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Abstract: Differences in formulation of the equations of celestial mechanics may result in differences
in interpretation. This paper focuses on the Liouville-Euler system of differential equations as
first discussed by Laplace. In the “modern” textbook presentation of the equations, variations in
polar motion and in length of day are decoupled. Their source terms are assumed to result from
redistribution of masses and torques linked to Earth elasticity, large earthquakes, or external forcing
by the fluid envelopes. In the “classical” presentation, polar motion is governed by the inclination of
Earth’s rotation pole and the derivative of its declination (close to length of day, lod). The duration
and modulation of oscillatory components such as the Chandler wobble is accounted for by variations
in polar inclination. The “classical” approach also implies that there should be a strong link between
the rotations and the torques exerted by the planets of the solar system. Indeed there is, such as the
remarkable agreement between the sum of forces exerted by the four Jovian planets and components
of Earth’s polar motion. Singular Spectral Analysis of lod (using more than 50 years of data) finds
nine components, all with physical sense: first comes a “trend”, then oscillations with periods of
∼80 yrs (Gleissberg cycle), 18.6 yrs, 11 yrs (Schwabe), 1 year and 0.5 yr (Earth revolution and first
harmonic), 27.54 days, 13.66 days, 13.63 days and 9.13 days (Moon synodic period and harmonics).
Components with luni-solar periods account for 95% of the total variance of the lod. We believe there
is value in following Laplace’s approach: it leads to the suggestion that all the oscillatory components
with extraterrestrial periods (whose origin could be found in the planetary and solar torques), should
be present in the series of sunspots and indeed, they are.

Keywords: pole motion; length-of-day; Liouville-Euler

1. Introduction

Over more than two centuries, scientists have attempted to measure and sto explain
the variations in the length of the day (lod), or the equivalent rotation velocity of Earth,
and changes in the geographical location of the pole of rotation, that is the place where
the rotation axis intersects the Earth surface. A thorough treatment is in the Treatise of
celestial mechanics of Pierre-Simon de Laplace (1749–1827; [1]) where the great scientist
derives the system of differential equations that fully describes the motions of the rotation
axis of any celestial body, among others Earth. This system has come to be known as
Liouville-Euler after mathematicians Leonhard Euler (1707–1783) and Joseph Liouville
(1809–1882). The theory has been confirmed and elaborated on by a number of authors,
Poincaré [2] among them. Recent formulations are found in many papers and textbooks. In
the present note, we focus on that of Lambeck [3]. In a first section, we recall the theoretical
derivations of Laplace and Lambeck and show aspects in which they are formally identical,
but also differences that can be significant and need to be explained. The main point is
the identification of the sources (or excitation functions) of polar motion and length of day
(lod). Very clearly, in the Laplace’s theory all the Earth’s masses are not only excited by
luni-solar torques but also by all the other planetary torques (e.g., [4–7]). That is why, for
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example, we found a strong link between the Gleissberg solar cycle [8] and the Earth’s
Markowitz drift [9]. In the point of view of modern’s theory, supported by Lambeck ,
apart from Earth tides all mass movements, e.g., atmospheric as oceanic, are only forced by
terrestrial phenomena (cf. Lambeck [3], chapter 7). In a second section, we illustrate these
differences by applying the theory to modern data of polar motion and lod. We discuss
them and draw some conclusions in the final section.

