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Abstract: On 3 March 2021, a strong, shallow earthquake of moment magnitude, Mw6.3, occurred in
northern Thessaly (Central Greece). To investigate possible complex correlations in the evolution
of seismicity in the broader area of Central Greece before the Mw6.3 event, we apply the methods
of multiresolution wavelet analysis (MRWA) and natural time (NT) analysis. The description of
seismicity evolution by critical parameters defined by NT analysis, integrated with the results of
MRWA as the initiation point for the NT analysis, forms a new framework that may possibly lead to
new universal principles that describe the generation processes of strong earthquakes. In the present
work, we investigate this new framework in the seismicity prior to the Mw6.3 Thessaly earthquake.
Initially, we apply MRWA to the interevent time series of the successive regional earthquakes in order
to investigate the approach of the regional seismicity at critical stages and to define the starting point
of the natural time domain. Then, we apply the NT analysis, showing that the regional seismicity
approached criticality a few days before the occurrence of the Mw6.3 earthquake, when the κ1 natural
time parameter reached the critical value of κ1 = 0.070.

Keywords: Thessaly earthquake; seismicity patterns; natural time; multiresolution wavelet analysis;
criticality

1. Introduction

On 3 March 2021, an MW6.3 earthquake occurred in northern Thessaly (Central
Greece), close to the cities of Tyrnavos, Elassona and Larisa (Figure 1). The earthquake
occurred in a region that is one of the most seismically active in Greece, mainly character-
ized by normal faulting along NW–SE striking faults, which belong to the Thessaly fault
zone [1–10]. Based on the provided focal plane solutions [11], the mainshock was generated
by the activation of an NW–SE striking normal fault (Figure 1) [12]. The mainshock was
widely felt in the Thessaly basin and in the surrounding areas, from Athens in the south to
the northern borders of Greece.

The Thessaly basin has a well-known history of large earthquakes, with mainshocks
presenting typical magnitudes between 6.0 and 7.0 [3–15]. During the last century, eight
major earthquakes, with magnitudes equal to or larger than 6.0, have occurred in this area.
The M = 7.0, 1954 Sofades earthquake was the most destructive event, resulting in heavy
damages in the broader southern Thessaly region (Papazachos and Papazachou, 2002; [15]).
The M = 6.8, 1957 Velestino earthquake and the M = 6.5, 1980 Almyros earthquake, are two
more significant events, with similarly destructive consequences.
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Strong arguments show that the earthquake generation process can be considered
as a critical point phenomenon that culminates with a large event as some critical point
is approached [16–25]. New findings regarding the complex dynamics that characterize
various geodynamic phenomena illustrate stimulating features in the framework of new
concepts, as that of non-extensive statistical physics [22–25], multiresolution wavelets
analysis [26–28] and of the novel time domain, termed as natural time [29–39].
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Figure 1. Earthquake epicenters of the aftershock sequence of the 3 March 2021, Thessaly earthquake
(yellow star), from 3 March 2021 to 18 April 2021 (M ≥ 2.0). The focal mechanisms of the mainshock
and the largest aftershock are also indicated, along with the regional faults shown with black solid
lines (for details see the text).

The concept of natural time (NT) has been introduced recently to analyze possible
pre-seismic signals [29,30,35]. The analysis of various complex systems in the NT domain
enables the optimal extraction of signal information by reducing the uncertainties related
to the conventional time, as well as the identification of long-range correlations in the
evolution of the system, even in the presence of “heavy tails” [40]. The usefulness of NT
analysis has been discussed in a number of applications to known critical phenomena,
such as fracturing, earthquakes, the 2-D Ising model and 3-D turbulent flow [24,35], and
references therein, and it has been tested experimentally in fracturing experiments in the
laboratory by analyzing acoustic emissions time series [23,41].

Furthermore, wavelet-based methods have been introduced to characterize fractal
signals [42–45] and to overcome effects associated with non-stationarities [46,47], a very
frequent effect in the time dynamics of an earthquake sequence.

