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Abstract: Past earthquakes have highlighted the seismic vulnerability of prefabricated industrial
sheds typical of past Italian building practices. Such buildings typically exhibited rigid collapse
mechanisms due to the absence of rigid links between columns, beams, and roof elements. This study
aims at presenting the experimental and numerical assessment of a novel dissipative connection
system (DCS) designed to improve the seismic performance of prefabricated sheds. The device,
which is placed on the top of columns, exploits the movement of a rigid slider on a sloped surface to
dissipate seismic energy and control the lateral displacement of the beam, and to provide a recentering
effect at the end of the earthquake. The backbone curve of the DCS, and the effect of vertical load,
sliding velocity, and number of cycles were assessed in experimental tests conducted on a scaled
prototype, according to a test protocol designed accounting for similarity requirements. In the second
part of the study, non-linear dynamic analyses were performed on a finite element model of a portal
frame implementing, at beam-column joints, either the DCS or a pure friction connection. The results
highlighted the effectiveness of the DCS in controlling beam-to-column displacements, reducing
shear forces on the top of columns, and limiting residual displacements that can accrue during ground
motion sequences.

Keywords: prefabricated sheds; energy dissipation; seismic retrofit; beam-to-column connection;
recentering; reinforced concrete

1. Introduction

Recent earthquakes in Italy have dramatically reaffirmed the seismic vulnerability
of precast industrial buildings, typical of past Italian building practices, highlighting
structural deficiencies primarily related to the mechanisms of transmission of horizontal
loads between structural elements [1]. In Italy, the majority of industrial one-story and
multistory facilities consist of precast reinforced concrete (RC) structures, as the use of
precast concrete systems offers several advantages such as fast erection, reduced investment
costs owing to prefabrication, high allowance for quality controls, and enhanced safety.
However, the static scheme commonly adopted in the past represents the major drawback
of this structural typology. In fact, joints between structural elements such as beams,
columns, and roof elements were commonly realized in simple support or through pin-end
connections with insufficient resistance to seismic loads [1].

The most paradigmatic event is perhaps the Emilia earthquake (2012), which hit an
area in north Italy densely populated by productive activities, striking mainly industrial
buildings constructed of precast reinforced concrete [2,3], and causing an overall economic
damage of EUR 13.27 billion, with an estimated loss of income between EUR 3 and 3.8 bil-
lion [4]. The structural layout of the damaged buildings typically presented cantilevered
monolithic precast columns, placed into discrete socket foundations on site, and grouted
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with low strength grout. Pin-ended prestressed L-beams, inverted T-beams, or double
pitched beams rested on column corbels or directly at the tops of the columns. According
to the building code enforced at the time of construction, the strength of beam-to-column
connections was based solely on friction force, without additional mechanical devices; neo-
prene pads were adopted at the beam-column joints only for long spans [5–7]. No secondary
beams were placed orthogonally to the primary frames to ensure the three-dimensional
responses of the buildings, which substantially behaved as a series of essentially two-
dimensional portal frames. The most common failures, causing the collapse of entire
portions of buildings, included drop of roof elements and precast beams due to the loss
of support, and collapse of the forks at the top of columns caused by off-axis loads. Such
damage patterns were mainly related to poor strength and ductility of connections or to
lack of mechanical links preventing excessive deformations [1,2,8–11].

The usual design practice, at the time of construction of the damaged buildings, was
essentially based on vertical static loads in combination with wind-induced and crane-
induced horizontal loads. A horizontal load equal to 2% of the vertical load was accounted
for in the design only starting from 1987 [5,6,12]. However, for some noncompulsory
provisions released between the mid-60s and mid-70s, the first specific seismic provisions
appeared in Italy in the early 1990s, and internationally recognized modern seismic con-
cepts, such as capacity design, were endorsed only in 2008 [13]. Therefore, although the
prefabrication of RC elements in Italy was an established technology, several industrial
facilities left to shear friction the horizontal load transfer mechanism of beam-to-column
and beam-to-floor connections, as they were designed without modern seismic concepts
and prescriptions.