2. Two Formulations of the Liouville-Euler Equations

Lopes et al. [7] and Courtillot et al. [6] have recently recalled in some detail how
Laplace [1] derived the system of differential equations that was later to be named Liouville-
Euler. We call "full" polar motion the vector consisting of the two spherical coordinates of
the pole m1 and m2 (according to the X1OX2 plane) and the third coordinate m3, linked
to the length of the day (cf. Figure 1). The motion of the Earth’s rotation axis (ω) can be
seen as the combination of three Euler angles ω1, ω2 and ω3. The rotation axis moved only
very small distances from its mean position (at least over the past century of continuous
measurements) and one can write:

ω1 = Ωm1

ω2 = Ωm2

ω3 = Ω(1 + m3)

(1)

where Ω (= 7.292115× 10−5 rad/s) is the Earth’s mean rotation velocity today computed on
the last 3 decades. Applying the theorem of kinetic momentum to the rotation of a non-rigid
body and following Lambeck [3], chapter 3, Equations (1) lead to the set of Liouville-Euler
equations (system 3.2.9 in Lambeck [3]):

i(
ṁ
σr
) + m = f

ṁ3 = f3

(2)

where i =
√
−1, m = m1 + im2, σr is the Euler frequency (=

C− A
A

Ω), f (= f1 + i f2)
and f3 are the so-called excitation functions (e.g., [3], chapter 4). C and A are respec-
tively, the axial and equatorial moments of inertia of Earth (8.0365 × 1037 kg m2 and
8.010 × 1037 kg m2, [10]). In this derivation, the behavior of the pole position (m1,m2)
and m3 have been fully separated. Through σr , (m1,m2) involve the (internal) terrestrial
data C and A. Lambeck [3], page 34, writes: "m1 and m2 are the components of the polar

motion or wobble and Ω
dω3

dt
is nearly the acceleration in diurnal rotation". The generally

accepted reading (physical interpretation) of this formulation is that polar motion (m1,
m2) is linked to geophysical excitation such as atmospheric or oceanic circulation, litho-
spheric and mantle convection or electromagnetic coupling, and that the m3 component
is linked to astronomical phenomena such as tides. Lambeck [3], p. 36) concludes:
"Equations (3.2.6) clearly separate the astronomical and geophysical problems".

This is one reason for which on long time scales mechanical properties of the mantle
are called upon. Some of these excitations can vary along with climate variations. Such
is the case in the theory of isostasy (e.g., [11,12]). It is also the reason why one calls upon
the ephemerids of the Moon and Sun in order to compute Earth tides (e.g., [13,14]) or to
evaluate their influence on lod variations (e.g., [15,16]).
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Figure 1. Terrestrial reference frame. m1 and m2 are the coordinates of the rotation pole. ψ and θ are
the declination and inclination introduced by Laplace [1].

In the classical problem of the motion of a Lagrange top (e.g., [17]), the weight of the top
plays the role of a perturbation of the full motion of the rotation axis. This is replaced by the
astronomical torques of the Moon and Sun as excitations of the Earth’s rotation axis. This
formalism has allowed one to compute the period of equinoctial precession (26,000 yr). This
is how one is led to the Milankovitch theory of climate variations ([18]). The role of other
bodies in the solar system, mainly the large and remote Jovian (gaseous) planets, must be
taken into account (e.g., [19,20]), for they excite responses in eccentricity at very long periods
(e.g., 400 kyr). As is the case for the top, changes in Earth rotation perturb its revolution
about the Sun.

Laplace’s “classical” formulation of the theory is formally identical to the “modern”
formulation recalled above ([3]). But it leads to a different sinterpretation reading.
Laplace [1] deduces from the fundamental law of dynamics a system of equations that
can be shown to be identical to (2). It reads ([1], page 74, system D):

dp
′
+

B− A
AB

q
′
r
′
dt = dN cos(θ)− dN

′
sin(θ)

dq
′
+

C− B
CB

r
′
p
′
dt = −{dN sin(θ) + dN

′
cos(θ)} sin(φ) + dN

′′
cos(φ)

dr
′
+

A− C
AC

p
′
q
′
dt = −{dN cos(θ) + dN

′
sin(θ)} cos(φ) + dN

′′
sin(φ)

(3)

On the left side of (3), (p, q, r) stand for the Euler angles (ω1, ω2 and ω3) of Equations (1)
and (p’, q’, r’) = (Cp, Aq, Br), still with (A, B, C) being the Earth’s moments of inertia. Let
(x, y, z) be the coordinates of the Earth’s center of gravity, (x’,y’,z’) the coordinates of a mass
element dm of Earth. Then: ∫

