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Abstract: This paper considers the issue of using non-reflective boundaries for surface wave simula-
tions within the framework of three-dimensional Navier–Stokes equations. We distinguish a wave
damping approach among the known implementations of non-reflective boundary conditions in
surface wave simulations. The approach employs a sponge boundary layer to dampen incident
waves. In this paper, we describe implementations of this approach on unstructured meshes. We
also present the calibration of free parameters, the values of which control wave damping efficiency
and the amplitude of reflected waves. Comparison of the results obtained at different types of
distribution for the free parameter was conducted. The implemented wave damping approach was
tested by simulating a solitary wave propagating in a water tank. We demonstrate the use of damping
non-reflective boundary conditions for the case of a wave traveling across the surface of a real body
of water near Sakhalin Island while considering its bathymetry.

Keywords: tsunami; numerical simulation; Navier–Stokes equations; VOF method; wave damping;
LOGOS software package

1. Introduction

Simulations of waves traveling across open-boundary water areas, where the waves
are allowed to freely escape from the computational domain, often require the use of
non-reflective boundary conditions when modeling the infinite space beyond the domain.

There are several methods for organizing non-reflective boundary conditions for
waves. The absence of a single method is explained by the fact that none of them ensures
the free exit of the waves from the simulation area with no wave reflections. The first
group of methods is generalized by the name “non-reflecting boundary conditions”, which
implies the use of decomposition of the solution of the equation in a Fourier series, ex-
trapolation of the equations to asymptotic solutions, or implementation of the method of
characteristics [1–6] for setting non-reflecting boundary conditions. The last-mentioned
method of characteristics is based on the analytical derivation of non-reflecting boundary
conditions with Riemann invariants [3,4,6] and is often used in numerical simulations of
waves with the help of shallow water equations [7]. In the case of 3D simulations, the
method is often used in gas dynamics problems [3–6]. Implementation of the method of
characteristics for 3D simulations of surface waves is rare in the literature. One of the
works where an example realization of a nonreflecting boundary condition algorithm for
3D Navier–Stokes equations and the VOF method visibly demonstrated the efficiency of
this procedure for structured computational meshes.
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A general drawback of the first group of methods is their limited applicability to
linear waves; the existence of non-linear waves in the tanks being simulated can result
in the growth of the general mass of water in the computation domain with time [1].
The expressions for boundary conditions in the first group of methods can be not “local”
and include integral parameters that result in problems during program realization in
parallel computation.

The second group of methods, generalized as the wave damping methods, are consid-
ered to be relatively simple methods for implementation. They are based on the idea of
wave energy forced rejection.The method is known in the literature as a ”sponge layer”, an
“absorbing layer”, or a “damping zone” [2,8]. It is popular in the field of hydrodynamic
computations due to its usability and because it does not depend on the computational
mesh used. Suppression of waves is realized through introduction of an additional source
of forces in the momentum conservation equation distributed along the marked area of
wave suppression. A disadvantage of the method is the fact that a part of the computation
domain near a non-reflected boundary condition is used for damping, which increases the
sizes of the simulation domains and the number of computational elements.

Research on this method, especially in terms of the influence of model parameters
on the simulation results, has been described in some recent works [2,8–10]. The author
of [2] showed that, when damping force has the same value, preference should be given
to a wide zone of damping, as a bigger zone results in a smoother attenuation of the
wave burst. The authors of [11] substantiated the fact that the value of the damping
force coefficient is directly proportional to the depth of the water in the computation tank.
They practically note that it is possible to produce the optimal values of mathematical
parameters for this method with only test computations [2,8–11]. The authors of [12]
studied the reasonability of accounting for the sponge layer source term in the volume
fraction transport equation and compared the results obtained at different forms of the
distribution of damping force in the vertical direction. It was shown that afore-mentioned
modifications do not provide significant advantages in problems involving a free surface.
Complex research on the method employed by the authors of [10] shows that the greatest
contribution to the damping of waves is stipulated by the width of the damping zone as
compared to the computational mesh refinement.