Moreover, in the current precast design practice for one-story or low-rise industrial
buildings of no primary importance, the contractors prefer to use dry connections as seismic
load transfer mechanisms between precast elements to reduce the on-site construction time
and cost. In the overall Italian context, the most advanced typology of shear-resisting
dry beam-to-column joints is represented by pinned dowel connections with concrete
corbels and 5–10 mm thick neoprene pads. As a result of this hinged frame structural
layout, the seismic demand is currently accommodated by cantilevered columns with
large cross sections (up to 1000 × 1000 mm in the case of three-story buildings). In order
to improve the seismic performance of poorly designed or deficient precast structures,
a retrofit intervention needs to be planned and implemented at either local or global
level. Local interventions usually consist of structural strengthening, applying rigid and
resistant reinforcement that increase the capacity of weak elements; such a reinforcement
can be made of either steel, or high-strength fibers embedded into a cementitious or a
polymeric matrix [14]. Global interventions are implemented by inserting in the structure
particular devices, which either reduce the seismic input by separating the motion of
the superstructure from the motion of the ground (namely seismic isolation systems), or
increase the total energy dissipation capacity (namely energy dissipation devices) [15,16] by
concentrating on special elements out of the vertical load bearing frame the dissipation of
most of the energy transmitted by the earthquake [17,18]. Examples of application of energy
dissipation systems to the retrofit of industrial frames can be found in references [16,19–22].

Another issue is represented by the lack of provisions to recenter the structure at the
end of an earthquake, avoiding offsets [19,23]. There is indeed significant field evidence
of seismic sequences characterized by frequent medium-strong intensity ground motions
following a strong mainshock after short intervals of time [24–30]. Even though the
maximum displacement of the beam can be accommodated by the connection, residual
displacements may build up during sequences of ground motions occurring in short times,
limiting the capability of the structure to withstand aftershocks and future earthquakes.

Within the framework of global retrofit interventions, the study aims at introduc-
ing a novel dissipative connection system (DCS), designed to improve the behavior of
beam-to-column connections and reduce the seismic vulnerability of precast RC industrial
buildings [31]. The DCS, which is placed on the top of columns, exploits the movement
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of a rigid block sliding on a sloped surface to provide horizontal stiffness and a certain
recentering effect, and dissipates part of seismic energy by friction. The connection system
has been investigated both experimentally and through numerical analyses, and the results
of the assessment are presented and discussed.

2. Principle of the Dissipative Connection System

The dissipative connection system (DCS) is basically composed of two mating truncated-
pyramidal steel plates, one concave and the other one convex in shape (Figure 1). Steel
fixtures are also provided to firmly link the plates to prefabricated RC structural elements.
The system is designed to be inserted at the column-beam joints of a precast building, and
is intended to transmit vertical and horizontal loads at the node.
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Figure 1. Sketch of the dissipative connection system and typical installation at beam-to-column joint.

The operation of the DCS is explained by referring to the motion of a rigid block on
a sloped surface (Figure 2). An external force F must be provided to sustain the motion
and overcome two resisting forces, namely: (1) the component (Rp) of the vertical force N
acting parallel to the sloped surface; and (2) the friction shear force (Rµ) activated between
the sliding block and the surface. The first contribution is always directed towards the
lowest point of the sloped surface, while the direction of the friction force is opposed to the
direction of sliding.
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The horizontal movement of the beam, with respect to the column head caused from
a horizontal action F, e.g., a seismic action, triggers the sliding of the convex plate on the
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concave surface of the second element; owing to the truncated pyramidal shape of the two
elements the theoretical force—displacement relationship takes the expression:

F = N [sin α·sign(d) + µ cos α·sign(V)], (1)

where F is the horizontal force, d is the horizontal deflection of the convex element with
respect to the concave plate, N is the vertical load acting on the connection, α is the
slope angle of the mating surfaces, µ is the coefficient of friction, V is the sliding velocity,
and sign(·) is the sign function that extracts the sign of its argument (in the framework
of Equation (1), sign(d) returns sign “+” when the displacement is positive, and sign
“-“ otherwise; sign(V) returns sign “+” when the velocity function is positive, i.e., the
movement is directed away from the origin, and sign “-“ when the velocity function
is negative, i.e., the movement is directed towards the origin). For a cyclic motion of
the convex plate with amplitude dbd, a flag-shaped force—deflection curve as the ones
illustrated in Figure 3 results. The force F holds constant during the motion of the plate
in one direction, and changes its sign at motion reversal. By considering the half cycle for
0 ≤ d ≤ dbd (), the coordinates of the corner points are: A (0; (sin α + µ cos α)·N); B (dbd;
(sin α + µ cos α)·N); C (dbd; (sin α− µ cos α)·N); and D(0; (sin α− µ cos α)·N), respectively.
For −dbd ≤ d ≤ 0 the force changes its sign, and the curve is symmetric with respect to the
origin of the axes. The area enclosed in the hysteresis loop counts 4 µ N dbd and represents
the energy dissipated by friction during the cycle.
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Depending on the slope angle α and the friction coefficient µ, one of the possible three
backbone curves shown in Figure 3 results:

• If µ < tan(α), the curve has the shape shown in Figure 3a: when sign(d) and sign(V)
have different signs, sin(α) > µ cos(α) and the recentering force due to gravity prevails
on the friction term. The device has a fair recentering behavior and naturally tends
to return to the origin at the end of the seismic shake. Moreover, for a given angle
α, this design choice limits the shear force on the top of the columns, but reduces
the amount of dissipated energy, which is proportional to µ, and therefore increases
the displacement;

• If µ > tan(α), the curve has the shape shown in Figure 3b: the friction shear force
prevails over the restoring force due to the slope, which hampers the recentering
capability of the connection. For a given angle α, this choice increases the shear force
on the top of the columns, but reduces the maximum displacement by increasing
the dissipation;

• If µ = tan(α), the curve has the shape shown in Figure 3c, corresponding to an
elastic-perfectly plastic behavior. When sign(d) and sign(V) have different signs,
sin(α) = µ cos(α) and the device has no inherent recentering capacity; however, it does
not develop any resistance to an external recentering action, which can be due to,
e.g., small vibrations occurring during the coda stage of the ground motion. For a
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given angle α, this solution is likely to represent the best trade-off to control both
maximum forces and displacements, and is implemented in the design of the DCS.

3. Materials and Methods

The mechanical behavior of the DCS was investigated both experimentally and numer-
ically, in order to assess the actual force-deflection behavior and evaluate its performance
under seismic loading.

The study is conducted by referring to a DCS rated for a vertical load Nd = 360 kN
and a horizontal deflection dbd = 60 mm. The angle of the sloped surfaces is α = 6◦ and the
design friction coefficient is µ = 0.105. With this choice, µ = tan(6◦), thereby resulting in a
theoretical force—deflection curve as the one depicted in Figure 3c.

3.1. Experimental Investigation

In order to match the capacity of the testing equipment, the experimental characteriza-
tion was performed on a prototype of the DCS scaled by a geometric factor SL = 0.4 and
fabricated in steel (i.e., the scale factor for modulus of elasticity is SE = 1). By evoking the
principle of similarity [32], scaling factors for all mechanical quantities were determined
(Table 1). The main dimensions of the prototype are shown in Figure 4. Based on the
assigned scaling factors, the design vertical load and the deflection of the scaled prototype
resulted in Nd,s = 57.6 kN and dbd,s = 24 mm, respectively. It must be noted that by applying
similarity concepts, the nominal pressure acting on the contact surfaces between the mating
plates (which can affect the coefficient of friction) is independent of the scale of the device.

Table 1. Scale factors assumed for the tests.

Quantity Dimension Scale Factor

Length [L] SL = 0.4
Elastic Modulus [F] [L]−2 SE = 1.0

Force [F] SF = (SL)2 = 0.16
Pressure [F] [L]−2 Sp = 1.0

Displacement [L] Sd = 0.4
Time [T] ST = (SL)1/2 = 0.6324

Velocity [L] [T]−1 SV = (SL)1/2 = 0.6324
Frequency [T]−1 Sf = (SL)−1/2 = 1.5811
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The tests were conducted at the Materials Testing Laboratory of Politecnico di Milano,
using a proprietary biaxial testing system designed for testing of scaled specimens of
seismic isolators (Figure 5a). The system comprises a rigid frame with four columns and
two fixed crossbeams, which form a closed ring wherein the forces are confined, and is
provided with two servo-hydraulic actuators arranged orthogonally to each other, in order
to apply a vertical load on the specimen and a concurrent horizontal deflection. The load
capacity of the system is 500 kN in vertical direction and 75 kN in horizontal direction, and
the horizontal displacement capacity is 100 mm (50 mm in either direction).
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Figure 5. Experimental apparatus: (a) biaxial testing machine; (b) specimen setup; (c) picture of the
specimen installed on the testing machine, with close-up of convex and concave plates.