The goal of the present work is to test and evaluate the seismicity patterns in terms
of MRWA and NT analyses, as applied in the evolution of seismicity prior to the recent
Mw6.3 Thessaly strong event. The recent upgrading of the regional seismological net-
works [48] provides an accurate catalogue of microseismicity in the area and enables the
application of such methodologies. The earthquake catalogs used herein are taken from the
Hellenic Unified Seismological Network (HUSN) (http://eida.gein.noa.gr/, last accessed
on 27 May 2021), where instruments belonging to the HL (National Observatory of Athens,
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Institute of Geodynamics, 1997) [49] and HT (Aristotle University of Thessaloniki Seismo-
logical Network, 1981) [50] networks provide a complete spatial coverage in the broader
area of Greece, with a magnitude of completeness (Mc) down to 2.0. Figure 2 presents the
seismic activity observed in the region of Thessaly for a period starting in January 2016,
approximately 1900 days before the 3 March 2021 mainshock and within an area of radius,
R = 80 km, around its epicenter. The main objective of this study is to investigate the
applicability of NT analysis, as presented in the regional seismic activity prior to the Mw6.3
Thessaly earthquake, integrated with the results of MRWA applied to the interevent time
series of the successive events, in order to define, with an objective technique, the starting
point for the analysis in the NT domain. The description of seismicity evolution with the
NT parameters, integrated with the results of MRWA, represents a novel framework that
may lead to a better understanding of the evolution of earthquake generation processes.
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Figure 2. The observed seismicity in the Thessaly region between January 2016 and 3 March 2021, in
an area of radius R = 80 km around the mainshock (star).

2. Multiresolution Wavelets Analysis in the Seismicity of Thessaly Region

The temporal evolution of seismicity and the time-scaling properties are of crucial
importance [51–53] for understanding the correlation properties of seismicity [54]. The
analysis of time intervals between successive seismic events can be grouped in exponential
or power laws revealing similar behaviours over different scales [55].

A Wavelet Transform (WT) involves the decomposition of a signal function into
simpler, fixed building blocks at different scales and positions. In a similar way to Fourier
transform (FT), WT operates on a signal and transforms it from the time domain to a
different domain, offering a new representation. In Fourier analysis, the sine and cosine
functions are used as a basis and localized in the frequency domain with a difficulty to
process a function having components that are localized in the time domain. As a result, a
small frequency change in FT produces changes everywhere in this domain. On the other
hand, wavelet functions are localized both in frequency or scale, and in time, via dilations
and translations of the mother wavelet, respectively. This leads to compact representation
of large classes of functions in the wavelet domain. This is one of the major advantages of
WT: an event can be simultaneously described in the frequency domain as well as in the
time domain, unlike the usual Fourier transform where an event is accurately described
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either in the frequency or in the time domain. As a consequence, MRWA of data with
different behaviour on different scales can greatly benefit from the use of WT.

The discrete wavelet transform (DWT) transforms a data vector of length M into a
different vector of the same length. A wavelet basis is characterized by a particular set of
parameters, called wavelet filter coefficients. In practice, DWT is commonly implemented
using dyadic multirate filter banks, which divide the signal frequency band into sub
bands [28]. For a point process such as that of the interevent times sequence, the wavelet
coefficients can be derived from

Wwav
m,n = 2−m/2

L

∑
i=1

tiψ(2−mi− n) (1)

where the scale variable m and the translation variable n are integers, L represents the
total number of interevent times ti analysed and ψ is the wavelet function. The DWT is
evaluated at the points (m, n) in the scale-interval-number plane. Smaller scales correspond
to more rapid variations and, therefore, to higher frequencies.