(
x
′
dy
′ − y

′
dx
′

dt
)dm = N∫

(
x
′
dz
′ − z

′
dx
′

dt
)dm = N

′

∫
(

y
′
dz
′ − z

′
dy
′

dt
)dm = N

′′

(4)

are classical expressions for the second order inertia tensor. θ and ψ are as defined is
Figure 1. How can N, N’ and N” be evaluated without knowing the motions of all
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particles dm in and out of the Earth? In a bold move, Laplace [1], volume 1, book 5, page
305, paragraph 3, assumes that dN, dN’ and dN” can be computed from the positions
and motions of the celestial bodies that act on it.

Laplace starts with the Sun, its mass L and distance r1. Equation (3) becomes:

dp +
B− A

C
qr dt =

3L
r5

1
(

B− A
C

)xy

dq +
C− B

A
rp dt =

3L
r5

1
(

C− B
A

)yz

dr +
A− C

B
pq dt =

3L
r5

1
(

A− C
B

)xz

(5)

This system is close to that proposed by Guinot [21], page 530, system 1:

Aṗ + (C− A)qr = Lt

Bq̇ + (A− C)rp = Mt

Cṙ + (B− A)pq = Nt

(6)

Changing the directions of the axes and since B ∼A, (5) and (6) are equivalent. But
for Laplace, all terms on the right side are celestial (astronomical), whereas for Guinot the
torques Lt, Mt and Nt (not to be mistaken for N in (3)) can be external or internal to the
Earth. For the Laplace formulation, one must take into account all planets that can produce
effects one wants to account for. For instance, Laplace gives the full equations with the Sun
and Moon included:

θ = h +
3m
4n

(
2C− A− B

C
)



1
2

sin(θ)[cos(2ν) +
λm
m′

cos(2ν′)]

−(1 + λ)m cos(θ)Σ
c
f

cos( f t + ς)

+
λc′

f ′
cos(θ) cos( f ′t + ς′)

(7)

dψ

dt
=

3m
4n

(
2C− A− B

C
)×

(1 + λ)m cos(θ)− cos(θ)
2

d
dt
[sin(2ν) +

λm
m′

sin(2ν′)]

(1 + λ)m
cos2(θ)− sin2(θ)

sin(θ)
Σc cos( f t + ς)

λm
cos2(θ)− sin2(θ)

sin(θ)
c′ cos( f ′t + ς′)

(8)

The inclination θ of the rotation axis has the current value h in (7).
dψ

dt
is linked to the

Earth’s rotation, therefore to the lod. On the right side of ((7) and (8)) are the ephemerids
and masses of the Moon and Sun that enter the classical theory of gravitation (see Appendix
A in Lopes et al. [7] for more details). Length of day and polar inclination are clearly
connected by Equations (7) and (8). Thus, Laplace reduces the problem to a system of
two equations for the inclination and time derivative of the declination of the Earth’s

rotation axis. θ and
dψ

dt
(and the norm that can be considered as a known constant) give the

direction of the polar rotation axis and its variations. The time difference (in ms) between

the theoretical and measured Earth rotation is proportional to
ψ

v
, v being the rotation

velocity (and the Earth’s radius is a constant). Either ψ alone, or v alone, or both can vary.
We assume the former, since the mean rotation rate apparently remains constant, as was
already noted above, and Equation (8) implies studying the time derivative of declination
of the rotation axis, thus studying a quantity that is linearly related to the derivative of lod.
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3. Confronting the Theory with the Observations

Stephenson and Morrison [22] have compiled the reference data for lod from 700AD
onwards. This has allowed Gross [23] to build a monthly data set of lod from 1832 to 1997
(LUNAR97). We have combined it with the daily data provided by IERS (International Earth
Rotation Service) since 1962 (https://www.iers.org/IERS/EN/DataProducts/data.html,
accessed on 22 February 2022). Figure 2 shows the two data sets, and their (smoother)
trends (the red curve). In order to determine these trends, we have applied iterative
Singular Spectrum Analysis (iSSA; see [24–27]). The trends are the first, leading (in terms
of pseudo-period and amplitude) components of the data series. The trends of the two
series are smoothly continuous where they meet (1962).