In order to minimize the moment on the testing machine caused from the eccentricity of
the vertical load applied on the prototype when the convex plate is in an offset configuration
away from the center of the concave plate, the tests were performed on a set of two identical
specimens, arranged in an upside-down configuration (Figure 5b): the concave elements
of the two specimens were mounted on a plate moved by the horizontal actuator, while
the two convex elements were clamped to the vertical actuator and the lower crossbeam,
respectively. A close-up of the sloped surfaces of the concave and convex plates is shown
in Figure 5c.
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The mating surfaces of the prototypes were lubricated with a multipurpose grease
containing molybdenum disulfide (MoS2), which was checked in preliminary tests to
be able to provide the target coefficient of friction of 0.10. The tests were conducted by
applying to the pair of specimens a vertical load NS, which was kept constant during the
test, and simultaneously imposing a horizontal deflection, performing cycles of amplitude
dS at a constant speed VS. In total, three groups of tests were performed: (a) static tests (S),
conducted at low velocity to investigate the influence of the vertical load, which was varied
between 0.25 Nd,s and 2.5 Nd,s; (b) dynamic tests (D), conducted at increasing speeds, to
investigate the effect of velocity; and (c) static tests with rotation (R), where the movement
of the convex plate was imposed along a direction rotated by θ = 45◦ with respect to
the main axis of the prototype, i.e., along one of the four sloped edges of the truncated
pyramidal geometry. The layout of the tests is reported in Table 2, while the reference
system used to define the direction of loading is shown in Figure 6.

Table 2. Test layout.

ID NS [kN] dS [mm] VS [mm/s] θ [◦] n [#]

Static Test (S)

S1 14.4 24 0.672 0 3
S2 28.8 24 0.672 0 3
S3 57.6 24 0.672 0 3
S4 72.0 24 0.672 0 3
S5 86.4 24 0.672 0 3
S6 100.8 24 0.672 0 3
S7 115.2 24 0.672 0 3
S8 129.6 24 0.672 0 3
S9 144.0 24 0.672 0 3

Dynamic Test (D)

D1a 28.8 24 3.36 0 5
D1b 28.8 24 6.72 0 5
D1c 28.8 24 16.8 0 5
D1d 28.8 24 33.6 0 5
D2a 57.6 24 3.36 0 20

Static Test with Rotation (R)

R1 14.4 24 0.672 45 3
R2 28.8 24 0.672 45 3
R3 57.6 24 0.672 45 3

Parameters NS, dS, VS, θ are defined in the main text; n is the number [#] of cycles.
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3.2. Numerical Investigation

To assess the performance of the DCS and evaluate its effectiveness in comparison
to the beam-to-column pure friction joint typical of past building practices, non-linear
dynamic analyses of a prefabricated shed structure were performed.

The model consists of a two-dimensional portal frame comprising two 50 × 60 cm
columns and a 50 × 80 cm beam, with geometry and overall dimensions as shown
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in Figure 7. It was implicitly assumed that no secondary beams were placed orthogo-
nally to the frame in order to ensure a three-dimensional response of the structure. Both
columns and beams are made of C40/50 concrete with B450C steel rebar (yield strength
fy = 450 MPa [33]). The columns are reinforced longitudinally with 16 Ø20 steel bars and
transversally with Ø8 two-arm stirrups at 10 cm spacing. The distributed load acting
on the beam, including its weight and the load from the contributory area of the roof, is
26.9 kN/m, resulting in a total seismic mass of 73.42 ton evaluated according to the Italian
Building Code (IBC) [33], and in a vertical force at either support of 360 kN, matching the
design load of the DCS units.
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The structural model was implemented in SAP2000 v21.1.0 software [34]. The two
columns were rigidly fixed to the ground and modelled as linear elastic elements, with a
plastic (rotational) hinge at the basis formulated according to Table 10-8 (concrete columns)
of ASCE 41-13 [35] in order to account for inelastic concrete deformation. The beam was
assumed to behave as linear elastic, and a “body” constraint [34] was introduced to enforce
equal displacement at both ends of the beam.

