
Citation: Taftsoglou, M.; Valkaniotis,

S.; Papathanassiou, G.; Klimis, N.;

Dokas, I. A Detailed Liquefaction

Susceptibility Map of Nestos River

Delta, Thrace, Greece Based on

Surficial Geology and

Geomorphology. Geosciences 2022, 12,

361. https://doi.org/10.3390/

geosciences12100361

Academic Editors: Francesca

Bozzoni, Claudia Meisina and

Jesus Martinez-Frias

Received: 21 June 2022

Accepted: 26 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

geosciences

Article

A Detailed Liquefaction Susceptibility Map of Nestos River
Delta, Thrace, Greece Based on Surficial Geology
and Geomorphology
Maria Taftsoglou 1 , Sotirios Valkaniotis 1 , George Papathanassiou 2,* , Nikos Klimis 1 and Ioannis Dokas 1

1 Department of Civil Engineering, Democritus University of Thrace, University Campus, 671 00 Xanthi, Greece
2 Department of Geology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
* Correspondence: gpapatha@geo.auth.gr

Abstract: The existence of high potential onshore and offshore active faults capable to trigger large
earthquakes in the broader area of Thrace, Greece in correlation with the critical infrastructures
constructed on the recent and Holocene sediments of Nestos river delta plain, was the motivation
for this research. The goal of this study is twofold; compilation of a new geomorphological map
of the study area and the assessment of the liquefaction susceptibility of the surficial geological
units. Liquefaction susceptibility at regional scale is assessed by taking into account information
dealing with the depositional environment and age of the surficial geological units. In our case,
available geological mapping shows a deficient depiction of Pleistocene and Holocene deposits.
Taking into consideration the heterogeneously behavior of active floodplains and deltas in terms
of liquefaction, a detailed classification of geological units was mandatory. Using data provided
by satellite and aerial imagery, and topographic maps, dated before the 1970’s when extensive
modifications and land reclamation occurred in the area, we were able to trace fluvial and coastal
geomorphological features like abandoned stream/meanders, estuaries, dunes, lagoons and ox-bow
lakes. This geomorphological-oriented approach clearly classified the geological units according to
their depositional environment and resulted in a more reliable liquefaction susceptibility map of
4 classes of susceptibility; Low, Moderate, High and Very High. The sediments classified as very
high liquefaction susceptibility are related to fluvial landforms, the high to moderate liquefaction
susceptibility ones in coastal and floodplain landforms, and low susceptibility in zones of marshes.
The sediments classified in the highest group of liquefaction susceptibility cover 85.56 km2 of the
study area (16.6%). Particular attention was drawn to critical infrastructure (Kavala International
Airport “Alexander the Great”) constructed on the most prone to liquefaction areas.

Keywords: liquefaction; susceptibility; Thrace; remote sensing; geomorphology

1. Introduction

Liquefaction is a natural process that can be triggered by earthquakes in saturated
loose sandy soils covered with impermeable sediments within a certain distance from the
epicenter of an earthquake. The term ‘liquefaction’ was originally introduced by Mogami
and Kubo in 1953 [1]. In particular, when a seismic event shakes the ground, increase in pore
water pressure and reduction in effective stresses occurs, resulting in the transformation of
the unconsolidated and saturated granular soil from solid state to a liquid one [2]. Because
of the peculiar subsurface stratigraphy, this is a common occurrence in alluvial and coastal
plains [3].

Despite the fact that liquefaction is considered less hazardous than other secondary
effects induced by earthquakes, e.g., landslides, significant failures in infrastructure, agri-
cultural lands and properties have been recently reported in the cases of the 2010–2011
Canterbury earthquake sequence in New Zealand [4], the 2012 Emilia earthquake se-
quence in the Po Plain, northern Italy [5], and the 2014 Cephalonia earthquake sequence in
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Greece [6]. Regarding the 20th Century, severe liquefaction-related damages were induced
by the 1964 M9.2 Alaska earthquake [7] and the M7.5 Niigata earthquake [8], as well as
by the 1995 M6.9 Kobe (Japan), the 1999 M7.5 Chi-Chi (Taiwan) and the 1999 M7.4 Izmit
(Turkey) earthquakes [9–12].