In the current study, we perform MRWA by examining the standard deviation of
wavelet coefficients as a function of scale, as described from

σwav(m) =

√√√√ 1
N − 1

N

∑
n=1

(
Wwav

m,n −
〈
Wwav

m,n
〉)2 (2)

where N is the number of wavelet coefficients at a given scale m and the brackets indicate
the average among the coefficients at a scale m. Figure 3 presents the interevent times
between two successive events versus the occurrence time of the second event until the
major seismic event, in a region within a circle of radius, R = 80 km, around the epicenter
and a magnitude threshold, Mth = 2.0. The time period that was covered for MRWA of
interevent times spanned from January 2016 until 3 March 2021, when the main event of
Mw6.3 occurred. In Figure 4 the time– earthquake magnitude plot for a radius R = 80 km
around the epicenter and a magnitude threshold, Mth = 2.0 is presented.
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The wavelet choice is dictated by the requirement to identify a rather sharp change in a
possible cyclic sequence. Following the same pre-processing approach as in [28], we tested
several candidate wavelets at small scales up to m = 4 and received quite similar results.
Thus, in the current work, we present results from the analysis using the db4 wavelet.

We investigated the time evolution of the σwav(m), using fixed event number windows
of 16 events shifting through the entire series. The shift between successive windows was
set in two events. Consistently with the length of the time window, we analysed the time
variation of the σwav(m) for lower scales (m = 1 to 4) since the number of available events is
limited. Each calculated value is associated with the time of the last event in the window.
Figure 5 shows a representative set of results for the time evolution of the σwav(m) using
the db4 wavelet with four scales for MRWA, for the seismicity observed in three circles
around the epicenter of the mainshock and within a radius of 30 km, 50 km and 80 km,
respectively.

An initial comment from Figure 5 is the significant temporal variability in the strength
of the multiscale properties of the interevent times. As observed in previous studies [26,27],
before the major event of the seismic sequence a traceable decrease in the temporal evo-
lution of the σwav, m(t) appeared, especially at lower scales. Plots at Figure 5 dictate the
search for a time marker beginning several months before the major event for all the scales
analyzed. The sharp decrease at lower scales (m = 1 and m = 2), which is observed before
the major event, can be qualified as such a time marker since the decrease is evident for
several days and is clearly identifiable.

Translating the result from lower scales in an alternative way, we propose the use of the
observed time markers, which appear a few months before the major event, as the initiation
point for the natural time analysis that follows. The main purpose is to combine the two
independent methods (MRWA and NT analysis) that have been successfully used for the
identification of critical stages in earthquake preparation processes, in a joint approach
that will maximize the advantages of each one. More specifically, the initial application of
MRWA in a broader time period reveals time segments where the NT analysis is then used
to investigate for indicators suggesting the entrance to the critical stage.
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3. Natural Time Analysis of Seismicity before the Thessaly Mw6.3, March
2021 Earthquake

The analysis of a complex system in the NT domain has been introduced in [29,35].
In the case of seismicity, the natural time χ, defined as χk = k/N, serves as an index for
the occurrence of the kth event out of N total events. The seismic moment released during
the kth event is then considered, forming the pair (χk, Mk) for further analysis (see [28]).
The evolution of (χk, Mk) is further described by the continuous function F(ω), defined as:
F(ω) = ∑N

k=1 Mkexp
(

iω k
N

)
(3) where ω = 2πφ and φ stands for the natural frequency.

F(ω) is normalized by division with F(0)

Φ(ω) =
∑N

k=1 Mkexp
(

iω k
N

)
∑N

n=1 Mn
=

N

∑
k=1

pkexp
(

iω
k
N

)
(3)

where pk = Mk/ ∑N
n=1 Mn. The quantity pk describes the probability to observe an earth-

quake event at natural time χk. The normalized power spectrum can then be obtained from
(4), as Π(ω) =|Φ(ω)|2. In the context of probability theory, and for natural frequencies of
φ less than 0.5, Π(ω) reduces to a characteristic function for the probability distribution pk.
It has been shown that the following relation holds [29,56]

Π(ω) =
18

5ω2 −
6 cos ω

5ω2 − 12 sin ω

5ω3 (4)

According to probability theory, once the behavior of the characteristic function of the
distribution is known around zero, then the moments and, hence, the distribution itself can
be approximately determined. For ω→ 0, (4) leads to

