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Abstract: Shallow landslides are destructive hazards and play an important role in landscape
processes. The purpose of this paper is to evaluate the shallow landslide susceptibility and to
investigate which predisposing factors control the spatial distribution of the collected instability
phenomena. The GIS-based logistic regression model and jackknife test were respectively employed
to achieve the scopes. The studied area falls in the Mesima basin, located in the southern Calabria
(Italy). The research was based mainly on geomorphological study using both interpretation of Google
Earth images and field surveys. Thus, 1511 shallow landslides were mapped and 18 predisposing
factors (lithology, distance to faults, fault density, land use, soil texture, soil bulk density, soil
erodibility, distance to streams, drainage density, elevation, slope gradient, slope aspect, local relief,
plan curvature, profile curvature, TPI, TWI, and SPI) were recognized as influencing the shallow
landslide susceptibility. The 70% of the collected shallow landslides were randomly divided into
a training data set to build susceptibility model and the remaining 30% were used to validate the
newly built model. The logistic regression model calculated the landslide probability of each pixel in
the study area and produced the susceptibility map. Four classification methods were tested and
compared between them, so the most reliable classification system was employed to the shallow
landslide susceptibility map construction. In the susceptibility map, five classes were recognized
as following: very low, low, moderate, high, and very high susceptibility. About 26.1% of the study
area falls in high and very high susceptible classes and most of the landslides mapped (82.4%)
occur in these classes. The accuracy of the predictive model was evaluated by using the ROC
(receiver operating characteristics) curve approach, which showed an area under the curve (AUC) of
0.93, proving the excellent forecasting ability of the susceptibility model. The predisposing factors
importance evaluation, using the jackknife test, revealed that slope gradient, TWI, soil texture and
lithology were the most important factors; whereas, SPI, fault density and profile curvature have a
least importance. According to these results, we conclude that the shallow landslide susceptibility
map can be use as valuable tool both for land-use planning and for management and mitigation of
the shallow landslide risk in the study area.

Keywords: shallow landslide; landslide predisposing factors; logistic regression model; susceptibility
map; calabria

1. Introduction

Shallow landslides are phenomena triggered by heavy rainstorms with short duration
and intense precipitation or rainfall with long duration and medium–low intensity [1–3].
These phenomena, in mountain and hillslope environments, represent one of the most
important denudation processes and can affect human life and infrastructure both directly
and indirectly [4–7]. The spatial distribution of shallow landslides is strongly influenced
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both by different climatic conditions and by environmental framework including weath-
ered rock grade, soil characteristics, land use/cover, and morphological features [3,8–10].
Furthermore, in recent decades, the shallow landslide occurrence seems to be increasing
due to climate changes [11,12] and several countries, including Italy, were identified as
high landslide risk areas [6,13–15].

Italian territory is largely affected by shallow landslide events mainly because of
its climatic and geological features. Anyway, in Italy instability phenomena are often
linked to uncorrected land use management as well. The Calabria region in Southern Italy,
is periodically affected by shallow landslide events, which cause considerable damage
to buildings and infrastructures posing serious threat to the population and economic
loss [7,16–23].

The construction of landslide susceptibility maps becomes a useful tool both to better
identify areas prone to shallow landslides and the interaction between the last one areas
and the geo-environmental features able to control the instability processes. Consequently,
landslide susceptibility zoning represents the first step for the evaluation of landslide risk
and also supply important information for decision and land planning [24,25].

The reliability of landslide susceptibility maps mainly depends on the quantity and
quality of available data (e.g., landslide inventory and landslide predisposing factors),
the working scale and the use of the appropriate analysis methodology [25–27]. In recent
decades, with the increasing use of the geographic information system (GIS) techniques,
various methods were employed for landslide susceptibility mapping, such as: heuristic,
deterministic, statistic, and machine learning approaches [28–32]. Heuristic approaches,
for instance analytic hierarchy process (AHP) or the weighted linear combination (WLC),
are commonly used to evaluate landslide susceptibility [25,29,30,33–35]. These approaches
are subjective methods based on the prior knowledge of the terrain condition. Thus, the
expert geomorphologists identify landslides, ascertain the main influencing factors and
recognize sites that have similar environmental characteristics [25,30,36,37]. Deterministic
methods employ physical laws and engineering principles of stability analysis to estimate
safety [28,38]. The deterministic methods are generally applied when the study area is small
and the geologic properties are relatively homogeneous in the investigated area [39,40].
Statistically-based landslide susceptibility models are based on the relationships between
dependent (landslides) and independent variables (predisposing factors) [41]. In particular,
the statistical models examine the combination of parameters that have led to landslides in
the past [24,26,31]. Hence, quantitative predictions of the susceptibility are made by identi-
fying areas where similar background conditions occur. Several statistical approaches, such
as: frequency ratio [30,42–45], weights of evidence [22,43,45,46], certainty factors [46,47],
evidential belief function [48,49], statistical index [43,50,51], index of entropy [52,53], lo-
gistic regression [18,29,42,45,51,54], and multivariate adaptive regression spline [54,55]
were frequently used for landslide susceptibility mapping, producing reliable results. In
addition, in the last decade, machine learning algorithms were frequently applied for
landslide susceptibility analysis, such as: artificial neural network [29,32,42,45,56,57], maxi-
mum entropy [54,58,59], random forest [44,60,61], support vector machine [32,57,59,62–64],
naïve Bayes [41,62,65], neuro-fuzzy [63,66], boosted regression tree [44,67], kernel logistic
regression [57,68], decision trees [45,63], classification and regression tree [44,54,61], and
alternating decision trees [68].

The spatial distribution of landslides is linked to the interaction of various geo-
environmental factors, such as geological, soil, land cover/use, morphological, hydro-
logical and climatic features, which can contribute in different manner for the landslide
susceptibility modeling in a territory [69–72]. A review of the literature shows that there
is no consensus on the choice of predisposing factors for landslide susceptibility mod-
eling [30,59,73–75]. In several study the predisposing factors have selected on the basis
both of the characteristics of the investigated area and of data availability [22,30,41,56,76].
More recently, several authors—e.g., [70,77]—tried to select the more appropriate and
effective predisposing factors among the geo-environmental ones available, because not all
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predisposing factors have an equal importance to evaluate the landside prone-areas. Thus,
the most important predisposing factors must be identify, excluding from the analysis the
least effective because they can reduce the predictive capability of the models.

In this context, the main goals of this research can be summarized as following:
(i) to produce a shallow landslide susceptibility map, employing the GIS-based logistic
regression model; (ii) to understand the predisposing factors that mainly control the spatial
distribution of the shallow landslides.

Logistic regression is a statistical method widely used to parameterize a non-linear
relationship between dependent and independent variables [29,42,45,54]. It is largely
employed if the dependent variable has a binary or dichotomous output. The method also
allowed to assess the relationship between the dependent and independent variables, which
can be continuous and categorical [29,45,54]. Furthermore, the independent variables have
not necessarily a normal distribution [45,47]. Thus, the features of the logistic regression
model make it as an ideal choice for modeling shallow landslide susceptibility.