Figure 2. Monthly values of length of day data (LUNAR97, 1832–1997; bold black curve) from
Gross [23] and daily values (1962–Present, gray curve) from IERS. Superimposed are their trends as
determined by SSA (LUNAR97 + IERS = red curve).

The data for the m1 and m2 components of polar motion since 1846 are also available
from IERS and are shown in Figure 3a. Their respective trends, extracted by iSSA, are
shown in Figure 3b. m1 and m2 are used to compute a global trend of m (= m1 + im2),
called the Markowitz drift ([28]). This is displayed in Figure 4a as a thinner gray curve,
and compared to the Morrison/IERS trend of lod (thicker black curve). These curves
are in excellent agreement with previous determinations (e.g., [29,30]), though they are
smoother due to SSA extraction. We recall that the Markowitz drift is one of the three main
components of polar motion along with the Chandler free oscillation and the forced annual
oscillation (e.g., [7,31,32]). The magnitude of the Markowitz drift is on the same order as
plate tectonic velocities, that originally made it quite difficult to detect.

Equations (7) and (8) imply an integrative link between θ and
dψ

dt
, that is polar motion

and length of day. On Figure 4b, we show again the lod curve pictured in Figure 4a (thicker
black curve) and the derivative of the Markowitz drift (thinner gray curve). Despite extraction
by the textbfiSSA method, the lod curve is still affected by higher frequency variations. This
may be due to the fact that the sampling rate jumps from monthly to daily in 1962 and to
the presence of a derivative (that is a high-pass filter). We smooth further (moving average
windows of 10 years) the lod curve (thicker black curve; Figure 4c) that is displayed with the
derivative of the Markowitz drift already shown in Figure 4b (thinner gray curve).

https://www.iers.org/IERS/EN/DataProducts/data.html
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(a)

(b)

Figure 3. Polar motion from IERS. (a) The m1 and m2 components of polar motion from IERS (from
1846 to the Present). (b) The trends of components m1 and m2 from 1846 to the Present, extracted
using SSA.

The oscillatory smoothed trend of the Morisson/IERS lod peaks at ∼1905 and ∼1980,
and the derivative of the Markowitz drift at ∼1915 and ∼2000, that is they have a sim-
ilar period at ∼80 years. Equations (7) and (8) link the lod and the pole motion by a
derivative operator; hence one should be in quadrature with respect to the other, that is
80/4 ∼20 years, as is observed (Figure 4c).

We have computed the relative phase and amplitude variations that would put the
two curves in best agreement (normalized to take care of the different units). We have done
this by applying the simulated annealing technique ([33]) in order to bring the pole motion
curve of Figure 4c (gray curve) into superposition with lod (black curve).
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(a)

(b)

(c)