Π(ω) ≈ 1− κ1ω2 (5)

where κ1 is the variance in natural time, given as

κ1 = 〈χ2〉 − 〈χ〉2 =
N

∑
k=1

pkχ2
k −

(
N

∑
k=1

pkχk

)2

(6)
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It has been shown that the properties of Π(ω) at ω → 0, i.e., the values of κ1 = 0.07,
can signify the approach of a complex system towards some critical point [35], such as
that of an impending large earthquake (see [24,31,37] and references therein). Figure 6
shows an earthquake timeseries in conventional (Figure 6a) and natural time (Figure 6b)
domains. Figure 6c shows the corresponding power spectrum Π(ω) for the critical stage
with κ1 = 0.070, based on Equation (6), while the two other curves are for non-critical stages.
Theoretically, it has been shown that κ1 approaches 0.083 as N → ∞, when there are no
long-ranged correlations in the system [35].
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As a new event occurs, the pair (χk, pk) is rescaled and κ1 varies. It has been verified
that when the parameter κ1 converges to the value 0.070, the system enters a critical
state [33,35,56].

Furthermore, the entropy in the NT domain, Snt, is defined as [35]

Snt = 〈χlnχ〉 − 〈χ〉ln〈χ〉 =
N

∑
k=1

pkχklnχκ − (
N

∑
κ=1

pkχk) ln(
N

∑
κ=1

pkχk)

where 〈 f (χ)〉 = ∑N
κ=1 pk f (χk).

The entropy, Snt, is a dynamic quantity that depends on the sequential order of events.
Moreover, upon the time reversal T, i.e., Tpm = pN −m + 1, the entropy, Snt−, is further
defined. When the analysed seismicity approaches a “true” critical state, the following
conditions should be fulfilled [35,56]:

(i). The “average” distance D, defined by the normalized power spectra Π(ω) of the
evolving seismicity and by the theoretical estimation of Π(ω) for κ1 = 0.070, should
be less than 10−2.

(ii). The parameter κ1 should approach the critical value of κ1 = 0.070 by “descending
from above”.

(iii). Both natural time entropies, Snt and Snt−, should be lower than the entropy of uniform
noise Su = (ln2/2) − 1/4 when κ1 approaches 0.070.

(iv). Since the dynamic evolution of the system is expected to be self-similar in the critical
state, the time of the true coincidence should not vary upon changing (within reason-
able limits) either the magnitude threshold, Mth, or the area used in the calculation.

In [28], the authors proposed the use of the time marker indicated by MRWA in the
seismicity evolution before the major event as the initiation point for the NT analysis.
In the frame of this approach, the two independent methods (MRWA and NT analysis)
were integrated to identify the approach to the critical stage in the earthquake preparation
process. In particular, the initial application of MRWA in a broader time period of the
regional seismicity before the major event reveals time segments where the NT analysis is
going to investigate for indicators suggesting the entrance to the critical stage.

In Figure 7, the computed Π(φ) curves are shown as they approach the critical Π(φ)
in the regional seismicity, for a threshold magnitude of Mth = 2.0 and for areas of radius
R = 30 km, R = 50 km and R = 80 km, respectively, around the epicenter of the main event.
This analysis clearly demonstrates that, from 28 February to 2 March 2021, one to three
days before the Mw6.3 earthquake of 3 March 2021, the critical Π(φ) was approached. In all