The study area falls within the Mesima basin, located in the southern Calabria (Italy),
characterized by geological, morphological, and climatic features that are common in many
areas on Calabria region.

2. Study Area

The Mesima basin extends for a surface of 806.4 km2 in Calabria region (southern
Italy) and spanning from 38◦42′35′ ′ N to 38◦19′35′ ′ N of latitude and from 15◦55′17′ ′ E
to 16◦19′35′ ′ E of longitude. (Figure 1). The Mesima basin represents the main fluvial
catchment of the central part of the Calabria and its mouth flows in the Tyrrhenian sea on
the south area of the Capo Vaticano promontory (Figure 1). The basin area is dominated
by a hilly landscape on the central and western side, while, high mountains of Serre and
Aspromonte Massifs characterize the eastern border. Elevation in the area ranges from 0 m
to 1275 m a.s.l., with an average value of 400.5 m (standard deviation = 287.7 m). Slope
gradient, computed from a 5 × 5 m DTM, ranges from 0◦ to 78.2◦, with a mean value of
13.8◦ and a standard deviation of 11.1◦ [78].

Figure 1. Location of study area.
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The annual precipitation ranges between 780 and 1890 mm/year, proceeding from
the coast toward the internal mountainous area, with an average annual value of about
1140 mm. Rainfalls are most abundant from October to March, during which landslides
and water erosion processes are common [7,21,78,79].

From geo-structural point of view, the study area is located within the central sector
of the Calabrian–Peloritan arc (CPA) [80,81]. The CPA is a portion of the central Mediter-
ranean orogen extruded from the oceanic crust of the Ionian Basin during the final phase
of the Africa–Europe collision [82]. The CPA is constituted by nappes of Jurassic to Early
Cretaceous ophiolite-bearing sequences, overlying Hercynian and pre-Hercynian crys-
talline basement, partially affected by Alpine metamorphism [83]. Cenozoic sedimentary
sequences cover part of the oldest terrenes [80,84].

The geodynamic and tectonic evolution of the CPA is mainly related to a prevalent
compressional tectonic movement linked to the subduction process involving the African
paleomargin [85]. Since the Lower-Middle Pleistocene, extensional processes, represented
by NE–SW, N–S, and E–W tectonic lineaments [85–87], were accompanied by a strong
regional uplift [88–90]. The high uplift rates are responsible both of reliefs with high erosive
energy and of continuous rejuvenation of the hydrographic network [21].

The lithology of the Mesima basin area [80] is dominated by Plio-Pleistocene sedimen-
tary deposits that partially cover the Paleozoic plutonic rocks or directly lie on the Miocenic
sedimentary succession. Silty clay deposits of batial environment, overlain by sandwave de-
posits and sandy turbidite (Pliocene in age), characterize the upper sedimentary sequence
that, locally, is covered by a Pleistocenic conglomerate. The lower sequence is constituted
by evaporitic limestones (Miocene in age) that overlap, in discontinuity, on the crystalline
basement make up of gneiss and granite rock masses (Paleozoic in age). The crystalline
basement is involved in ancient severe weathering processes [91,92], causing widespread
landslides [10,93]. Finally, Quaternary deposits, constituted by eluvial–colluvial layers
(Holocene in age), unconformably overlies on the sedimentary marine deposits or, directly,
on the crystalline basement.

The morphology of the study area is mainly controlled by structural setting, lithology,
and attitude of bedding [78,94]. Indeed, in the areas constituted by soft sediments the
landscape is characterized by rounded hilly morphology and wide valleys; while, in the
areas dominated by harder rocks the landforms are more rugged and the valleys are
narrow and deep. Along the main valleys of the basin, many orders of fluvial terraces were
developed [94].

In according to the USDA classification [95], the soils developed in the studied area
were classified mainly as Inceptisols and Entisols and secondly by Alfisols [96,97]. Soil
depth range from few decimeters to more than 1.5 m and the pedoclimatic regime is xeric
and thermic, shifting to udic and mesic in the mountain area [96].

The morpho-structural setting, the high weathering processes affecting the crystalline
rocks and the climate regime make the studied area prone to intense erosion and landslide
phenomena, both shallow and deep-seated [7,78,88,98].

3. Materials and Methods

The main process for the construction of a landslide susceptibility model is the gath-
ering and designing of a geo-spatial database, which is constituted essentially by two
datasets [69]. The first dataset represents the landslide inventory map. The second one
is related to landslide predisposing factors. Landslide susceptibility modeling needs a
clear understanding of the relationship between the spatial distribution of the landslides
and the landslide predisposing factors [24,31]. Data collected and methodologies used
in the present study were schematically summarized in Figure 2, which includes the fol-
lowing steps: (1) preparing a shallow landslide inventory map; (2) selecting appropriate
landslide predisposing factors; (3) modeling shallow landslide susceptibility; (4) assessing
relative contribute of the landslide predisposing factors; (5) generating susceptibility map;
(6) assessing prediction accuracy of the susceptibility model and related map.
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Figure 2. Schematic flowchart adopted in the current study.

QGIS 3.16 software was employed for the management and collection of the data, as
well as to carry out the shallow landslide susceptibility map; while the logistic regression
analysis was performed using the IBM SPSS Statistics software (v. 26).

3.1. Shallow Landslide Inventory Map

The quality of the landslide inventory affects the results of landslide susceptibility
prediction. This study uses shallow landslides triggered mainly by intense rainfall events
in the time ranging between 2000 and 2019. The landslide inventory map (Figure 3a) was
prepared through a combination of orthophotos, dating to 2001 (1:10,000 scale) and to
2008 (1:5000 scale), downloaded from the website of the Cartographic Center of Calabria
region (http://geoportale.regione.calabria.it/opendata, accessed on 30 November 2020)
and Google Earth satellite images available from 2010 to 2019. In addition, several field
surveys were carried out between 2019 and 2020 in order to integrate and validate the
data obtained by interpretation of the orthophotos and satellite images. The recognized
shallow landslides were mapped in a point format, representing the center of the source
area. A total of 1511 shallow landslides were identified, corresponding to a landslide
density of about 1.9 landslide/km2. The landslide area ranges from few square meters
(about 20 m2) to more than 1000 m2; whereas, the landslide width and length range from
5 to 20 m and from 5 to 70 m respectively. In the study area, field observation revealed that
landslide types are mainly earth-slide, earth-flow, and slide-earth flow [99]. Slide-earth
flows are landslides that trigger as slides and then evolve into flows. Therefore, they show
the characteristics of slide types (most commonly rotational) in the upper part, whereas
the transport and accumulation areas are more similar to earth flows. In some events, the
accumulation zones ending with fan-shaped toes. In addition, it was observed that the
failure surface of the shallow landslides was commonly located at the soil-bedrock contact

http://geoportale.regione.calabria.it/opendata


Geosciences 2021, 11, 333 6 of 28

(2–3 m deep), sometimes involving portions of the weathered bedrock. In many cases these
shallow landslides caused damage to many buildings and roads (Figure 3b).
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The split of the dataset is of importance to verify the performance of the susceptibility
model [100]. Based on existing literature reviews e.g., [29,44,46,56,59,71], to construct and
validate the shallow landslide susceptibility model, the landslide inventory was randomly
partitioned into two groups: a training set (70%, equal to 1058 landslides) and a validation
set (30% equal to 453 landslides). In addition, an equal number (1511) of non-landslide
point locations were randomly created in areas without shallow landslides; hence, the
70% and the 30% of the points were allocated to the training and verification datasets,
respectively. Values equal to 0 and 1 were assigned to non-landslide and landslide areas
respectively. Furthermore, the training dataset was also used to identify the appropriate
landslide predisposing factors for the susceptibility analysis.