It is evident that information about the severity of ground shaking in comparison
with the liquefaction susceptibility of each key study can contribute significantly to seismic
hazard assessment at the local and regional scale [13–15]. In fact, a liquefaction susceptibility
map can be used as a screening guide leading to hazard and risk maps for land-use planning
purposes avoiding in advance prone to liquefaction areas.

Nowadays, liquefaction susceptibility assessment in fluvial and coastal plains has a
growing interest because the fast growth of global population increases the need for new
unoccupied areas for urbanization. Liquefaction susceptibility assessment is a procedure
dealing with the physical properties of soil and the depth of water table, while considering
the seismic factor in this equation; then, the liquefaction potential can be evaluated. From
an engineering geological and geotechnical point of view, the most applied approaches
for the estimation of the liquefaction potential of sediments are the Liquefaction Potential
Index (LPI) and the Liquefaction Severity Index (LSN) [16–24].

In case of a regional study, the qualitative methods for assessing the liquefaction
susceptibility are based on the correlation of the depositional environment and the age
of the sediments. The most applied approaches are the ones proposed by Youd and
Perkins [25], Wakamatsu [26], the California Department of Conservation Division of
Mines and Geology [27] and Witter et al. [28].

Recently, the geomorphological studies carried out during the last decade in New
Zealand, Japan, Italy and Greece concluded that variations in river morphology and
associated depositional settings of sediments influence the observed manifestations of the
liquefaction phenomena [29–34]. Specifically, focusing on the distribution of the liquefaction
features, it is clearly shown that they are not randomly distributed over the floodplain areas
but are mostly concentrated in clusters and rectilinear or meander-like alignments [35]. As
shown in Canterbury, New Zealand, most liquefaction induced occurrences are related to
paleo-channels, current river channels and point-bars [31]. In particular, according to [36],
the typically younger and less consolidated sediments of inner meanders can generate
phenomena of lateral spreading during a strong horizontal ground motion because they
are not confined, in contrast with the outer confined part of the meanders. A recent study
regarding 120 liquefied sites induced by the 2012 Emilia Romagna earthquakes reported that
ejected granular sediments are entirely derived from Holocene units associated with river
channel, levee and crevasse deposits [37]. Moreover, in the case of the March 2021 seismic
sequence in Thessaly (Greece), liquefaction phenomena were reported not only on river
channels and point-bars but also in abandoned channels and oxbow lakes, demonstrating
the strong correlation of liquefaction manifestations with the depositional environment
and the impact of their spatial distribution to the future assessment of the liquefaction
susceptibility of the areas [33]. In addition, after the Durres earthquake (Albania), sand boils
and water and sand fountains in Rinia-Fllake Lagoon were observed, strengthening the
opinion that a depositional environment with shallow water and soft and unconsolidated
nature of sediments are contributing factors for liquefaction phenomena [38].