Figure 4. Polar motion from IERS (a) Comparison of the trends of the Morisson/IERS lod (black) and
of polar motion m (gray). (b) Comparison of the trend of the Morisson/IERS lod (black) and of the
derivative of the Markowitz drift (gray). (c) Comparison of the smoothed trend of the Morisson/IERS
lod (black) and of the derivative of the Markowitz drift (gray).
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Figure 5 shows the results, the amplitude and phase shift respectively at the top
and bottom. We do not display the results of this inversion on waveforms since they are
practically superposable (the dynamic time warping algorithm calculates the modulations
of phase and amplitude of the operator that transforms the black curve of Figure 4c into
the gray curve; the end result is two curves that are identical to 99%). The scaling factor
(or amplitude of the operator) required to transform the normalized polar motion to the
normalized lod ranges between 0.6 and 1.6 and averages 1.03 ± 0.30: to first order, the
amplitudes of the two geophysical quantities m and lod evolve in parallel. The larger
differences occur between 1870 and 1890, and a century later between 1970 and 1990
(Figure 5 top). The largest "jump” in both lod (4 ms) and pole motion (8 × 10−3 "/yr) takes
place between 1870 and 1900 (Figure 4c). The phase shift of that operator ranges between 6
and 16 years and averages 10.7 ± 3.0 yr. Note that during the period between 1920 and
1940, when the amplitude factor is close to a minimum (∼0.7), the Chandler free oscillation
of polar motion suffers a well-known phase jump of π.

Figure 5. Scaling factor (top) and phase shift (bottom) of the operator that brings the two curves of
Figure 4c in best agreement from 1846 to the Present.

4. Discussion and Concluding Remarks

Passing from the "classical" system of Equations (7) and (8), [1]) to the “modern” system
of equations (2, e.g., [3]) is not complicated but is rather lengthy. There is no contradiction
between the two formulations. However, each can be read with its own emphasis. The main
difference between what Laplace and Poincaré write on one hand, and what Lambeck and
Guinot write on the other hand arises at the step of system (3), leading either to (2) or to
(Figure 4a,b). How does one account for system (4), that is for the distribution and motions
of masses inside or outside Earth, at any place and instant? Laplace ssolves the point with
resorts to a hypothesis: if one does not have access to masses and accelerations, one can still
determine the force budget. For Laplace, these forces are exclusively external, leading to
system (5), and then (7) and (8)) with the Sun and Moon included. As a consequence, inter-
nal and external mass motions only serve to dissipate the energy received by polar motion
from all celestial bodies (see Lopes et al. [7], Appendix 1). With Lambeck and Guinot’s
formulation (2), one has to resort to purely terrestrial forces to explain mantle motions and
changes in climate. Emphasis is on the separation between the polar coordinates (polar mo-
tion) and the third coordinate (linked to lod), and on determining the excitation functions,
that can be external or internal to the Earth. These are mathematical functions that “include
all factors that perturb the rotation motion” ([3], p. 36). These excitation functions are listed
by [3], page 47: “the excitation functions consist of contributions from (i) redistribution of mass,
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(ii) relative motion of matter, and (iii) torques”, the difference between (i) and (ii) being tenuous.
For Guinot (system (6)) the torques can be one or more external and internal actions.

In short, in the “modern” presentation, polar motion and length of day are decoupled
and correspond to different physical mechanisms, whereas in the “classical” presentation
polar motion involves coupling of the inclination of the rotation pole and the derivative of
its declination.

In a previous SSA analysis of lod using more than 50 years of IERS observations,
Le Mouël et al. [16] find nine components, all likely astronomical—thus external to the
Earth (“trend”, ∼80 yr, 18.6 yr, 11 yr, 1 year, 0.5 yr, 27.54 days, 13.66 days, 13.63 days,
9.13 days). The QBO at 2.36 yr is interpreted as a Sun-related oscillation. The lunar compo-
nents at 13.63 and 13.66 days could contain a solar contribution. The longer periods, 1 yr,
11 yr, 18.6 yr and ∼80 yr (Markowitz, Figure 4c) are common to lod and polar motion. If the
link between the two is as established by Laplace [1], then the straightening of the inclination
of the axis of rotation swould should accompany a decrease in lod, and indeed the Earth
currently s.The Earth indeed straightens up (cf. Stoyko [29] and Figure 3b). Also, if this link
is valid, all the components with extraterrestrial periods should be present in the series of
sunspots; and indeed they are (e.g., Courtillot et al. [6]). As far as quasi annual components
of sunspots are concerned, there is no exact 1 yr line, but two nearby lines with periods
0.93 and 1.05 yr (Le Mouël et al. [34], Table 1),that could be luni-solar commensurabili-
ties (365.25-28)/365.25 = 0.92 and (365.25 + 28)/365.25 = 1.07, 28 days being the Moon’s
synodic period (cf. Courtillot et al. [6]; Lopes et al. [7]; Bank and Scafetta [35]). Can a
sufficiently strong source of energy be found? Indeed it has been known for some time
(e.g., Dickman [36]; Chao et al. [37]; Varga et al. [38]) and confirmed recently by
Le Mouël [16] that the components with luni-solar periods found above account for 95% of
the total variance of the lod signal.