3.2. Shallow Landslide Predisposing Factors

The occurrence of shallow landslide phenomena is closely influenced by the interplay of
various geological, topographic, hydrological, and environmental factors [19,44,69,101–103].
Therefore, an important step to assess the landslide susceptibility is the selection of the
predisposing factors, the understanding of their combined effects and the relative im-
portance of the selected factors on landslides distribution. There is no common guiding
principle for selecting the predisposing factors [30]. On the basis of the literature review,
of the characteristics of the study area and of data availability, a total of 18 predisposing
factors were considered in the study area for the analysis of shallow landslide susceptibility
(Table 1). The predisposing factors include lithology, distance to faults, fault density, soil
texture, soil bulk density, soil erodibility, distance to streams, drainage density, elevation,
slope gradient, aspect, local relief, plan curvature, profile curvature, topographic position
index (TPI), topographic wetness index (TWI), steam power index (SPI), and land-use.

Table 1. Data layers of the spatial database for the predisposing factors.

Predisposing Factor Data Source Format

Lithology Geological Map of Calabria (Italy), 1:25,000 (CASMEZ 1967) Vector
(polygons)

Distance to faults
Derived from Geological Map of Calabria (Italy) 1:25,000 (CASMEZ 1967) and vector layer

of ITHACA Catalogue (2019)
(http://sgi1.isprambiente.it/geoportal/catalog/main/home.page, accessed on

10 December 2020)

Vector
(lines)Fault density

Land use
Corine Land Cover map of Italy, scale 1:100,000 (ISPRA, 2018),

(http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/corine-land-cover,
accessed on 13 February 2021)

Vector
(polygons)

Soil texture Soil map of Calabria (Italy), scale 1:250,000 (Calabria region, 2003)
Vector

(polygons)Soil bulk density

Soil erodibility Soil erosion risk map of Calabria (Italy), scale 1:250,000—Calabria region, 2005 Vector
(polygons)

Distance to streams
Derived from vector layer of drainage network of Calabria (Italy), Cartographic

Center of Calabria region (http://geoportale.regione.calabria.it/opendata, accessed on
30 November 2020)

Vector
(lines)Drainage density

Elevation

Derived from digital elevation model (DEM), with 5 m pixel size—Cartographic
Center of Calabria region (http://geoportale.regione.calabria.it/opendata, accessed on

30 November 2020)
Raster

Local relief
Slope gradient
Slope aspect

Plan curvature
Profile curvature

TPI
TWI
SPI

http://sgi1.isprambiente.it/geoportal/catalog/main/home.page
http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/corine-land-cover
http://geoportale.regione.calabria.it/opendata
http://geoportale.regione.calabria.it/opendata
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The ancillary data used for the construction of the geolithological and fault lineaments
maps were: the geological map of the Calabria region at scale 1:25,000, ITHACA Catalogue
(available at http://sgi1.isprambiente.it/geoportal/catalog/main/home.page, accessed
on 10 December 2020), photo interpretation and field surveys (Table 1). The lithotypes crop-
ping out in the study area were grouped into 8 lithological classes as following (Figure 4a):
alluvial deposits (Holocene), eluvial/colluvial deposits (Holocene), conglomerates and
sands (Pliocene), sands and sandstones (Pliocene), silty clays (Pliocene), evaporitic lime-
stones (Miocene), gneiss (Paleozoic), and granites (Paleozoic). The distance to faults was
calculated by using the Euclidean distance (Figure 4b); whereas, the fault density map
(Figure 4c) was elaborated by QGIS 3.16 software using the kernel density algorithm with
a search area of 1 km2.

Figure 4. (a) Lithology map (Legend: 1 alluvial deposits—Holocene; 2 eluvial/colluvial deposits—
Holocene; 3 silty clays—Pliocene; 4 conglomerates and sands—Pliocene; 5 sandstones—Pliocene;
6 evaporitic limestones—Miocene; 7 gneiss—Paleozoic; 8 granite—Paleozoic); (b) distance to fault
map; (c) fault density map; (d) land use map (Legend: 1—artificial and/or urban areas; 2—arable ar-
eas; 3—heterogeneous agricultural areas; 4—fruit and olive grove areas; 5—scrub and/or herbaceous
areas; 6—forest areas); (e) Soil texture map (Legend: 1—clay loam; 2—loam; 3—silty loam; 4—sandy
clay loam; 5—sandy loam; 6—loamy sand; 7—sand); (f) soil bulk density map; (g) soil erodibility
map; (h) distance to streams map; (i) drainage density map.

http://sgi1.isprambiente.it/geoportal/catalog/main/home.page
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The land use map was extracted by the Corine Land Cover map of Italy (scale
1:100,000), downloaded from website of ISPRA (http://www.sinanet.isprambiente.it/
it/sia-ispra/download-mais/corine-land-cover, accessed on 13 February 2021). In the
study area land-use classes were detected as following: forest areas, scrub and/or herba-
ceous areas, fruit and olive grove areas, heterogeneous agricultural areas, arable areas,
artificial, and/or urban areas (Figure 4d).

The predisposing factors related to soil features, such as soil texture and soil bulk
density (Figure 4e,f), were obtained from the data enclosed in the digital soil map of
Calabria (scale 1:250,000) [97]. Instead, the data concerning the soil erodibility factor
(Figure 4g) are associated with the soil characteristics and include: texture, organic matter
content, soil structure, and permeability. These data were extracted from soil erosion risk
map of Calabria (scale 1:250,000) [104].

The drainage network data, available on the website of the Cartographic Center of
Calabria region (http://geoportale.regione.calabria.it/opendata, accessed on 30 Novem-
ber 2020), were used to extract the following predisposing factors: distance to streams
and drainage density (Figure 4h,i). In particular, the distance to streams was calculated
by using the Euclidean distance; instead, the drainage density was defined considering
the total length of stream network per unit area (1 km2 in this study). This procedure was
performed through the line density analysis tool in QGIS 3.16 software.

The topographic factors such as: elevation, slope gradient, aspect, plan curvature,
profile curvature, TPI, TWI, and SPI were derived by a digital elevation model (DEM) with
a spatial resolution of 5 × 5 m (Figure 5), using the SAGA-GIS software [105]. The used
DEM was downloaded from the website of the Cartographic Center of Calabria region
(http://geoportale.regione.calabria.it/opendata, accessed on 30 November 2020). The map
of local relief (Figure 5d), which highlights the maximum difference in height for unit area,
was obtained from DEM through the subtraction of the elevation maximum value from the
minimum one within a moving window sized 1 km2 [106,107].