The connection between the beam and the column was modelled through a “multilinear
plastic” link [34]. Two different models were formulated in order to represent the behavior
of either the DCS or the beam-to-column pure friction connection:

• For the DCS, the force—deflection curve evaluated experimentally on the prototype
was scaled up to the full size of the device; the hysteretic behavior was modelled
by assigning a pivot hysteresis type, with hysteresis parameters: α1 = α2 = 1010;
β1 = β2 = 0; η = 1 (in the present framework, parameters α1 and α2 define the slope
of the elastic branch of the load—deflection curve in either direction of loading, β1
and β2 define the force at zero displacement for unloading towards either positive or
negative forces, respectively, and 0 ≤ η ≤ 1 defines the amount of degradation of the
elastic slopes after plastic deformation, where η = 1 means no degradation);

• For the beam-to-column pure friction connection, a constant friction coefficient µcc = 0.30,
coupled to an isotropic hysteresis type, was assigned (it must be noted that, to be
conservative, one half of the concrete-to-concrete friction coefficient recommended in
Eurocode 8 [36] for smooth surfaces was adopted).

Though in the present analyses the backbone curve of the DCS represented in Figure 3c
was modelled based on the experimental findings that will be presented in Section 4.1,
different behaviors, such as the ones shown in Figure 3a,b can be simulated by combining
multiple link elements as described in reference [37]; e.g., a multi-linear plastic link using
the Pivot model is used to define the hysteresis loop, and a multi-linear elastic link [34] is
used to shift the hysteresis loop away from the origin.

The fundamental period of the frame is T = 0.838 s. The internal structural damping is
modeled as Rayleigh damping [38], with parameters assigned to achieve 5% damping ratio
at frequencies f1 = 1.1933 Hz (period T1 = 0.838 s) and f2 = 1.6366 Hz (period T2 = 0.611 s).
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Non-linear dynamic analyses were performed assuming a functional class cU = II with
nominal life VN = 50 years, located in Potenza, south Italy (15.8094◦ longitude, 40.6435◦

latitude), topographic category T1, soil type B (deposits of very dense sand, gravel, or very
stiff clay). The target elastic spectrum was determined according to the IBC Code [33]
provisions for Life Safety Limit State (SLV), corresponding to hazard level with 10% ex-
ceedance probability in 50 years (reference period for ordinary buildings with VN = 50 years
and cU = II). A set of seven unidirectional ground motions consistent with the target spec-
trum was selected with REXEL v3.4 beta [39] software from the European Strong-motion
Database [40]. The magnitude (Mw) of the seven ground motions was chosen within the
interval (6.4–7), with epicentral distance (Rep) in the range 0–30 km. The waveforms were
scaled to the design Peak Ground Acceleration of 2.375 m/s2 calculated according to the
IBC [33]. Design spectral response acceleration is SDS = 0.592 g in the constant acceleration
region, and SD1 = 0.289 s at 1-s period. Relevant information on the ground motion data
set is reported in Table 3, and the scaled horizontal spectra at 5% damping are shown in
Figure 8. The average spectrum of the accelerogram set matches the target spectrum within
a tolerance of −10/+30% in the period range 0.15–2.0 s, as recommended by the code [33].

Table 3. Accelerograms dataset.

Record Waveform EQ Mw (-) Rep (-) PGA (m/s2) PGV (m/s) SF

South Iceland 6263ya 1635 6.5 7 5.018 0.498 0.473
South Iceland
(aftershock) 6328ya 2142 6.4 12 3.839 0.202 0.619

South Iceland 4673xa 1635 6.5 15 2.038 0.122 1.165
Montenegro 196ya 93 6.9 25 2.997 0.253 0.792

Campano Lucano 291ya 146 6.9 16 1.725 0.275 1.377
Montenegro 199 93 6.9 16 3.557 0.520 0.668

Campano Lucano 291xa 146 6.9 16 1.526 0.271 1.557

Mean 6.71 15.3 2.958 0.306 0.950

Mw: magnitude; Rep: epicentral distance; PGA: Peak Ground Acceleration; PGV: peak Ground Velocity; SF:
Scale Factor.
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(ξ = 5%) [33].

To be conservative, in the analyses an upward vertical component of ground acceler-
ation of 0.4 g was further simulated, in order to reduce the horizontal reaction (for both
the examined beam-to-column joints, i.e., the pure friction and the DCS, the resisting force
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is proportional to the vertical load acting on the support) and trigger sliding at the beam-
to-column interface. Consequently, the backbone curves of the multilinear plastic link
elements associated to both connection types were recalculated accounting for a reduced
vertical load of 216 kN (i.e., 60% of the full vertical load), and then coded in the structural
model investigated in the analyses.