Geosciences 2021, 11, 379 10 of 14

cases, for R = 30 km, R = 50 km and R = 80 km, the NT analysis starts at approximately one
to two months around the corresponding time markers indicated by MRWA (see Figure 5).
It may, thus, be considered that the critical point for the regional seismicity was approached
around that time. What happened during the last time period before the main event can be
seen in Figure 7, which depicts the time evolution of Π(φ), for 0 ≤ φ ≤ 0.5, for Mth ≥ 2.0
and R = 30 km, 50 km and 80 km, when calculations started on 6 August 2019 for R = 30 km
and R = 50 km and on 7 November 2019 for R = 80 km. It also becomes interesting that
around that time, when the critical point was reached, seismicity started to occur in the
epicentral region registering a few shallow, weak earthquakes prior to the mainshock.
These events, which may be considered as foreshocks, do not affect the analysis, as their
occurrence coincides with the approach to the critical point.
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Figure 7. Time evolution of Π(φ), for 0 ≤ φ ≤ 0.5, of the seismic activity, for Mth ≥ 2.0 and R = 30 km (top), R = 50 km
(middle), and R = 80 km (bottom), when calculations start on 6 August 2019 for R = 30 km and R = 50 km and on
7 November 2019 for R = 80 km. Π(φ) curves (dashed lines) fall on the theoretical Π(φ) curve (red solid lines), calculated
from Equation (6), as the critical stage is approached.
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Applying the NT analysis to the seismicity that occurred prior to the Mw6.3 event in
the Thessaly region, starting the analysis from approximately the time markers in the lower
scales indicated by MRWA and up to the time of the mainshock occurrence, we observe
that all criticality requirements are fulfilled. The latter is more clearly demonstrated by
the parameters D, κ1, Snt and Snt−, as they evolved event by event, and are computed and
plotted in the natural time domain and in the conventional time, approximately 100 days
before the mainshock (Figure 8). In Figure 8, we observe that all the requirements are
fulfilled a few days before the mainshock for all three cases that we study, i.e., for R = 30 km,
R = 50 km and R = 80 km around the epicenter of the mainshock. The results, thus, indicate
that the regional seismicity presented criticality characteristics a few days before the main
event.
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Figure 8. Time evolution of the NT analysis parameters κ1, D, Snt and Snt−, in natural time (left) and conventional time
(right), as they evolve event by event prior to the Thessaly Mw6.3 mainshock, considering an area with radius of R = 30 km
(top), R = 50 km (middle), and R = 80 km (bottom) around the epicenter and for a magnitude threshold Mth = 2.0. The
analysis was started on 6 August 2019 for R = 30 km and R = 50 km and on 7 November 2019 for R = 80 km. The dashed
horizontal lines indicate the entropy limit of Su = 0.0966 and the value κ1= 0.070. The shaded rectangle marks the time when
the critical stage is approached.
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4. Concluding Remarks

In the present work, we investigated the regional patterns of seismicity in the area
of the Thessaly (Mw6.3) strong earthquake on 3 March 2021, by applying MRWA and NT
analysis, two methods that have been used for the identification of critical stages in the
preparation process of major earthquakes. The analysis was performed in the natural time
domain, with an approximate starting point indicated by MRWA. The latter showed a
decrease in the standard deviation of the wavelet coefficients σwav(m) at much lower scales,
similar to the observations in [26,27,54] prior to the occurrence of major events. Within this
joint approach, the initial application of MRWA in regional seismicity around the epicenter,
and for a wide time period before the mainshock, indicated a time segment where the NT
analysis was applied in order to explore possible indicators that suggested the entrance to
a critical stage.

The results demonstrated that regional seismicity approached criticality a few days
before the Mw6.3 earthquake that occurred on 3 March 2021 in the Thessaly region, in
agreement with the results in [57]. In other words, the curve of the power spectrum,
Π(φ), in the natural time domain that characterizes the evolution of the regional seismicity,
coincided with the theoretical curve of critical point phenomena a few days before the
Mw6.3 mainshock, in a similar way to that of non-equilibrium critical systems. Hence, the
analysis of the regional seismicity in the natural time domain, initiated at approximately
the time marks indicated by the results of MRWA, pointed to an approximate date of the
impending large Mw6.3 earthquake of 3 March 2021, within a narrow time window in
the order of a few days. These results lay further support to the methodology introduced
in [28] regarding the combination of MRWA and NT analyses for the identification of
critical stages of regional seismicity prior to strong earthquakes, providing a novel and
promising framework for better understanding the evolution of earthquake generation
processes.
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