It is also important to note a known technique for organizing non-reflecting boundary
conditions that does not require mathematical manipulation or modifications of the initial
system of equations. This technique implies artificial dissipation of the perturbation due to
exponential “elongation” of the cells of the mesh when approximating outer boundaries
of the computation domain [2,4,10,13]. The technique works well in the case of flat flows
though causes problems in mesh generation in the case of 3D configurations. There are
also some examples where a combination of several methods makes it possible to obtain
productive results [2,9].

This paper describes the implementation of a wave damping method for the mathemat-
ical model used in the LOGOS software package to simulate wave propagation problems.
A formula of the source term for the momentum conservation equation is provided; the
procedure for calibrating setup variables to obtain the least amplitude of the reflected
waves is also described in detail. Additionally, the paper presents a mathematical model
based on a system of three-dimensional Navier–Stokes equations and the VOF method. The
implemented algorithm is used to calculate the problem of a solitary wave traveling across
a water tank. The use of damping non-reflective boundary conditions is demonstrated in
the case of a water wave traveling across the surface of a real body near Sakhalin Island
while considering its bathymetry.
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2. Governing Equations
2.1. Mathematical Model

We considered a mathematical model for traveling wave simulations based on a
system of Navier–Stokes equations in combination with the VOF method [14] implemented
in the domestic software package LOGOS (version 5.4) [15–17].

This software package underwent large-scale verification on problems such as those
involving a free surface [18] and tsunami-related problems [19].

We assume that the flow is isothermal and that all phases have the same velocity
field. Considering such assumptions, we obtained a system of equations consisting of
equations of conservation of mass and momentum and a volume fraction transfer equation.
In Cartesian coordinates, the system has the following form:

∂ui
∂xi

= 0,

ρ ∂ui
∂t + ρ ∂

∂xj

(
uiuj

)
= − ∂p

∂xi
+ ∂

∂xj
τij + ρgi

∂αw
∂t + ∂

∂xi
(uiαw) = 0,

, (1)

where i, j are the subscripts indicating that the vector components belong to the Cartesian
coordinates, i, j = {x, y, z}, ρ is the mean density calculated as ρ = (ρwαw + ρaαa), w (water)
is the subscript indicating the quantities belonging to the “water” phase, a (air) is the
subscript indicating the quantities belonging to the “air” phase, αw is the volume fraction
of water, ui is the component of the velocity vector i = {x, y, z}, t is time, p is pressure, xi is
the component of the vector of the Cartesian coordinates i = {x, y, z}, and τij is the tensor of
viscous stresses which, according to the Boussinesq hypothesis, takes the form

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij

)
, (2)

where µ is the dynamic viscosity, δij is the Kronecker delta, and gi is the component of the
gravitational acceleration vector.

Gravity is included using an algorithm based on bulk force correction [20] to prevent
spurious oscillations related to the non-colocated position of unknowns on grids with an
arbitrary type of cells.

The system of equations is solved by numerical integration on a finite-volume grid.
The equations are discretized using an original fully implicit method for solving the Navier–
Stokes equations in simulations of free-surface multi-phase flows [17,21].

Before discretizing the equations in (1), it makes sense to use transformations to
improve the accuracy and stability of the solution. The momentum equation is written
in its half-divergent form because, as shown in [22], this representation compensates for
the approximation errors associated with the imperfect fulfillment of the mass balance
condition in the cell and resolves the shape of the free surface more accurately:

ρ
∂ui
∂t

+
∂

∂xj

(
uiujρ

)
− ui

∂

∂xj

(
ujρ
)
= − ∂p

∂xi
+

∂

∂xj
τij + ρgi. (3)

Thus, the system of Equation (1) has the following ultimate form:
∂ui
∂xi

= 0,

ρ ∂ui
∂t + ∂

∂xj

(
uiujρ

)
− ui

∂
∂xj

(
ujρ
)
= − ∂p

∂xi
+ ∂

∂xj
τij + ρgi,

∂αw
∂t + ∂

∂xi
(uiαw) = 0

(4)

The system of Equation (4) must be supplemented by boundary conditions. For
tsunami wave simulations, one generally uses “wall”-type boundary conditions for the
bottom and non-reflective boundary conditions for the outer boundaries of water bodies.
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There is no need to introduce any additional boundary conditions for runup simulations;
one uses the “wall” boundary condition only for the bottom surface. On solid walls, the
gradients of pressure and volume fraction are zero:

∂p
∂n

= 0,
∂αk
∂n

= 0, (5)

the value of velocity is zero:
u = 0, v = 0, w = 0, (6)

Thus, the fluid can neither slide along nor flow normal to the fluid/wall interface.
Velocity and shear stresses at the fluid/fluid interface must be continuous. Air at the upper
boundary has zero static pressure, and the gradients of velocity and volume fractions
are zero:

∂u
∂n

= 0,
∂v
∂n

= 0,
∂w
∂n

= 0,
∂αk
∂n

= 0 (7)

Equation (4) is discretized by finite volumes on an arbitrary unstructured mesh and
solved numerically by a fully implicit method [17,21] based on the known SIMPLE al-
gorithm. Simulations of free-surface flows involve certain modifications of the SIMPLE
algorithm. The basic formulas of the SIMPLE algorithm, its boundary conditions, and
implementation in the LOGOS software package are described in detail in [17,19,21]. Fol-
lowing is a summary of the equation discretization procedure given in as much detail as
required for the presentation below.

Consider the finite-volume discretization of the equations we use in this work. The
basic equation in solving system (4) is the transfer equation of the passive scalar ϕ:

∂ρϕ

∂t
+

∂

∂xi
(ρϕui) =

∂

∂xi
τi + Q. (8)

The first term in (8) is an unsteady term, the second one is a convection term, and the
latter one is a diffusion term. The equation can also contain sources and sinks represented
by the latter term Q. The tensor τi contains spatial derivatives of passive scalar ϕ. For
simplicity, assume that τi = µ ∂ϕ

∂xi
. Although this assumption is computationally much more

efficient, it has no impact on the generality of the methods.
Consider an arbitrary unstructured mesh as shown in Figure 1:
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Figure 1. Computational mesh.

Here, k is a set of faces of cell P consisting of a set of inner faces, kint, and a set of outer
faces, ks. The cell’s neighbor sharing inner face kint is denoted by Mkint

. The area vector of
face k is Si,k, where i = 0 ÷ 2 is the vector component. The vector from the center of cell P to
the center of cell M along face kint is denoted by di,kint

= ri,M − ri,P, and the vector from the
center of P to the face center is denoted by dks = rks − rP where ri is the radius vector.
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Time discretization of Equation (8) by the second-order scheme is performed using
the Adams–Bashforth scheme [23]:

3ρj+1ϕj+1 − 4ρjϕj + ρj−1ϕj−1

2∆t
+

[
∂

∂xj

(
ρϕuj

)
− ∂

∂xj
τij −Q

]j+1

= 0 (9)

Here, ∆t is a time step. To discretize Equation (8) in space, let us integrate it over the
volume VP of cell P and pass on to the integration over the area SP for the convection and
diffusion terms:∫

VP

3ρj+1ϕj+1 − 4ρjϕj + ρj−1ϕj−1

2∆t
dV +

∮
SP

ρϕuidSi −
∮
SP

µ
∂ϕ

∂xi
dSi −

∫
VP

QdV = 0 (10)

The source and the unsteady term are discretized as follows:

∫
VP

ρj+1ϕj+1 − ρjϕj

∆t
dV =

(
ρj+1ϕj+1 − ρjϕj

∆t

)
P

VP,
∫

VP

QdV = QPVP. (11)

The discrete equivalent of the diffusion term is written in the following form [22]:∮
SP

µ
∂ϕ

∂xi
dSi ≈∑

k

(
µ

∂ϕ

∂xi

)
k
Si,k = ∑

k
µk

(
∂ϕ

∂nk

)
k
|Sk|, (12)

where nk is the normal of face k. The product under the summation sign on the right side
contains a derivative along ∂ϕ

∂nk
, which, for an orthogonal mesh, can be defined as

∂ϕ

∂nk
|Sk| =

ϕM −ϕP

|dk|
|Sk|. (13)

For the finite-volume mesh approximation, the convection term is written as∮
SP

ρϕuidSi ≈∑
k
ρkϕkui,kSi,k ≈∑

k
ρkϕkFk, (14)

where Fk is the volume flux across face k. The face value of the quantity, ϕk, is determined
by the current discretization of the convection term. There are a lot of discretization
schemes that can be used for arbitrary unstructured meshes [22,24–26]. Among them, one
can distinguish some schemes having the highest usability rating in applied simulations:
Upwind Differences (UD), Linear Upwind Differences (LUD), QUICK, Central Differences
(CD), the Normalized Variable Diagram (NVD), and hybrid schemes (schemes listed above
in combination with the upwind scheme to improve monotonicity). The schemes differ
in their procedure of target quantity mapping onto faces and, as a result, have different
dissipation properties.