In order to delineate the geomorphological features in the areas of interest, many
researchers used historical maps and aerial and satellite imagery. In particular, historical
data allow for the mapping of geomorphological features before the extensive modification
of the areas by contemporary human activities. Due to this fact, areas prone to liquefaction
processes, such as old-abandoned meanders, point-bars and coastal barriers that are more
prone, can be traced in detail. Furthermore, aerial and satellite imagery can provide
information immediately after an event contributing to the delineation of liquefaction
features, even in inaccessible areas.
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This study focuses on the floodplain of the Nestos River in Thrace, Greece. Thrace is
generally considered a low seismicity zone according to historical and recent earthquakes
in Greece [39]. However, tectonic structures capable of triggering big events and active
faults are present in the broader area. Due to the current N–S extensional stress regime of
the region, the general orientation of the active faults is W–E [40]. Most of the on-shore
faults are normal–oblique, while off-shore major strike-slip faults along the North Aegean
Trough, the westward continuation of the North Anatolian Fault Zone, are present. The
major fault zones close to the Nestos Delta are the Kavala–Strymonas, Xanthi–Komotini,
Maronia–Makri, Drama and the Orestias–Mikri Doxipara fault zones [41,42]. The first two
seem to be connected, creating the extended Kavala–Xanthi–Komotini (Figure 1) active
fault zone with a length of more than 100 km, which subdivides the regional unit into two
different landscape parts, the northern mountainous part and the southern flat or plain
part. In addition, large earthquakes can be produced by the western part of the North
Anatolian Fault, the tectonic structure of the Saros Fault zone along the North Aegean
Trough. Furthermore, critical infrastructures such as gas pipelines, airports and ports
were developed over the Thrace floodplains and deltas; most of them on unconsolidated
sediments. This regime, in conjunction to the recent and late Holocene deposits covering
mostly estuaries of the Nestos and Evros rivers, were the main factors that motivated
us to study the Nestos River plain and delta regarding the liquefaction susceptibility of
its deposits.
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The goal of this study is to compile a liquefaction susceptibility map of the Nestos
River delta based on the geomorphological evolution of the river. In order to achieve
this, the geological map of the area (1:50,000) developed by HSGME (Hellenic Survey
of Geology and Mineral Exploration) was primarily used as the base layer. In order to
delineate the geomorphological features of Nestos, we used satellite and aerial images and
topographic maps. This layer of information is focused on the evolution of river data and
contributed to a significant improvement regarding the tracing and mapping of fluvial and
coastal geomorphological features, such as abandoned stream/meanders, estuaries, dunes,
lagoons and ox-bow lakes. As a result, surficial sediments were classified into liquefaction
susceptibility classes according to their possible age and depositional environment.

Geology-Geomorphology

The regional unit of Thrace consists of formations attributed to the Rhodope mass and
the Circum–Rhodope belt. In particular, the Rhodope metamorphic province comprises
metamorphic and igneous rocks of thickness about 24 km [43]. The crystalline–schist
bedrock of Rhodope Massif is detected in the mountainous massif northwards of Komotini
and Alexandroupolis towns and is divided in two tectonic units, Pangaio and Sidironero,
which thrust over Pangaion from the north to the south along a tectonic line of NW–SE
direction that ends in E–W [43]. The Circum–Rhodope Belt (CRB) fringing the Rhodope
Massif in northern Thrace consists of phyllites, green schists and post-sedimentary rocks
with intercalations of igneous rocks. This zone is overthrust on the Rhodope mass and
continues upwards with semi-metamorphic formations [44].

Igneous rocks like granites, granodiorites, monzonites and diorites of Eocene-Miocene
are distributed mostly on south east of Thrace and north of Xanthi, along the Greece-
Bulgarian borderline. Molassic series of conglomerates, sandstones, marls and marly
limestones with lignite horizons dates from Middle Eocene-Oligocene and probably up to
the base of Miocene [45].

Lowland areas of Thrace are covered by Neogene and Quaternary deposits of sands,
gravels, cobbles and clays extending in the Evros Delta and alluvial deposits in the areas
of the Nestos delta and in the center of the Xanthi–Komotini basin. The study area of the
Nestos delta is a part of the Xanthi–Komotini post-alpine basin extended from the Rhodope
mountainous area to the sea in a huge fan-shaped form (Figures 1 and 2). The bedrock of
the basin consists of crystalline-schistosed rocks, such as gneisses, schists, aphivolites and
thick marble layers of the Rhodope Massif. Boreholes on both the terrestrial deltaic zone of
Nestos and the surrounding continental shelf zone [45–49] have provided information for
geomorphological deposits of the area since the Neogene period. In particular, the initial
subsidence and faulting of the basin started in the Lower to Middle Miocene in the rift
area between Thassos island and Kavala Bay [46,48]. During the Miocene, marine and
coastal sediments were deposited consisting of white porous limestones, sandstones, marls
and clays, as well as lacustrine deposits, consisting of alternations of sandstones, sands
and sandy clays. The coastal sediments were formed after a period of intense evaporation
(Upper Miocene). In the Pliocene period, yellowish, sandy marls, loams and clays with
layers of marly limestones were deposited. Deposition of clastic Pleistocene deposits
occurred in a coastal–deltaic environment [49] covering unconformably Miocene units.
Pleistocene sediments consist of talus cones, scree, reddish clays and sands with lenses of
non-cohesive conglomerates. Gravels, cobbles and silts of the Pleistocene age are also met
on the surface of foothills as a result of the fluvial processes and erosion in the upper limits
of the plain. Quaternary and recent deposits comprise alternations of silts, sands, clays
and gravels deposited principally in a deltaic environment with a thickness of 100–200 m.
Generally, the continuous subsidence of the basin resulted in thick sedimentation with a
range approximately from 2.5 to 6.0 km [50].
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Figure 2. Geological map of the Nestos River delta provided by HSGME with (1) floodplain de-
posits, (2) channel deposits, (3) coastal deposits, (4) swamp deposits, (5) lagoons, (6) Nestos River,
(7) Pleistocene deposits, (8) screes.