All the data layers were converted into a raster format, with a resolution of 5 × 5 m
pixel size, useful to the shallow landslide susceptibility analysis. A statistical description of
the continuous predisposing factors is shown in Table 2.

Table 2. Descriptive statistics of the continuous predisposing factors.

Predisposing Factors Min Max Mean S. Dev.

Distance to faults 0.00 7237.60 808.80 997.60
Fault density 0.00 2.75 0.41 0.51

Soil bulk density 1.05 1.52 1.35 0.11
Soil erodibility 0.01 0.08 0.03 0.02

Distance to streams 0.00 1960.60 130.40 164.70
Drainage density 0.00 11.70 6.10 1.90

Elevation 0.00 1275.00 402.90 287.70
Slope gradient 0.00 78.20 14.10 11.10

Local relief 0.40 630.10 285.90 117.10
Plan curvature −0.27 0.19 0.00 0.01

Profile curvature −0.31 0.29 0.00 0.02
TPI −41.67 36.98 0.02 5.83
TWI 0.00 25.64 6.14 2.23
SPI 0.00 1965.40 5.82 9.75

http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/corine-land-cover
http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/corine-land-cover
http://geoportale.regione.calabria.it/opendata
http://geoportale.regione.calabria.it/opendata
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Figure 5. (a) Elevation map; (b) slope gradient map; (c) slope aspect map; (d) local relief map; (e) plan curvature map;
(f) profile curvature map; (g) TPI map; (h) TWI map; (i) SPI map.

3.3. Shallow Landslide Susceptibility Modeling
3.3.1. Multi-Collinearity Analysis

Before to use the predisposing factors for shallow landslide susceptibility modeling
(SLSM), a multi-collinearity analysis was performed both to exclude the highly correlated
predisposing factors from landslide susceptibility analysis and to avoid any bias in model
results. Multi-collinearity is defined as a condition in which two or more independent
variables, in a multiple regression model, are linearly correlated. Multi-collinearity problem
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may reduce the capability of model [65,108]. In order to detect the multi-collinearity among
the 18 predisposing factors used in this study, the tolerance (TOL) and variance inflation
factors (VIF) were calculated [71]. Values of VIF > 10 and TOL < 0.1 generally indicate
serious problems of multi-collinearity [71]. Therefore, predisposing factors with VIF values
more than 10 and TOL values less than 0.1 must be excluded from the susceptibility
modeling [29,109]. The multi-collinearity analysis was carried out by the SPSS software.

3.3.2. Logistic Regression Analysis

Logistic regression (LR) is a generalized linear model widely used for mapping land-
slide susceptibility [18,29,42,54,110]. The aim of LR is to find the best model to describe
the relationship between a dependent variable and a set of independent variables [109].
The dependent variable is dichotomous, whereas the independent variables can be contin-
uous, or discrete, or a combination of the two types and they have not always a normal
distribution. In this study, the dichotomous variables indicate the presence or absence of a
landslide (1 landslide and 0 non-landslide), instead the independent variables represent
the 18 landslide predisposing factors Figures 3 and 4. Therefore, the LR analysis allows
to assess the spatial probability that landslide event occurring in an area [18,42]. The
probability values range from 0 (no occurrence) to 1 (occurrence).

The LR function can be expressed as

P =
1

(1 + exp−z)
(1)

z = a + b1x1 + b2x2 · · ·+ bnxn (2)

where P is the probability of a landslide occurrence, z represents the weighted linear
combination of the independent variables, a is the constant or intercept, xi (i = 1, 2, . . . n)
are the independent variables and bi (i = 1, 2, . . . n) are the regression coefficients of the
independent variables.

To calculate the coefficients of each independent variable (predisposing factors) the
maximum likelihood technique was used [111]. Subsequently, z is transformed by means
of Equation (1) into a logit variable (the natural log of the odds of presence or absence).
Coefficients are expressed in log units; if a coefficient is positive, its transformed log value
will be greater than one, meaning that the modeled event is more likely to occur. If a
coefficient is negative, the odds of the event occurrence decrease; a zero (0) coefficient has a
transformed log value of 1, meaning that this coefficient does not change the odds of the
event one way or the other [112].

The LR model allows the integration of both continuous and categorical independent
variables. In this study, continuous data such as: topographical predisposing factors, soil
bulk density, soil erodibility, fault density, distance to faults, drainage density and distance
to streams were used in LR analysis in their original format to avoid altering the state and
information present in the predisposing factor maps. However, the categorized factors
such as: lithology, soil texture, land use, and aspect were converted to continuous variables
through the computation of the respective landslide frequency. Landslide frequency was
expressed as the ratio between the number of shallow landslides and the area of the class
of each predisposing factor (Table 3). Using landslide frequency to transform the nominal
variables to numeric variables can avoid the creation of an excessively high number of
dummy variables and it allows to evaluate the so-called ‘previous knowledge’ of landslide
susceptibility [113].
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Table 3. Categorical predisposing factors and related landslide frequency values used in the logistic regression analysis.

Predisposing Factors Class
Area
(a)

Landslide
Training
Set (b)

Landslide
Frequency (b/a)

km2 Count Count/km2

Lithology

Alluvial deposits (Holocene) 91.60 32 0.35
Eluvial/colluvial deposits (Holocene) 27.32 16 0.59
Conglomerates and sands (Pliocene) 199.01 192 0.96

Sandstones (Pliocene) 95.08 171 1.80
Silty clays (Pliocene) 153.68 279 1.82

Evaporitic limestones (Miocene) 13.54 7 0.52
Gneiss (Paleozoic) 12.33 33 2.68
Granite (Paleozoic) 213.84 328 1.53

Soil texture

Clay loam 12.06 13 1.08
Loam 360.77 290 0.80

Silty loam 59.48 22 0.37
Sandy clay loam 7.64 4 0.52

Sandy loam 234.91 407 1.73
Loamy sand 120.17 322 2.68

Sand 11.38 0 0.00

Land-use

Artificial and/or urban areas 31.63 38 1.20
Arable areas 110.20 84 0.76

Heterogeneous agricultural areas 188.17 208 1.11
Fruit and olive grove areas 224.08 220 0.98

Scrub and/or herbaceous areas 15.97 62 3.88
Forest areas 236.36 446 1.89

Slope aspect

Flat 1.08 0 0.00
North 214.74 231 1.08
East 137.61 203 1.48

South 209.16 410 1.96
West 243.61 214 0.88

By performing LR analysis on the training dataset, using stepwise logistic regression
model implemented in SPSS 26.0 software, the regression coefficient for each predisposing
factor was calculated. The model fitting to the observed data was evaluated by computing
the values of the Cox and Snell and Nagelkerke pseudo-R2 in addition to the statistic−2LL.

The logistic regression component of the software SPSS also provides the results of
the model chi-square test, which allows to assess the global significance of the regression
coefficients. The significance was also evaluated individually for each independent variable
incorporated in the model by means of the Wald test [112]. Afterwards, the regression coeffi-
cients of the predisposing factors were imported in GIS and by using Equations (1) and (2),
the shallow landslide susceptibility map was performed.