4. Results
4.1. Experimental Results

The shape of the force–deflection (F-d) diagram of the tested prototypes is shown in
Figure 9 and actually resembles the theoretical curve for µ = tan(α) depicted in Figure 3c
(the curve is also reproduced in Figure 9 as a dotted line). The plot is relevant to a single
specimen and is obtained by dividing the experimental force measured in the test by two,
assuming that the two specimens tested in pair provide the same reaction force.
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Figure 9. Experimental force—deflection diagram of the DCS, and different phases of motion.

The DCS exhibits a rigid-plastic behavior, characterized by four phases:

1. For small deflections, the force follows an almost proportional relationship with the
displacement; this behavior is ascribed to the elastic deflection of the plates and the
fixtures, before sliding is triggered between the mating surfaces of the convex and
concave plates;

2. When the frictional resistance is exceeded, sliding is activated, and the response of
the device is characterized by an almost constant force regardless of the deflection; in
this phase the horizontal force of the system matches the theoretical value calculated
according to Equation (1);

3. As the deflection exceeds a certain threshold d*, a shallow decrease of the horizontal
force is noticed; when d = d* the convex plate reaches the boundary of the concave
plate, and for larger deflections the actual contact area between the mating surfaces
of the two plates decreases, increasing the contact pressure, which in turn affects the
coefficient of friction;

4. During the return movement of the convex plate towards the origin the reaction force
is virtually negligible; in this phase the restoring force due to the sloped surface and
the friction force have opposite signs and balance each other, providing a null (or very
small) resistance.

To identify the characteristic parameters of the system, two quantities are defined:

• Effective stiffness:

Keff =
Fmax

dS
, (2)
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• Effective coefficient of friction:

µeff =
EDC

4 dS NS
, (3)

where EDC is the energy dissipated per cycle (i.e., the area enclosed in the hysteresis cycle),
Fmax is the maximum force in the cycle, dS is the maximum deflection, and NS is the vertical
load applied to the specimen. It must be noted that in general Fmax is not achieved at
the maximum deflection, and the definition of the effective stiffness given in Equation (2)
conservatively overestimates the force at dS; however, for the examined prototype the
difference was very small (less than 5%) and therefore deemed as acceptable.

The effect of the vertical load on the mechanical behavior of the connection system was
assessed in the static tests. The prototype was loaded up to 250% the (scaled) design value,
without deterioration of its mechanical properties. The shape of the backbone curve is
substantially unaffected by the vertical load (Figure 10a), and for NS ≥ Nd,s the maximum
force Fm increases almost linearly with NS, in accordance with Equation (1), while at low
load levels, the force tends to grow more than linearly. The effective stiffness and the
energy dissipated per cycle show a fair proportionality with the vertical load up to 250%
Nd,s (Figure 10b), and the linear relationship is biased only at low loads. This behavior is
explained in Figure 10c, where a certain influence of the vertical load on the coefficient
of friction at low load levels is highlighted, while for NS ≥ Nd,s, µeff is very close to the
design value of 0.10.
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Figure 10. Static test (S): (a) horizontal force–deflection diagrams at different levels of vertical load
NS; (b) influence of the vertical load on effective Stiffness Keff, energy dissipated per cycle EDC;
(c) effective coefficient of friction µeff. Nd,s is the design vertical load of the prototype.

The influence of the velocity was investigated in dynamic test D1. Increasing the speed
from 3.36 to 33.6 mm/s on the scaled specimen (corresponding to a range of velocities from
5.3 to 55.3 mm/s on the full-scale system) does not significantly affect the overall shape of
the force–deflection diagram (Figure 11a), resulting only in a 6% increase in the effective
stiffness and in the energy dissipated per cycle (Figure 11b). The fluctuations observed
in the test run at the highest speed highlight some possible stick-slip phenomenon at the
sliding surfaces, but do not modify substantially the response of the system. Moreover,
the effective coefficient of friction holds stable over the investigated speed range, with a
maximum change of +7% from the lowest to the highest velocity (Figure 11a).
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Figure 11. Dynamic test D1: (a) horizontal force–deflection diagrams at different velocities VS;
(b) influence of the velocity on effective stiffness Keff, energy dissipated per cycle EDC; (c) effective
coefficient of friction µeff. VS,m is the maximum test velocity.