To discretize the convection term in the volume fraction transport equation, we use
special so-called “compressing” schemes [20,27,28]. Their distinguishing feature is that
such discretization must keep the interface as thin as possible, that is, prevent interface
smearing, and keep the volume fraction within a range between 0 and 1. One of the known
“compressing” schemes is the HRIC scheme [27], which is used in this paper. The HRIC
scheme is a “compressing” scheme used for preservation of the inter-phase boundary from
dissipation, and it has been implemented previously within the numerical method under
consideration [19].
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Using this discretization, Equation (8) is replaced by a system of linear algebraic
equations (SLAE) written for each cell:

APϕP + ∑
kint

Akint
ϕMkint

= Ri,P. (15)

Here, AP represents the diagonal elements of the matrix, Akint represents the off-
diagonal elements of the matrix, and Ri,P represents the elements of the vector for the right
part. To solve this SLAE, we use a multigrid solver, AMG [29].

Below, we describe the implementation of the damping method.

2.2. Damping Method

The wave damping method employs a damping layer next to the open boundaries to
absorb the kinetic energy of the incident wave. In real experiments, this effect is realized
using a porous intermediate layer located at the edges of the experimental pool. To
incorporate such absorption in momentum Equation (1), one can add one more source term,
i.e., Ii:

∂ui
∂t

+ ρ
∂

∂xj

(
uiuj

)
= − ∂p

∂xi
+

∂

∂xj
τij + ρgi + Ii, (16)

The additional source of momentum Ii is a resisting force, counteractive to the flow
pulse. This source is proportional and opposite in its sign to the velocity:

Ii = −δksεui. (17)

Here, ks is the drag coefficient, the value of which determines the rate of kinetic energy
absorption, and ε is a geometric factor, which is non-zero in the damping layer and which
grows linearly from the front of the damping zone to its end:

ε = min
(

max
(

1− l
L

, 1
)

, 0
)

, (18)

where l is the shortest distance to the boundary and L is the width of the damping zone. Such
linear distribution reduces the effect of wave reflection from the front of the damping zone.

According to Equation (18), the source, (17), acts only in the damping region, while its
value is reduced to zero in the rest of the computational domain. The solution produced in
the damping area is not physical due to artificially enforced suppression of the wave pulse.
The basic task of this source is to reduce, at maximum, the amplitude of reflected waves.

There are two free parameters in this method: parameter ks and the width of the
damping layer L. These parameters directly control the efficiency of the wave absorption
and, consequently, the amplitude of reflected waves. Their optimal values depend on the
parameters of incident waves: wave amplitude, wavelength, and channel depth. To find
the optimal values of ks and L, we solve the problem of a solitary wave of height H traveling
across a water tank. Suppose a wave with given parameters travels from the left boundary
to the free boundary on the right.

Its initial waveform is defined by

η(x, 0) = Hsech2(γ(x − Xs)), (19)

where γ =
√

3H
4d , d is channel depth, L = Xs − X0 =

arccosh(
√

20)
γ , Xs is a horizontal coordi-

nate in point S, X0 is a horizontal coordinate of the boundary, and h is the height of the
wave ridge.

The initial wave velocity is

u(x, 0) =
√

g
d

η(x, 0). (20)
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To determine the optimal value of the damping parameter ksour, we run simulations
for channels of different depths. The cases under consideration are summarized in Table 1.

Table 1. Problem settings.