There are different methods of classifying the susceptibility values, which are inte-
grate into the GIS software. Hence, in the present study, four classification systems (i.e.,
natural breaks, equal interval, quantile, and geometric interval) were tested to draw the
best shallow landslide susceptibility map. This comparative evaluation allowed us to
identify which susceptibility maps are similar and which best define the shallow landslide
susceptibility distribution in the study area. Subsequently, the map that best matched the
information was chosen.

3.3.3. Validation of Susceptibility Model

The model validation phase constitutes one of the most important issues in landslide
susceptibility analysis [114]. In this study, the goodness-of-fit (assessment of the model
accuracy based on the training subset) and predictive skill (model accuracy based on the
validation subset) of the SLSM were evaluated through the following elements: confusion
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matrix and related statistic indexes, receiver operating characteristic (ROC) curve, area
under curve (AUC), and the kappa coefficient [114–116]. The confusion matrix shows the
amount of True Positives (TP), i.e., pixels predicted unstable and observed unstable (areas
with landslides), True Negatives (TN), i.e., pixels predicted stable and observed stable
(areas without landslides), False Positives (FP), i.e., pixels predicted unstable but observed
stable and False Negatives (FN), i.e., pixels predicted stable but observed unstable.

The ROC curve measures the goodness-of-fit and the prediction performance of the
model [115,116] through plotting, for different susceptibility threshold values, the TP rate
(Sensitivity) and the FP rate (1-Specificity). The sensitivity and specificity were calucaleted
using the equations

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

FP + TN
(4)

The AUC varies from 0.5 (diagonal line) to 1, with higher values indicating a better
predictive capability of the model. Hosmer and Lemeshow [112], on the basis of the
computed AUC values, classified the predictive performance as: acceptable for AUC ≥ 0.7,
excellent for AUC ≥ 0.8, and outstanding for AUC ≥ 0.9. ROC curves were drawn both for
the validation and training datasets, in order to evaluate predictive performances of the
models and to further investigate their fit to the training observations.

The kappa coefficient was calculated using the components of the confusion ma-
trix [117]. The kappa coefficient (K) was used to evaluate the reliability of the model to
classify the landslide pixels [109]. It was calculated as the proportion of the observed
agreement beyond that occurring by chance, using the equation

K =
Pobs − Pexp

1− Pexp
(5)

where Pobs is the proportion of pixels classified correctly as landslide or non-landslide and
Pexp is the proportion of pixels for which the agreement is expected by chance [118]. Pobs
and Pexp were calculated as

Pobs =
TP + TN

n
(6)

Pexp =
(TN + FP)× (TN + FN) + (FN + TP)× (FP + TP)√

N
(7)

where TP (true positive) and TN (true negative) are the numbers of pixels classified correctly
as landslide occurrence and no landslide occurrence, respectively; FP (false positive) and
FN (false negative) are the numbers of pixels classified incorrectly in the confusion matrix;
n is the proportion of pixels classified correctly as landslide or not landslide; N is the
total number of pixels. In agrement to Landis and Koch [119] the performance of a model
based on the kappa coefficient can be classified as: ≤0 = poor, 0–0.2 = slight, 0.2–0.4 = fair,
0.4–0.6 = moderate, 0.6–0.8 = substantial, and 0.8–1 = almost perfect.

3.3.4. Relative Importance of Predisposing Factors

A sensitivity analysis was performed using jackknife-based test to detect the contribute
of each predisposing factor in the shallow landslide susceptibility model [57,120,121]. Sensi-
tivity analysis plays an important role in modeling process, because it helps to understand
how model results are affected by input data. In the jackknife test the importance of a
certain predisposing factor is estimated by excluding each factor in turns in the model run
constructed and using the remaining factors. The accuracy of the models were performed
by means the computation of AUC value [58,120]. The sensitivity analysis, performed
using the training set data, allowed to identify the relative importance (RI) of each predis-
posing factor in the implementation of the landslide susceptibility model, which includes
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all predisposing factor [120,122]. To compute the RI of each predisposing factor, used in
the susceptibility model, the following equation was employed [58]

RI =
(AUCall − AUCi)

AUCall
× 100 (8)

where AUCall is the value of AUC computed from the prediction model using all predispos-
ing factors, while AUCi represents the AUC value when ith factor was excluded from the
computation of model. Therefore, to higher RI value corresponds a greater influence of the
excluded factor in the susceptibility model [122].

4. Results
4.1. Detection of Multi-Collinearity between Predisposing Factors

One of the important steps in the landslide susceptibility model is the selection of
the predisposing factors and to identify which are redundant with respect to others [75].
The outcomes of the multi-collinearity test showed that there are not significant correla-
tions among predisposing factors in the study area, consequently all predisposing factors
were used to building SLSM. The results of multi-collinearity analysis are summarized in
Table 4. The values of TOL and VIF indices for all 18 predisposing factors are >0.1 and <10,
respectively. These results show absence of multi-collinearity problems among them. The
VIF values of the selected predisposing factors range from 1.058 to 3.144, whereas for the
TOL index, the values are included between 0.318 and 0.945 (Table 4).

Table 4. Results of the multi-collinearity analysis between the predisposing factors.

Predisposing Factors
Multi-Collinearity

TOL VIF

Lithology 0.732 1.366
Distance to faults 0.778 1.286

Fault density 0.673 1.486
Land-use 0.637 1.569

Soil texture 0.567 1.763
Soil bulk density 0.462 2.164
Soil erodibility 0.570 1.755

Distance to streams 0.659 1.518
Drainage density 0.454 2.204

Elevation 0.318 3.144
Slope gradient 0.346 2.890
Slope aspect 0.920 1.087
Local relief 0.323 3.097

Plan curvature 0.717 1.395
Profile curvature 0.722 1.384

TPI 0.734 1.362
TWI 0.451 2.218
SPI 0.945 1.058

4.2. Assessment of Shallow Landslide Susceptibility

The SLSM, within the study area, was computed through LR considering the 18
predisposing factors (lithology, distance to faults, fault density, land use, soil texture, soil
bulk density, soil erodibility, distance to streams, drainage density, elevation, slope gradient,
slope aspect, local relief, plan curvature, profile curvature, TPI, TWI, and SPI) and the
training dataset, consisting of the 70% of the landslides and no-landslides. At this regard,
the SPSS software package was employed. The SLSM was performed by applying the
forward stepwise logistic regression algorithm. The result achieved through Hosmer and
Lemeshow test highlighted that the goodness of fit of the LR model is acceptable because
the significance of Chi-square is larger than 0.05 (Table 5). In addition, the values of Cox
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and Snell R2 (0.575) and Nagelkerke R2 (0.767) confirmed that the LR model performed
very well.

Table 5. Overall statistics of the logistic regression model.

Hosmer and Lemeshow Test −2 Log Likelihood Cox and Snell
R2

Nagelkerke
R2

Chi-square df Sig.

