmented GPR data for this location can be seen in Figure 5 (in the previous
section). The points and associated uncertainties that each geologist chose are shown in
Figures 6, 8a and 9a, with the respective resulting regression estimates of the boundary
shown in Figures 7, 8b and 9b. A comparison of all regression estimates is shown in
Figure 10.

It can be seen from these results that two geologists had similar interpretations, while
the third interpretation varied towards the right of the GPR data. In review of the results,
the third geologist’s interpretation of the transition on the far right side turned out to be
cemented bauxite. Cemented bauxite occurs where lenses of pisoliths are fused together
and typically requires a large amount of force to break up [24]. Cemented bauxite has a
higher silica value than non-cemented bauxite, which results in the spike shown on the
exploration hole. The change in silica values, along with the trend shown in the GPR data,
can result in a completely automated boundary detection process choosing an erroneous
boundary. This demonstrates how the incorporation of SME knowledge can be leveraged
to improve model robustness. Further to this, the auditability of the hybrid modelling
process allows for a thorough review of the third geologist’s interpretations, providing the
opportunity to treat the mistake as a learning opportunity related to the presentation of
cemented bauxite in GPR and exploration hole data.

200
Distance (m}

Distance (m}

(b)

Figure 8. Boundary estimates with the uncertainties of geologist 2 are shown (a), with the resulting estimate of the boundary

across the region (b).
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200
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(b)

Figure 9. Boundary estimates with the uncertainties of geologist 3 are shown (a), with the resulting estimate of the boundary

across the region (b).

Depth (m)

Distance {m)

Figure 10. Comparison of different geologist responses on this GPR profile. Note that geologist 3 (purple uncertainty)
has an interpretation that is different to those of the other geologists. Specifically, on the right, we can see that geologist 3
mistakenly interpreted the cemented bauxite in the middle of the exploration hole as the geological transition point. This
was caught in the auditing process.

6.2. Location 2

The GPR and exploration hole data for this location is shown in Figure 11. The observations
made by the three geologists and their corresponding transition interpolations are, respectively,
shown in Figures 1215, showing the three resulting geologist transition estimates overlaid. It is
interesting to observe, in this instance, that the geologists have adopted differing observation
strategies. The first geologist (Figure 12) has opted to place minimal observations on the right
side, only marking near the exploration holes. This allows for the uncertainty of the model
to “naturally” increase as it moves away from data. The second and third geologists (Figures
13 and 14) generated observations that were equi-spaced across the entirety of the GPR data.
Despite the differences in the modelling strategies, we can see that the two geologists generated
similar interpretations that were within each other’s uncertainty profiles.

Another geologist interpretation is shown in Figure 16. Whilst the exploration holes
were included for reference, they were not used in the generation of the geologist interpre-
tation; only GPR data was used. The interpretation followed the stronger GPR signal and
dipped under the exploration holes on the right. Comparing this result with the previous
interpretations (Figure 15), we can see that the augmentation of the GPR data with the
exploration hole data allowed for deeper SME insight, which resulted in a more informed
transition interpretation. Similar to the previous example, it is likely that a completely
automated model would have generated an inappropriate interpretation of the transition
given that it would have lacked this depth of SME knowledge to draw upon.



Geosciences 2021, 11, 284 11 of 15

200
Distance (m}

Figure 11. Another example of a GPR track augmented with exploration hole data. The exploration holes are coloured by
relative SiO, values. From low to high percentages, SiO, is coloured as: light blue, green, yellow, orange, and red.

Depth (m)

200
Distance (m}

()

200
Distance (m)

(b)

Figure 12. Boundary estimates with the uncertainties of geologist 1 are shown (a), with the resulting estimate of the
boundary across the region (b).

Depth {m)

200
Distance (m}

200
Distance (m}

(b)

Figure 13. Boundary estimates with the uncertainties of geologist 2 are shown (a), with the resulting estimate of the

boundary across the region (b).
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200
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(b)

Figure 14. Boundary estimates with the uncertainties of geologist 3 are shown (a), with the resulting estimate of the

boundary across the region (b).

Depth [m)

200
Distance (m}

Figure 15. Comparison of the different geologist responses in the second GPR profile.

Depth (m)
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(@)

Depth {m)

Distance im}

(b)

Figure 16. Example of a geologist interpretation made when the exploration hole data was not considered. The geologist
interpretations are shown (a), with the resulting model presented (b).
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7. Limitations and Future Works

While this work looks at the augmentation of GPR image data with exploration hole
data, there are several related questions to explore. While the GPs were largely chosen
in this work due to their ability to return probabilistic model estimates, it is of interest
to see how they perform in other modelling methods based on seismic [47,48] and radar
data [49,50]. Extended use of this work is going to be dependent on user requirements, and
these requirements could help to dictate suitable alternate modelling techniques. Geologist
interpretations of the data (and how accurate the geologist is) are going to be heavily
influenced based on the data presented to them. We would therefore like to investigate
how geologist responses change when different GPR data-processing methodologies are
applied and when GPR data captured at different frequencies are used. It would also be of
interest to present a wider variety of exploration hole-based information to the geologist,
such as the full suite of assay compositions, or even measure-while-drilling data to see
how this influences their interactions with the model. The consideration of several GPR
samples, especially when they intersect with each other, is also something to investigate in
future works.

We would also like to introduce this concept into 3D model generation and update
the model with interpolation and extrapolation techniques generally associated with the
geological visualisation of site-based data (e.g., reference [51]). GPR data and little (or no)
exploration data could be used to generate an initial 3D model that could then be used to
infer ideal places for future exploration holes to be drilled and then update the 3D model.
This process could be repeated several times, with the specifics dependent on the time,
cost, and resources available. The resulting process of exploration hole placement could be
compared with alternate sampling patterns (e.g., reference [52]), and the final 3D estimate
could also be compared to the estimates derived from other models (e.g., reference [53]).

A current limitation of this work is that the modelling is currently performed in
individual 2D slices of GPR data. The consideration of nearby or intersecting GPR tracks is
something that we would like to further explore in the future. The extension of the hybrid
intelligence algorithm to non-lateritic deposits is also something to explore in the future.

8. Conclusions

In this paper, we presented a hybrid intelligence model that can generate probabilistic
interpretations of geological transitions from GPR data augmented with exploration hole
data. This method allowed for the uncertainties of geologists to be encapsulated into a
mathematical model, resulting in objective and more well-informed transition interpre-
tations. These interpretations can then be audited, allowing for a level of governance in
the generation of these interpretations, and, if adopted, would present a change in the
standard operating procedure for the industry. Finally, as these hybrids intelligence models
are mathematical, they can be fed into consequential mine strategies such as exploration
planning, mining optimisation, and the optimisation of drill campaigns in terms of the
density and hole location.
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