2. Materials and Methods

The depositional processes affect the liquefaction susceptibility of sediments since
fine and coarse grained soils sorted by fluvial or wave actions are more susceptible than
unsorted sediments [51]. Collecting data regarding the depositional environments, the age
of deposits and the groundwater depth, the liquefaction susceptibility can be defined in a
regional scale.

In particular, one of the most applied qualitative methods is based on the Youd and
Perkins criteria [25]. According to this approach, the geological units are classified in five
classes of liquefaction susceptibility (very low, low, moderate, high and very high), based
on the age of the sediments, the depositional process and the depth of the water table in
the area of interest. As a result, younger, looser and more segregated deposits are classified
as more prone to the liquefaction phenomena.

The susceptibility to liquefaction of the surficial deposits within the Nestos River plain
was assessed by applying the Youd and Perkins criteria [25]. In order to achieve this, it
was important to define the age and depositional environment of the deposits and the
depth of water. The latter one, depth of ground water, was evaluated based on a regional
borehole dataset compiled by hydrological surveys [49,52–54]. The only available delta-
wide groundwater survey dates from 1978 and is presented in Figure S1 [49,55]. Due to the
lack of more recent regional surveys, we estimate the current groundwater levels based on
the 1978 map and the 2014 survey results in the eastern part of the Nestos delta by [54]. The
piezometric surface of the phreatic/unconfined aquifer has risen in recent years, probably
due to the abandonment of shallow boreholes and adoption of surface irrigation and deep
boreholes [54]. The depth of groundwater in areas of the Holocene, alluvial, fluvial and
coastal sediments were evaluated as less than 6 m, taking into consideration the seasonal
saturation of unsaturated soils and variation of the phreatic/unconfined aquifer.
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In order to evaluate the age and the depositional environment of the geological
units, we had to initially consider the geological map of the area. In addition, we used
supplementary data (aerial and satellite imagery) to produce a geomorphological map
where detailed information would be defined.

2.1. Geological Map of Nestos River Delta

The geological maps in 1:50,000 scale, developed by HSGME in four separate map
sheets, were used as the basic data layers for the initial depiction of the area of inter-
est [56–59]. According to these maps, the area of the Nestos River plain consists of eight
geological units. As Holocene deposits are described fluvial sediments of old-abandoned
beds and terraces of Nestos, which are situated parallel to the river and consist of alluvial
deposits of clays, sands and gravels while floodplain deposits consist mainly of clays and
sands extended in the whole area. Furthermore, marsh deposits of organic clays and silts
were mostly found in the west part of the plain parallel to the coast, where coastal deposits
with loose sands and locally pebbles and gravels were additionally mapped. In the NW
region of the plain, Pleistocene sediments of screes and talus cones were also detected,
mainly on the foothills, originating from fluvial processes and erosion of the upper limits
of the plain. In the middle of this area, the current main river channel of Nestos is forming
while lagoon formations parallel to the shoreline are depicted (Figure 2).