149.822 8 0.137 1122.742 0.575 0.767

The regression and standardized coefficients obtained by LR analysis are listed in
Table 6. The sign of the values of regression coefficient indicates if the predisposing factor
is positively or negatively correlated to shallow landslide occurrence. These coefficients
were then used to produce the shallow landslide susceptibility map of the study area. This
map was constructed implementing Equation (1) in GIS software. For each pixel of the
study area, the values of the predisposing factors were multiplied with their respective
regression coefficients (bi), then they were summed up and added to the estimated constant
(a), so the susceptibility of shallow landslide was estimated. The values of susceptibility
range between 0.001 and 0.988, with a mean value of 0.333 and a standard deviation of
0.327. The pixels with susceptibility values closer to 1 denotes a high probability of shallow
landslides occurrence, whereas the pixels with values closer to 0 indicate a low probability
of shallow landslide occurrence.

Table 6. Coefficients and test statistics of the predisposing factors used in the logistic
regression model.

Predisposing Factor b S.E. Wald df Sig. Exp(b)

Lithology 0.462 0.127 13.196 1 0.000 1.588
Distance to faults 0.208 0.202 1.051 1 0.031 1.231

Fault density 0.441 0.149 8.747 1 0.003 1.555
Land-use 0.061 0.155 0.155 1 0.044 1.063

Soil texture 0.589 0.136 18.686 1 0.000 1.803
Soil bulk density −3.781 1.217 9.652 1 0.002 0.023
Soil erodibility 1.532 0.507 9.092 1 0.003 4.626

Distance to streams 0.347 0.135 6.611 1 0.010 1.415
Drainage density −0.042 0.057 0.544 1 0.046 0.959

Elevation −0.003 0.001 21.370 1 0.000 0.997
Slope gradient 0.167 0.011 248.296 1 0.000 1.182
Slope aspect 0.352 0.182 3.756 1 0.026 1.422
Local relief 0.005 0.001 26.061 1 0.000 1.005

Plan curvature −6.918 1.685 1.019 1 0.033 0.001
Profile curvature 1.918 0.508 14.258 1 0.000 6.808

TPI −0.024 0.015 2.486 1 0.011 0.977
TWI −0.011 0.063 0.034 1 0.009 0.989
SPI 0.007 0.010 0.432 1 0.005 1.007

Constant (a) −1.262 0.445 0.506 1 0.005 0.283
b = coefficient; S.E. = Standard error of estimate; Wald = Wald chi-square values; df = degree of freedom;
Sig. = significance; Exp(b) = exponential coefficient.

Thereafter, the shallow landslide probability values, computed for each pixel, were
classified into five classes of susceptibility (i.e., very low, low, moderate, high, and very
high). To define the best method to categorize the susceptibility values, a comparative anal-
ysis of four classification methods (natural break, equal interval, quantile, and geometric
interval) was carried out. Consequently, the map that best matched the informations in the
study area was chosen. The Pearson correlation coefficient was used as a first evaluation of
the statistical significance of the difference in the susceptibility classification between each
pair of methods. Table 7 shows that all classification methods have high correlations, the
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correlation values ranges from 0.79 to 0.96. The lowest correlation was obtained by com-
parison between equal interval and quantile methods; whereas, the highest correlation was
detected by comparison of the maps obtained by quantile and geometric interval. Overall,
the high values of correlation, obtained by the four classification methods, highlights a
good similarity among them to classify the susceptibility values.

Table 7. Pearson’s correlation among the susceptibility maps obtained by using four different
classification methods.

Classification
Methods Natural Break Equal Interval Quantile Geometric

Interval

Natural break 1.00 0.95 0.86 0.88
Equal interval - 1.00 0.79 0.81

Quantile - - 1.00 0.96
Geometric

interval - - - 1.00

Significant at p < 0.01.

The percentage values of shallow landslide susceptibility classes obtained by the
four classification methods are summarized in Figure 6. The cross-comparisons of the
susceptibility maps, in terms of the coverage differences among the recognized classes
(Figure 6), indicate a marked difference of the employed classification methods. In particu-
lar, considerable differences were observed for the areal distribution mapped as very low
susceptibility; whereas, the zones mapped with very high susceptibility are more similar.
The outputs from the overlay of the susceptibility maps with the shallow landslide training
and validation datasets are presented in Figure 6 as well. For the training dataset, the
four maps generally display a gradual increase in the percentage of landslide cells ranging
from ‘very low’ to ‘very high’ susceptibility class. However, the shallow landslides of both
training and validation sets fall in the very high susceptibility class (Figure 6). In addition,
landslide density was calculated to evaluate the best classification method to draw the
shallow landslide susceptibility map of the study area [123,124]. The landslide density
was computed using the ratio between the percentages of total shallow landslides and the
percentages of each susceptible class. Obviously, greater susceptible classes should have
higher values of landslide density in reliable landslide susceptibility maps [124]. Overall,
the achieved outcomes showed lower values of landslide density in the very low and low
susceptibility classes, and high landslide density in the very high susceptibility class for all
the classification method (Figure 6). Therefore, the results indicate that the natural break
is the most robust method for the classification of susceptibility map, because it showed
the highest occurrence both of shallow landslides and of highest value of landslide density
in the very high susceptibility class (Figure 6). Consequently, the final shallow landslide
susceptibility map was realized according to the selected classification method (Figure 7a).

The relative distribution of the shallow landslide susceptibility classes is show in
Figure 6. The data display that most of the study area was predicted with a very low (44.2%)
or low (17.5%) susceptibility to shallow landslide; whereas, a minor area was classified as
having high (11.5%) or very high (14.5%) susceptibility (Figure 6). The visual analysis of
the map shows that high and very high susceptible areas are located mainly along the left
side of the Mesima basin; instead, the valley floor is characterized by susceptibility values
ranging from very low to low (Figure 7a).
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Figure 6. Comparison of the classification methods tested to select the best classification method for draw the shallow
landslide susceptibility map.

Figure 7. (a) Shallow landslide susceptibility map of the study area, obtained by the natural break classification method;
(b) ROC curve and AUC value of training set; (c) ROC curve and AUC value of validation set.

The overlapping between susceptibility map and shallow landslides inventory al-
lowed to verify the spatial distribution of the shallow landslides in the five susceptibility
classes (Figure 6). The results showed that most of the shallow landslides (82.4%) occur in
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areas with high and very high susceptibility classes; whereas, only the 8.7% of the shallow
landslides occurred in low and very low susceptibility classes. The remaining 8.9% of the
considered shallow landslides fall in the moderate susceptibility class.

4.3. Performance of the Model and Accuracy of the Susceptibility Map

The validation of SLSM and related susceptibility map were done with the help of
several statistic indexes and ROC curve analysis [114,115,117], using training and validation
datasets. The statistical indices of the training dataset give useful information of the
reliability of the SLSM; instead, the statistical indices of the validation dataset provide well
indication of the predictive capabilities of the SLSM [125]. The results of training phase
showed that the LR model, with a cut-off of 0.5, classifies correctly the 90.5% of shallow
landslides (Sensitivity index) and the 88.9% of no-shallow landslide (specificity index).
The overall predicted accuracy was equal to 89.7% (Figure 8a), showing a high degree of
fit of the susceptibility model with the training dataset. The value of Kappa coefficient,
calculated for the training dataset, was equal to 0.79, denoting a substantial agreement
between the observed and predicted shallow landslides [119].