In Dynamic test D2, the prototype was assessed to be able to perform 20 consecutive
cycles to the design displacement dbd,s = 24 mm with a not substantial change of its
performance (Figure 12a). The coefficient of friction increased by about 8% over the
20 cycles (Figure 12c), possibly due to the sweeping out of lubricant from the sliding
surfaces (e.g., when the convex plate moves beyond the edge of the concave plate for
d > d*). This resulted in a shallow increase (again on the order of 8%) in the effective
stiffness and energy dissipated per cycle (Figure 10b).
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Figure 12. Dynamic test D3: (a) horizontal force–deflection diagrams; (b) change of Effective stiffness
Keff and energy dissipated per cycle EDC with the number of cycles; (c) change of effective coefficient
of friction µeff.

The influence of the direction of sliding is shown in Figure 13. The shape of the force–
deflection curve along a trajectory rotated by 45◦ (Figure 13a) is unvaried with respect
to the shape of the curve observed for the on-axis trajectory (e.g., Figure 10a), with no
substantial change both in energy dissipated per cycle (Figure 13b) and effective stiffness
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(Figure 13c). Only at low load levels a light deviation is observed, possibly due to the
influence of the contact pressure on the coefficient of friction.
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Figure 13. Static Test with Rotation (R): (a) horizontal force—deflection diagrams at different levels
of vertical load; (b) energy dissipated per cycle edc and (c) effective stiffness Keff along the rotated
trajectory (θ = 45◦) vs. on-axis trajectory (θ = 0◦).

In conclusion, the experimental tests confirmed a stable and reliable behavior of the
DCS, with a linear dependence of the maximum horizontal force on the vertical load in
accordance with Equation (1), and a negligible influence of velocity and number of cycles.

4.2. Numerical Results

As an example of the output of the analyses, Figure 14 shows the relative displacement
at the beam-to-column joint for either connection, DSC or pure friction (P-F), produced by
a single accelerogram (record 196ya). Sliding of the P-F joint is engaged when the seismic
action exceeds the friction resistance at the beam-to-column interface, and therefore occurs
only during the strong motion stage of the earthquake. During the coda stage the ground
acceleration is not sufficient to trigger sliding, and the beam remains in the offset position
attained at the end of the previous stage. This leads to a huge residual displacement, dres,
close to the maximum displacement attained during the earthquake. In contrast, the DCS
develops larger displacements during the strong motion stage (the peak displacement
is 37 mm vs. 31 mm for the P-F joint), but owing to the restoring force provided by the
sloped surfaces, it tends naturally to recover the original configuration as the ground
acceleration gets down. For the examined earthquake, the residual displacement of the
DCS is virtually null.

In general, similar results were obtained for all the examined accelerograms but for
4673xa record which was unable to engage sliding for both connections. In this case, while
in the P-F joint the displacement of the beam was blocked, in the DCS small movements of
the beam corresponding to elastic deformation of the connection system could take place,
though energy dissipation was not activated in absence of sliding.

To compare the performance of the DCS to the one of the pure friction joint, the
results of the non-linear dynamic analyses were evaluated examining both the behavior
of the beam-to-column connection and the internal forces in the columns. During the
post-processing of the results, the maxima of the response parameters were identified for
each accelerogram, and the mean and standard deviation of the values were calculated for
the set of seven ground motions.
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By assuming a concrete-to-concrete friction coefficient μcc = 0.30, the maximum force 
developed by the P-F joint is about 40% greater than the resisting force of the DCS with α 
= 6° and μ = 0.105 (Figure 15a). Owing to the higher dissipation capability provided by the 
higher friction, the P-F joint better limits the displacement of the beam during the 
earthquake, with a maximum slippage of 38 mm vs. 58 mm (Figure 15b); nevertheless, it 
must be noted that the maximum displacement of the beam supported by the DCS, i.e., 
dmax = 57.8 mm, matches the design value dbd = 60 mm of the system, and can therefore be 
accommodated by the mechanical joint. The fair recentering behavior of the DCS is 
highlighted in Figure 15c: at the end of the ground motion the offset of the beam is as 
small as dres = 4 mm, i.e., 1/15 of dmax. In contrast, assuming a pure friction connection the 

Figure 14. Displacement histories of the examined beam-to-column joints for record 196ya.