Another benefit of using the original Laplace approach is the straightforward deter-
mination of the period of the Euler free oscillation. In one of the first analyses of actual
observations of polar motion, Chandler [39,40] discovered the wobble that now bears his
name. Chandler wrote that “textitthe general result of a preliminary discussion is to show
a revolution of the earth’s pole in a period of 427 days.” The observed period of this free
oscillation is much larger than the theoretical value of 306 days, even more so now that
the period has reached about 433 days (e.g., [32,41]). As noted at the end of Section 3, the
envelope of the Chandler oscillation is strongly modulated, reaching a quasi-minimum
around 1930 with its well known phase jump of π. The duration and the modulation of
the Chandler wobble require a source of excitation. Earth elasticity, large earthquakes
(e.g., [42–45]), or external forcing by the fluid envelopes (e.g., [3] Chapter 7, [46–50]) have
been successively invoked in the “modern” viewpoint.

In the "classical" reading of Laplace, still considering an elastic (or plastic) Earth, we
have seen that the Equations (7) and (8) allow one to calculate the period of the Euler free
oscillation. This oscillation actually varies with the pole inclination θ from 306 to 578 days.
A transition to a double period (∼430 and ∼433 days) has taken place at the time of the
1930 phase jump of the Chandler oscillation; this can be accounted for by variations in
polar inclination (cf. Figure 4c). As is the case for a top, as recalled in Section 2, the various
rotations (precession, etc. . . . ) vary with the inclination of the rotation axis.

Laplace [1] calculations and conclusions have been confirmed, prominently by
Poincaré [2]. Based on these equations, a link between the rotations and the torques
exerted by the planets of our solar system is expected. Indeed, we have shown elsewhere
the influence of Jovian planets on the Sun (sunspots, cf. [6]), and Earth ([7], Figure 11). In
the latter paper, we show the similarity between the envelope of the Chandler oscillation
and the ephemerids of Neptune. Figure 3 of Lopes et al. [7], reproduced here as
Figure 6, shows the remarkable agreement between the sum of forces exerted by the
four Jovian planets and the m1 component of polar motion.
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Figure 6. Top curve (in black): the sum of the forces of the four Jovian planets affecting Earth
(ephemerids from the IMCCE). Middle curve (in red): the m1 component of polar motion (1980–2019),
reconstructed with SSA and with the trend (Markowitz) removed. Bottom: superposition of the
2 curves. From Lopes et al. [7], Figure 3.

As far as the length of day is concerned, we have seen in Figure 2 that since 1970 it tends
to decrease, i.e., the Earth’s velocity of rotation tends to increase. The same phenomena
envisioned above (earthquakes, variations in the fluid envelopes, . . . ) have been proposed
as potential causes of this trend (e.g., [46,51–54]). But the recent acceleration of rotation
velocity, that contradicts previous models, may find a simple explanation with Laplace’s
formalism (e.g., [55]).

Although several of the points made in this paper have been known to physicists, they
may not have been to many geoscientists. We believe there is value in following Laplace’s
approach: it leads to the suggestion that all the oscillatory components with extraterrestrial
periods should be present in the series of sunspots and indeed they are. In closing, we
emphasize that all he quantitative results obtained in his paper are based on actual data
and the validity of Laplace’s astronomical hypothesis, not on a model.
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