Figure 8. Confusion matrix and statistical indexes analysis of shallow landslide susceptibility model
using training dataset (a) and validation dataset (b) TP = true positives, TN = true negatives, FP = false
positives, and FN = false negatives for training and validation datasets.

The results of the prediction capability of the SLSM are summarized in Figure 8b.
It could be observed that the accuracy of the LR model was 87%, highlighting a high
prediction results. Sensitivity of the model was 89.5%, indicating that the amount of
the shallow landslides, accurately predicted, is 89.5%; whereas, the value of specificity
was 84.3%, which indicates that the amount of the no-shallow landslide pixels accurately
predicted is 84.3%. The Kappa coefficient is 0.74, showing a high performance of the SLSM
(Figure 8b).

Determination of the accuracy of the SLSM and related susceptibility map were also
achieved by plotting ROC curves and calculating their AUC values. The ROC curve was
plotted both for the training and validation datasets (Figure 7b,c). The ROC curve of the
training dataset indicates the success rate of the model and the reliability of the susceptibil-
ity map; whereas, the ROC curve of the validation dataset estimates the prediction rate and
the accuracy of the susceptibility map. The analysis of ROC curve (Figure 7b,c) displayed
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an excellent performance of the SLSM both for the training and test datasets. In particular,
at a confidence level of 95%, the ROC curve showed an AUC value of 0.94 for the training
set and an AUC of 0.93 for the validation set (Table 8).

Table 8. Results of the area under ROC curve (AUC) analysis.

Area Standard
Error

Asymptotic
Significance

Asymptotic 95%
Confidence Interval

Lower
Bound

Upper
Bound

Training set 0.940 0.005 0.000 0.930 0.951
Validation set 0.930 0.009 0.000 0.913 0.947

4.4. Analysis of the Relative Importance of Predisposing Factors

Utilizing Jackknife test coupled to computation of RI values of each predisposing
factors yielded information on the different contributions of the predisposing factors in
the SLSM. The results of the assessment of RI of the predisposing factors, calculated using
the Equation (8), were showed in Figure 9. All the predisposing factors have positively
contributed for the assessment of the shallow landslides susceptibility in the study area.
The predisposing factors with higher RI values indicate high predictive capability in
shallow landslide susceptibility model and vice versa. The analysis of RI showed that
the slope gradient, with a RI of 9.6%, was the most important factor to control the spatial
distribution of shallow landslides. The second most important factor is TWI (RI = 8.5%),
followed by soil texture (RI = 7.1%) and lithology (RI = 6.3%). The smallest values of RI,
among the 18 predisposing factors, were observed for fault density and SPI, with RI values
equal to 1.5% and 1.1%, respectively (Figure 9). The achieved results demonstrate that all
predisposing factors contributed for the shallow landslide susceptibility modeling in the
study area.

Figure 9. Relative importance of different predisposing factors used in the shallow landslide suscep-
tibility model.
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5. Discussion

An accurate landslide susceptibility mapping is an essential task to evaluate the
landslide hazard, the management and mitigation of risk. The reliability of landslide
susceptibility maps depends both by the quality of available training data and the applied
model [24,25,27,69,102,124]. Training data may also be affected by distribution, size, and
resolution data. In the last two decades, several approaches for assessing landslide sus-
ceptibility were used [29–32,44,57,102,126]. Susceptibility models are mainly driven by
the data given to the algorithm. The choice of which geo-environmental variables can be
used to evaluate the landslide susceptibility is a critical step in any susceptibility model-
ing [40,69,102,127]. For this purpose, a set of 18 predisposing factors such as: lithology,
distance to faults, fault density, land-use, soil texture, soil bulk density, soil erodibility,
distance to streams, drainage density, elevation, slope gradient, slope aspect, local relief,
plan curvature, profile curvature, TPI, TWI, and SPI were selected on the basis both of pre-
vious scientific knowledge and new investigations in the study area [18,22,41,56,69,78,102].
However, the interdependencies of the previously mentioned factors, by applying multi-
collinearity analysis, were tested. The obtained results showed no multi-collinearity among
the predisposing factors, so all factors were used in the susceptibility analysis.

Based on the shallow landslide inventory map, the 70% of the total recognized shallow
landslides were employed to generate the SLSM and the remaining 30% was used for
validation purpose.

The SLSM results showed high accuracy, indeed during the training process the con-
fusion matrix display a percentage correct of 89.7% and 86.8% is the one for the validation
process (Figure 7). The examination of the results shows that the SLSM has high values
both of sensitivity and of specificity. These values testify that the used model identify very
well both the areas affected by shallow landslides and the ones not affected by shallow
landslides. These results may be linked to the correlation between the nature of the model
and the choices of important analysis parameters such as: the number, type, and quality of
predisposing factors, as well as the size of training and validation datasets.

The overall results of the validation process, via ROC analysis, show that the SLSM
supplies excellent AUC values (>0.90), both for the training and the validation datasets,
coupled with high values of kappa coefficient (Figure 7) denote that LR is reliable and
robust method for predicting susceptibility of shallow landslide in the study area. The LR
model, due to flexible and nonlinear characteristics, is able to deal with a wide range of
data, which are non-symmetrical and present complex input–output relationships, typical
in the natural environment [109,128]. This outcome is comparable with recent studies
concerning the high performance of the LR method, its strong capability in handling large
datasets and its efficiency in non-exclusion any predisposing factor during computation
phase of susceptibility [18,29,42,45,128].

The selection of the predisposing factors and their importance values have an impact
on the accuracy of susceptibility zoning of an area. Therefore, many researchers tried
to underline the importance to evaluate the contribution of each predisposing factor on
the distribution of landslides [25,45,70,71,77,103,109,129]. In this study, the influence of
each predisposing factor, used for shallow landslide susceptibility modeling, was tested
by means jackknife test and RI index. The findings suggest that all predisposing factors
contributed positively to implement the SLSM (Figure 8). However, the RI index showed
that each predisposing factor had different importance in the susceptibility model con-
struction. The greatest contribution to shallow landslide occurrence comes from slope
gradient, which has a RI value of approximately 9.6% (Figure 8). Other important factors
were: TWI (8.5%), soil texture (7.1%), lithology (6.4%), and local relief (5.5%). The achieved
results support the previously results obtained in other studies, which showed that the
shallow landslide distribution is highly controlled by morphometric factors and lithology
features [21,25,73,75,103,129–133]. The key role played by slope gradient is related to its
controls on the shear stress of the soil or unconsolidated material, which generally increases
with the rise of slope angle [58,78,133]. The TWI represents an effective hydrological factor
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contributing on shallow landslide susceptibility as well [25]. The TWI helps to distinguish
the areas affected by an increased soil moisture content and water accumulation [56,63]. In
our research, the areas of the watershed identified by values of TWI mid-high (8–20) are
more exposed to shallow landslide occurrence.