2.2. Historical Orthophoto Maps

The first aerial photography coverage of Greece was acquired by Royal Air Force
in 1945. It lacks fiducial marks and camera calibration data, because it was taken by
reconnaissance cameras. Historical aerial photographs of 1945, and diapositive trans-
parency reproductions were obtained from Hellenic Mapping and Cadastral Organization
(HEMCO) through license of the Hellenic Military Geographical Service (HMGS), which
maintains a repository of 13,200 negatives, in the form of individual frames. Diapositives
were scanned at 1700 dpi at 8-bit grayscale using high quality photogrammetric scanners at
the contractors’ sites. Orthophoto image accuracy is reported in ground distance and is less
than ±2 m. A unified orthomosaic of continental Greece for 1945 is available by HMGS
and Hellenic Cadastre.

In order to collect more information for the geomorphological formations of Nestos
river plain, it was important to know the environmental status before the influence of
the anthropogenic factor. Thus, orthophoto maps of 1945 provided by Hellenic Cadastre
organization were used in our study as the basic historical imagery layer (ground resolution
2 m), avoiding extensive modifications, land reclamation and irrigation crop development
during the second half of 20th century. We also use Hellenic Cadaster orthophotos of 2007-9
as a reference layer for modern setting of the area.

2.3. Declassified Satellite Imagery

The US Corona reconnaissance program operated between 1959 and 1972 as part of
the US Key Hole program and consisted of a series of low-Earth orbit satellite missions.

The KH-4 missions started in 1962 as the first satellites acquiring stereo imagery from
space. They consisted of two panoramic cameras; the fore (forward) and aft (backward);
tilted respectively 15◦ at an orbit of ~200 km. The cameras are characterized by a focal
length of 602.6 mm, a fixed aperture width of 5.265◦, a pan angle of 71.16◦ and a light
sensitive panchromatic film with a resolution between 50 and 160 lines/mm.

Comparable with the orthophoto maps, declassified images were used in order to
analyze the geomorphological evolution of the Nestos River plain during a period of a
more intense intervention of anthropogenic factor. In this study, we used KH-4 Corona
frames (Table 1) with a 2–4 m ground resolution, acquired in August 1960 and August
1968 from USGS/NARA. KH-4 frames were orthorectified in ERDAS IMAGINE 2020
using ground control points picked from the 2007–2009 orthophotos and DEM in order to
resolve frame intrinsic and distortions. Ground control points were added until sufficient
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residual values were reached in triangulation and the final orthophoto maps were visually
checked by overlaying a street vector layer from OpenStreetMap (Tables S1–S3, Figure S2
in Supplementary Materials).

Table 1. Specifications of aerial and satellite imagery used in this study.

Data Date Spatial Resolution Source

Historical Orthophoto maps 1945 2 m Hellenic Cadastre–HMGS

Orthophoto maps 2007–2009 0.5 m Hellenic Cadastre

Corona KH-4
18 August 1960 2–4 m

USGS/NARA11 August 1968 2–4 m

DEM - 5 m Hellenic Cadastre

2.4. Methods

Applying the criteria proposed by [25], we initially searched for information on the
geological maps in a 1:50,000 scale. However, we observed that this layer lacks geomor-
phological details, especially in river and coastal formations. In most of the areas, these
official published geological maps showed undivided alluvial and floodplain deposits. In
particular, only the current part of the Nestos River channel was depicted with the fluvial
deposits detected only around it. A similar lack of detail was also observed in deltaic
deposits, which together with coastal formations were not identified.

For overcoming this lack of information, we used orthophoto maps from 1945 derived
from Hellenic Cadastre (Figures 3–5). We observed that the area is covered by an extended
hydrographic network, where different geomorphological features of river could be traced.
In particular, darker areas through the river network depict an earlier generation of pale-
ochannels inferred to be old meanders of the Nestos River and point-bars associated with
the abandoned meanders. Furthermore, dark spots around the floodplain were specified
as swamp areas and brighter ones near the coast as deltaic. Parallel to the shoreline of
the orthophoto maps, characteristic striations of dunes were also depicted, while in the
inner part of the coastal zone, a sand ridge of the beach barrier can be partially traced. In
particular, two beach barrier zones extend in the area, with the long one orientated NE–SW
(Figure 3) and the short one NW–SE.

