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Identification of Impulsive Signals

Confusion matrices of methods for k% and Mavroeidis models for each fold
are presented in the supplementary material.
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Figure S1: Confusion matrix (left) and loss function (right) of Fold 0
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Figure S2: Confusion matrix (left) and loss function (right) of Fold 1
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Figure S3: Confusion matrix (left) and loss function (right) of Fold 2
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Figure S$4: Confusion matrix (left) and loss function (right) of Fold 3
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Figure S5: Confusion matrix (left) and loss function (right) of Fold 4

Mavroeidis Model
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Figure S6: Confusion matrix (left) and loss function (right) of Fold 0
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Figure S7: Confusion matrix (left) and loss function (right) of Fold 1
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Figure S8: Confusion matrix (left) and loss function (right) of Fold 2
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Figure S9: Confusion matrix (left) and loss function (right) of Fold 3
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Figure S10: Confusion matrix (left) and loss function (right) of Fold 4

Determination of Initiation and Termination
Positions of Impulsive Signals

In order to assess the architecture of our proposal, we repeated all the ex-
periments removing some components of the neural network. In particu-
lar, we perform an experiment removing the additional input argmax(w)
and arg min(w) for evaluating the contribution of these two elements (“NO-
RARG” experiment). As reported in Table 1, results are always slightly
worse without these two inputs. Moreover, we investigated whether the con-
tribution of these two inputs alone was sufficient to estimate initiation and



termination positions. We performed an experiment with a very simple fully
connected neural network (without the convolutional part) which takes as in-
put only the vector (max(w), min(w), arg max(w), arg min(w)) (“NOCONV”
experiment). Despite the results being surprisingly good, they are always
worse than compared with the CNN, which confirms that the whole archi-
tecture is necessary to achieve better results.

Table S1: Comparison of all the method variations averaged among 5-
fold cross-validation

R? MAE MSE
Method S e I S e " s e !
CNN 0.97 0.97 0.97 17.51 22.53 20.03 610.23 1057.47 833.85

NOARG 0.82 092 087 2505 2477 2491 1290.32 1063.34 1176.83
NOCONV 0.83 0.86 0.85 21.67 28.29 2498 1017.89 1782.13 1400.01