Regarding the comparison between shallow landslide distribution and soil texture, the
landslide frequency values are listed in Table 2. The results showed that shallow landslides
mainly occurring on soils constituted by high sand fraction, such as: loamy sand and
sandy loam texture. These soils are more prone to water infiltration during rainfalls and
consequently the probability of shallow landslide occurrence is high [134].

Lithology is considered one of the most important factors in landslide susceptibility
assessments, because it directly affects geomechanical and hydraulic properties of bedrock
and of soil cover [70,135]. The highest values of landslide frequency were achieved in
granitic rocks, gneissic rocks, and silty clays deposits, which are the most prone to shallow
landslides, as summarized in Table 3. The study area is characterized by widespread
granitic rocks affected by intense weathering processes that significantly reduce the rock
strength and facilitate shallow slope failures. These results are in agreement with previous
studies carry out in several areas of Calabria region [9,16,19,50,78,136].

Contrary, the alluvial and eluvial/colluvial deposits, typically occupies flat stable
areas and thus it is not prone to shallow landslide process.

Four classification methods (natural break, equal interval, quantile, and geometric
interval) were used to divide susceptibility map into five classes: very low, low, medium,
high, and very high. The comparison of the four classification methods enabled to deter-
mine the best classification system in terms both of shallow landslide distribution and of
landslide density within each susceptibility class. The Pearson correlation analysis high-
lights a good similarity of the four methods to classify the susceptibility values (Table 7).
Indeed, the obtained four maps show similar identification and classification of the spatial
distribution of the shallow landslide susceptibility (Figure 6). The quantile and geometric
interval methods overestimated the high and very high susceptibility classes of the study
area. While the spatial pattern of the equal interval and natural break maps was very
similar. The natural break method resulted more consistent predicting potential landslides
more efficiently and reliably in the study area. Therefore, the natural break classification
method was selected to output the susceptibility map (Figure 7a). According to this map,
the spatial distribution of the susceptibility classes denoted that high values of susceptibil-
ity were mainly observed along the left side of the Mesima basin. The area is characterized
by a mountain landscape, highly dissected by V-shaped valleys with steep slopes. Granitic
rocks, highly fractured and weathered, frequently mantled by thick regolith materials,
both prone to shallow landslides, dominate in this area [9,10,78]. In addition, several areas
characterized by slopes carved in silty clays lithologies and covered by soils with silty loam
texture, both highly erodible, recorded high and very high shallow landslide susceptibility
values [136]. Instead, low and very low shallow landslide susceptibility values affect more
than 61% of the study area, which is mostly dominated by slope gradient ranging between
0 and 15 degrees (flat areas or gently slopes) and constituted by eluvial/colluvial deposits
and/or alluvial deposit.

The comparison between susceptibility map and shallow landslide inventory map
shows that about 90.9% of the observed shallow landslides occurred in the areas with
susceptibility values ranging from moderate to very high (Table 6). The founded high
percentage confirms the effectiveness of the susceptibility map. Moreover, comparing
Figure 7a to Figure 3a, it was possible calculated that more than 85% of the no-shallow
landslide points (for training and validation sets) are contained in the area classified as
very low and low susceptible.

Overall, the achieved goals testify the reliability and effectiveness of the proposed
model for determining the spatial probability of the future occurrence of shallow landslides
in this sector of the Calabria region. A comparison between our results and other studies
is difficult due to different sampling strategies for training and validation datasets parti-
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tioning, different spatial scales, different sets of predisposing factors. However, taking into
consideration the validation results, in terms of ROC curve and AUC values, our results
are consistent with several previous studies concerning the use of LR model for mapping
the landslide susceptibility, e.g., [18,47,51,72,110,131,137]. Moreover, the used approach
highlights the roles of predisposing factors in the assessment of the shallow landslide
susceptibility, giving useful results for researchers, decision makers, and land planners.

Finally, some assumptions/limitations of this study have to be pointed out. Consider-
ing the time-scale of the analysis and the landslide typology, the landslide inventory does
not include the total number of recorded landslide events within the study area. Selecting
the independent variables to be considered in the model and ranking their importance
can be an effective tool for narrowing down the list of potential predisposing factors to be
included in susceptibility modeling. Concerning the LR model, the choices for the analysis
of independent variables prove to be critical and play a major role in the relative accuracy
of the outcomes. The examination of alternative choices for these independent variables
could lead to different results. Moreover, the applied model estimates the mean degree of
impact of predisposing factors, which may differ locally in different parts of the study area.
In fact, they represent the relation between landslide occurrence and causal factors for the
whole study area without considering the spatial non-stationarity. Further studies are also
to be focused on the exploration of this non-stationarity through the implementation of
“local” models like geographically weighted regression [138].

6. Conclusions

The prediction of the shallow landslide susceptibility is one of the most important
tasks in landslide hazard and risk determination. The reliability of a susceptibility model
depends on the available and accuracy of the data and on the used method.

In this study, LR method was tested for a shallow landslide susceptibility modeling in
Mesima basin, Calabria region (South Italy). Eighteen predisposing factors were considered,
as follow: lithology, distance to faults, fault density, land-use, soil texture, soil bulk density,
soil erodibility, distance to streams, drainage density, elevation, slope gradient, slope aspect,
local relief, plan curvature, profile curvature, TPI, TWI, and SPI.

The performance of the SLSM model was quantitatively evaluated through the ROC
curve analysis and Kappa coefficient. The outcomes showed that LR method gave satis-
factory performance to predict the spatial occurrence of shallow landslides (AUC and K
coefficient in the validation dataset are 0.93 and 0.74 respectively).

Regarding the four classification systems (i.e., natural breaks, equal interval, quantile,
and geometric interval) tested, the natural break is the best method to draw the susceptibil-
ity map of the study area. The obtained susceptibility map is constituted by five classes:
very low, low, moderate, high, and very high susceptibility, showing that high and very
high susceptibility classes enclose the 26% of the total area. Comparing susceptibility
map and shallow landslide inventory map, a satisfactory spatial agreement between the
different classes of susceptibility and shallow landslide distribution was obtained. The
83.1% of the shallow landslides of the training set and 80.8% of the shallow landslides of
validation set were correctly classified, falling in high and very high susceptibility classes.

The results highlighted also that the selection and the incidence evaluation of the
predisposing factors is a key requirement for a valid modeling of landslide susceptibility.
According to the results of RI index, it can be observed that all used predisposing factors
had significant impact on the LR performance. However, the predisposing factors that
more influenced the SLSM were: slope gradient, TWI, soil texture, and lithology.

Overall, the high reliability of the susceptibility map contributes to delineate in detail
the areas with a high probability of future shallow landslides in Mesima basin. Thus, the
achieved goals increase the knowledge of spatial prediction of shallow landslides in a
high risk area of the Calabria region, giving a valuable tool that will can be used by local,
regional and national authorities both for land-use planning as well as for management
and mitigation of the shallow landslide risk.
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However, in the future, other statistical methods and ensemble of machine learning
techniques for landslide susceptibility modeling will be tested in this area.
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