Through geomorphological mapping, it was observed that the west side of the plain is
covered mostly by fluvial deposits of abandoned riverbeds and deltaic deposits. This fact is
consistent with the geomorphological evolution of the area, since before 1945, the estuaries
of the Nestos River were placed in the west part of the plain, where the anthropogenic
factor had not gained so much influence. Today, in this area, the Kavala’s International
Airport (KVA) is situated, constructed in the early 1980s.

After 1952, when entrenchment and diversion of the river Nestos occurred [60], ge-
omorphological modifications began. In order to illustrate those differences, we used
declassified imagery KH-4 from 1960 and 1968. Most of the river channels and courses
crossing the west part of delta were dried up and deprived this part of the river’s delta of
water and sediments. As a result, variation of the shoreline positions started with accretion
at the mouth of the river and erosion of the coastal landforms [61].

In this work, the new shoreline zone at the mouth of the Nestos River was mapped
in detail and the spatial distribution of deltaic deposits and dunes were delineated. Fur-
thermore, anthropogenic levees, which diverted the river course axis to a direction almost
N–S, and recent river formations were identified and mapped. Finally, darker areas of
salt-marsh deposits were added in the broader areas of lagoonal formations and between
deltaic deposits (Figures 3 and 4). In addition, satellite imagery (Copernicus Sentinel-2 and
very high resolution images from Google Earth) were used in order to observe the current
state of the floodplain.
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Combining all these layers of information with the local topography (digital surface
model of the area by Hellenic Cadastre with a 5 m ground resolution), the newly mapped
geomorphological formations of the Nestos River plain were overlaid on the initially less-
detailed geological map. In this geomorphological map that was compiled for the purposes
of this study, 15 surficial geology units were presented, such as abandoned/old river
channels, point-bars and marsh deposits. Along the coastal zone, aeolian/dune formations
and deltaic deposits were identified and beach barriers were mapped. The internal part of
the Nestos River channel was enriched with point-bars, in contrast with the external one
where anthropogenic and natural levees were traced. Finally, lagoons and oxbow lakes in
the floodplain were also mapped (Table 2, Figure 6).

Table 2. Geological units according to HSGME map and geomorphological units according to satellite
and aerial imagery processing that took place for the purposes of this study.

Geological Map by HSGME Geomorphological Map Based on Aerial and Satellite Imagery

Holocene Floodplain deposits Holocene Floodplain deposits
Holocene

Nestos River <500 yr Current River channel

Holocene
Channel deposits

<500 yr Former River bed
<500 yr Point-Bar

<500 yr Anthropogenic Levee
<500 yr Oxbow
<500 yr Levee

Holocene
Coastal deposits

<500 yr Coastal deposits-dunes
<500 yr Coast

Holocene Beach Barrier
<500 yr Delta-deltaic deposits

Holocene
Swamp deposits Holocene Marsh deposits

Holocene Salt marsh deposits
Holocene

Lagoonal deposits Holocene Lagoonal deposits

Pleistocene deposits (screes, tal) Pleistocene deposits
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tion of orthophoto maps (1945) and Corona KH-4 images (1960, 1968). (1) former riverbed, (2) point-
bar, (3) deltaic deposits, (4) current river channel, (5) anthropogenic levee, (6) coastal deposits (dunes),
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(13) lagoon, (14) beach barrier, (15) Pleistocene deposits.
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The criteria that we used to assess the possible age of the sediments were based on
expert judgment correlating information provided by HSGME geological maps, the relative
surface modifications and the topographic position of the units. Afterwards, surficial
geological deposits were classified in three categories in order to correspond with the
applied methodology of Youd and Perkins:

1. <500 yr: Consists of fluvial deposits forming abandoned stream/meanders, point-bars,
deltas and levees and also coastal deposits and oxbow lakes.

2. Holocene: In this category, the lagoonal and marshy deposits are grouped, not only
surrounding the lagoons (saltmarsh) but also developed in the most internal parts of
the floodplain. Consequently, the geomorphological features of the old beach barriers
were included.