Figure 15 shows the maximum resisting force of the beam-to-column joint, Fmax, the
maximum horizontal displacement of the beam with respect to the column, dmax, and the
offset, or residual displacement, of the beam, dres, at the end of the ground motion, assessed
for both connections.
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Figure 15. Comparison of the seismic response (averaged on seven ground motions) of DCS and
pure friction (P-F) joint: (a) maximum force; (b) maximum displacement; (c) residual displacement.

By assuming a concrete-to-concrete friction coefficient µcc = 0.30, the maximum force
developed by the P-F joint is about 40% greater than the resisting force of the DCS with
α = 6◦ and µ = 0.105 (Figure 15a). Owing to the higher dissipation capability provided
by the higher friction, the P-F joint better limits the displacement of the beam during the
earthquake, with a maximum slippage of 38 mm vs. 58 mm (Figure 15b); nevertheless,
it must be noted that the maximum displacement of the beam supported by the DCS,
i.e., dmax = 57.8 mm, matches the design value dbd = 60 mm of the system, and can therefore
be accommodated by the mechanical joint. The fair recentering behavior of the DCS is
highlighted in Figure 15c: at the end of the ground motion the offset of the beam is as small
as dres = 4 mm, i.e., 1/15 of dmax. In contrast, assuming a pure friction connection the offset
of the beam is about 20 mm, i.e., 1/2 of the maximum displacement provided by the joint.
Even though the connection can fit the seismic displacement of the beam without loss of
support, residual displacements should be controlled, as they can accrue during sequences
of ground motions occurring in short times, making reducing the capability of the structure
to withstand aftershocks and future earthquakes.

Eventually, Figure 16 compares the maximum shear force, Vmax, and the maximum
bending moment, Mmax, at the base of the column. As a consequence of the lower reaction
force, the DCS induces smaller internal forces (about −11%) than the P-F joint, therefore
limiting the stresses in the columns and at the foundation level. The base shear is reduced
from 81 kN to 72 kN, and the moment from 572 kNm to 506 kNm.
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5. Conclusions

A dissipative connection system (DCS) for precast RC industrial sheds has been intro-
duced both for new structures as well as for retrofit of existing facilities designed according
to updated standards without seismic concepts. The system exploits the movement be-
tween two mating sloped surfaces to dissipate energy through friction and to generate a
restoring force. In the study the force-displacement behavior of the DCS was investigated
experimentally and non-linear dynamic analyses were performed to assess the effectiveness
of the proposed system:

1. The force-displacement curve shows, after an initial elastic response, a constant force
when the convex plate moves away from the center, and a negligible reaction when the
convex plate returns towards the origin; the force, which is governed by the properties
(slope angle and friction) of the sliding surfaces, increases linearly with the vertical
load on the support but is scarcely affected by the velocity;

2. Non-linear dynamic analyses proved the effectiveness of the DCS to control the
relative displacements at the beam-to-column joint, and the maximum shear force
transmitted to the column head, thereby limiting internal forces and moments within
the columns;

3. Owing to a certain restoring capacity provided by assuming µ = tan(α), the DCS was
able to control the residual displacement at the end of the ground motion within small
values (1/15 of the maximum displacement, in the examined case), thereby limiting
the accrual of displacements during sequences of earthquake, which can hamper the
capability of the structure to withstand aftershocks.

Though the numerical analyses have confirmed that viability of the DCS to control
beam-to-column joint displacements, an improved version of the system with two distinct
slopes of the concave and convex surfaces, namely α1 = 6◦ in the central region of the plates
and α2 = 12◦ close to the edges, is under development. For small displacements, sliding
occurs between mating regions of both surfaces with α1 = 6◦, but when a certain displace-
ment threshold is exceeded the contact shifts to mating regions with α2 = 12◦, in order to
increase the horizontal stiffness and prevent a further increase in displacement. This new
version is intended to be used for strong seismic scenarios, in order to limit the increase in
size of the plates that would be required to accommodate huge horizontal deflections.

Owing to the limits of the study, i.e., only one frame geometry and one design earth-
quake being investigated, the results need to be confirmed by a wide series of analyses
considering different layouts and characteristics of the precast shed, as well as different
seismic inputs, which will be the subject of a future work.
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