3. Pleistocene: Deposits of alternating coarse (sands and gravels) and fine (clays, silts)
grained materials and screes.

3. Results

Using data provided both by the available geological maps of HSGME and the new
geomorphological map, we were able to define the age and depositional environment
of geological units. Having assessed this information, it was feasible to apply the ap-
proach suggested by Youd and Perkins criteria [25] in order to classify the geological units
according to their susceptibility to liquefaction.

Initially, using as a reference the information provided by the official geological maps
compiled by HSGME, only eight geological formations are depicted, classified as floodplain,
coastal, swamp, lagoonal, and Nestos River deposits of the Holocene era and screes in
alternation with deposits derived from fluvial processes and erosion in the upper limits of
the plain from the Pleistocene era. Applying this approach on these maps, three classes of
susceptibility to liquefaction units were defined; low, moderate and high (Table 3, Figure 7),
while the non-susceptible to liquefaction Pleistocene deposits formed a separate class. In
particular, the geological units were classified as:

• Low susceptibility: swamp deposits
• Moderate susceptibility: floodplain, coastal deposits, lagoonal
• High susceptibility: current river, channel deposits
• Non liquefiable: Pleistocene deposits, screes

The fluvial sediments, consisting only of channel deposits that are described as
Holocene alluvial deposits according to HSGME, were classified as high susceptibility
units, without being able to consider the location and the different behavior of the aban-
doned meanders or channels. The coastal deposits units were classified as moderate, while
it is critical to point out that no delineation of dunes, beach barrier formation or the estuary
deposits of the Nestos River are provided. This lack of information regarding both the dis-
crimination of the type of surficial geological units and their age leads to a lesser accuracy
of the assessment of liquefaction susceptibility and consequently to a coarser compilation
of the relevant map.

On the other hand, taking into account the spatial distribution of deposits, as it is
shown on the geomorphological map of the area proposed by this study, four different
liquefaction-related classes were defined, plus the non-liquefiable one of cohesive Pleis-
tocene deposits (Figure 8, Table 4). Having delineated 7 new formations on the geomorpho-
logical map, the total number of deposits that were examined regarding their liquefaction
susceptibility was 15. Furthermore, deposits from the Holocene era were sub-grouped
based on their age as (a) deposits younger than 500 years and (b) Holocene age deposits.

Considering as a base layer of information this detailed map e.g. geomorphological
one, it was feasible to accurately assess the liquefaction susceptibility of the deposits on
a regional scale and compile a reliable relevant map. This map is resulted based on the
following classification regarding the degree of liquefaction susceptibility:



Geosciences 2022, 12, 361 12 of 18

• Low susceptibility: swamp and marsh deposits
• Moderate susceptibility: natural levees, floodplain deposits, beach barriers, lagoonal deposits
• High susceptibility: coastal deposits, coast, oxbow lakes
• Very high susceptibility: former riverbed, point-bars, deltaic deposits, current river

channel, anthropogenic levee.

Comparing the two liquefaction susceptibility maps, it is evident that differences exist
between them. In particular, having mapped the additional geomorphological units, we
observed that the zones of high to very high susceptibility are now extending across the
whole floodplain and not only in the current main channel area of the Nestos River. Fluvial
deposits were discriminated further to abandoned river channels, point-bars, levees and
oxbow formations of the last 500 years and, consequently, were classified as high to very
high susceptible units. Along the coast, beach barriers, dunes, coastal and deltaic formations
of Nestos estuaries were also included, upgrading the coastal zone from moderate to high.

Table 3. Liquefaction susceptibility classes of the Nestos River delta, according to the geological map
provided by HSGME.

Geological Units Description Classification of Liquefaction Susceptibility [25]

Holocene

Floodplain deposits Moderate
Channel deposits High
Coastal deposits Moderate
Swamp deposits Low

Nestos River High
Lagoons Moderate

Pleiocene–Pleistocene

Pleistocene deposits Non liquefied
Scree Non liquefied
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Figure 8. Liquefaction susceptibility map of the Nestos River delta, resulting from the application of
Youd and Perkins criteria [25] to the new geomorphological map, produced by processing of satellite
and aerial imagery.

Table 4. Liquefaction susceptibility classes of the Nestos River delta according to the geomorphologi-
cal map produced by processing of satellite and aerial imagery.

Geological Units Description Classification of Liquefaction Susceptibility [25]

<500 yr

Former riverbed Very High
Point-bar Very High

Deltaic deposits Very High
Current river channel Very High
Anthropogenic levee Very High

Coastal deposits (Dunes) High
Coast High
Levee Moderate

Oxbow High

Holocene

Floodplain Moderate
Marsh Low

Saltmarsh Low
Lagoonal Moderate

Beach barrier Moderate

Pleistocene

Screes, deposits Non liquefied

According to this detailed liquefaction susceptibility map, 85.56 km2 (16.66%) (Table 5)
of the study area classified as a very high susceptibility zone, covered mostly by fluvial
deposits. The presence of these deposits is more extensive in the western part of the plain
due to the recently abandoned estuaries of Nestos, which were dried after entrenchment
and diversion of the river. After those modifications in the delta plain land, the Kavala
International Airport (KVA) was constructed in the early 1980s. In particular, using as a
base layer the geological map of HSGME and focusing on this critical infrastructure, we
observe that KVA is founded over the floodplain and swamp deposits of Nestos (Figure 9a).
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However, according to the new geomorphological map, the airport was constructed over
the old/abandoned Nestos River channels. Consequently, in the former case, the airport’s
area is classified as low to moderate liquefaction susceptibility, while based on the latter
scenario, as high to very high susceptibility to liquefaction (Figure 9b).

Table 5. Liquefaction susceptibility classes areas in the Nestos River floodplain, according to the new
liquefaction susceptibility map.

Liquefaction Susceptibility Susceptibility Area (km2) Susceptibility Area (%)

Non-liquefiable 58.40 11.37
Low 51.00 9.93

Moderate 299.76 58.36
High 18.88 3.68

Very High 85.56 16.66
SUM 513.60 100.00
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4. Conclusions

In the current study, the liquefaction susceptibility of geological units at the Nestos
River delta (Greece) was assessed. The motivation for this research was: (a) the presence of
tectonic structures that are capable of generating large earthquakes in the broader area and
the high potential onshore faults, (b) the existence of recent and late Holocene sediments
and (c) the critical infrastructures that were designed and constructed within the study area
over the last 40 years.

The crucial information of the depositional environment of soil units is usually pro-
vided by a geomorphological map. However, in our case there was a lack of detailed
information regarding both the type of deposits and their spatial distribution. In order to
overcome this, we used satellite and aerial imagery aiming to compile a geomorphological-
oriented map, instead of a simplified geological one, that would help us to screen the
river deposits. In particular, using remote sensing data, we were able to delineate fluvial
and coastal geomorphological features such as floodplains, estuaries and the locations
of abandoned stream/meanders and oxbow lakes. Afterwards, these features were addi-
tionally grouped into three categories based on their age: younger than 500 yr, Holocene
and Pleistocene deposits. To assess the liquefaction susceptibility, we applied the criteria
suggested by [25], according to which the recently deposited sediments were classified as
high–very high susceptibility and pre-Pleistocene deposits as non-liquefiable ones.

Thus, a liquefaction susceptibility map was developed, classifying the Nestos River
delta in four susceptibility classes: low, moderate, high and very high. The most prone
to liquefaction class covers the 16.66% (85.56 km2) of the study area and consists of
coastal deposits of dunes, beach barriers and deltaic formations and fluvial deposits of
old/abandoned meanders, current river channels and point-bars.

Using the liquefaction susceptibility map as a guide to delineate the most prone
to liquefaction areas led us to some important conclusions regarding the location of one
specific critical infrastructure. In particular, it is shown that the International Kavala Airport
was constructed on the old estuaries of the Nestos River on the west side of the plain, an
area that is classified as having high–very high susceptibility for liquefaction. Thus, it is
emphasized the importance of the detailed geomorphological mapping of soil units for
accurately assessing the liquefaction susceptibility. In addition, this case highlighted the
necessity of conducting a detailed geotechnical investigation based on in-situ tests at the
area of the airport for evaluating the liquefaction potential of soil units and the relevant
induced displacements.
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