Case Channel Depth, m Channel Length, mm Wave Height, m Wavelength, m L, m

1 0.32 23 0.064 4.24 4
2 3.2 230 0.64 40.24 40
3 32 2300 6.4 402.4 400
4 320 23,000 64 4024 4000

First, we run wave simulations with a varied channel depth to choose the optimal
damping parameter ksour, ensuring the minimum amplitude of the reflected wave. For the
selected constant depth of the channel, we then vary the width of the damping zone L with
the same wavelength.

Let us first consider the four cases specified in Table 1. To choose the optimal damping
parameter, we compare the amplitude of the reflected wave with the amplitude of the
incident wave at the tide gauge near the damping zone.

Figure 2 shows plots that compare the amplitude of the reflected wave with different
damping parameters for the varied channel depths.
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Figure 2. Tide gauge data comparing the amplitude of the reflected wave with different damping
parameters for the varied channel depths.

The plots suggest that the optimal value of ksour for the channel depth of 0.32 m is
2000 s−1; for 3.2 m, it is 750 s−1; for 32 m, it is 175 s−1; and for 320 m, it is 75 s−1. Based
on the resulting data, the following curve of the damping parameter as a function of the
channel depth is plotted (Figure 3):

ksour =
1.1 · 103
√

d
, (21)

where d is the channel depth.
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Next, we can define the obtained wave shape as a function of the form of chang-
ing damping coefficient ε. Three main options are considered, according to which the
form is represented as the function from the exponent, the function from a sine, and the
function from an antitangent. The damping coefficient was selected in compliance with
Equation (21). A function distribution pattern is given in the following plot (Figure 4).
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A series of numerical experiments from Table 1 were then carried out. Coefficient
ksour was chosen according to Equation (21). The character of the curve of the coefficient
distribution in the area of the damping zone was a variable parameter. The Figure 5 shows
the readings of tide meters for the differently scaled channels for four options of multiplier
factor ε distribution. Symbols used in the following figure are introduced here: f(x) is a
linear function, f(sin) is a function of sine, f(exp) is an exponential function, and f(arctg) is a
function of an antitangent.
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The results show that the least amplitude for the reflected wave is produced with a
linear distribution of ε, and it is thus used in further computations.

The optimal width of the damping zone is determined by varying L at a constant
ksour. The wavelength λ is 40.24 m, and the wave height is 0.64 m. The channel parameters
chosen were a length of 13λ and a depth of 3.2 m, and the width of the damping zone was
varied (L = 1÷9λ). The damping parameter is defined by (21).

Figure 6 shows tide gauge data measured at a point located 20 m upstream of the front
side of the damping zone. In the plots, the amplitudes of the wave incidents on the tide
gauge are compared to the amplitudes of the reflected waves.
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The plots demonstrate that the amplitude of the reflected wave predictably grows with
an increase in the width of the damping zone. Amplitude relationships between reflected
and incident waves for each case are given in Table 2.



Geosciences 2022, 12, 427 10 of 14

Table 2. Relationship between the amplitude of the reflected wave and the width of the damping
zone.

Width of Damping Zone Amplitude Relationship between Reflected
and Incident Waves, %

1λ 23.8
2λ 9.7
3λ 7.8
4λ 6.5
5λ 5.3
6λ 4.6
7λ 4.5
8λ 4.4
9λ 4.4

The table indicates that the amplitude relationship between the reflected wave and
the incident wave for a damping zone with a width of 6λ is less than five percent. A further
increase in zone width has almost no effect on the amplitude of the reflected wave. As a
result of these numerical experiments, we establish the criterion that controls the degree of
wave reflection from the boundary.

Criterion. To ensure that the magnitude of the reflected wave does not exceed ten
percent, the width of the damping zone must be in the range of two to six incident wave-
lengths. If the damping layer is wider than six incident wavelengths, the reflected wave
does not exceed five percent.

The wave damping method is preferable when applied to real problems because it can
be tuned to any specific problem by choosing the optimal damping parameters.

3. Numerical Experiments. Bathymetry-Aware Simulation of Tsunami Waves
Traveling across a Real Water Body

To test the method for applying non-reflective boundary conditions, we ran numerical
simulations of a decaying single pulse in a water area near Sakhalin Island while consider-
ing its real bathymetry. The problem geometry is shown in Figure 7. The size of the area in
the X direction is 300,000 m, and in the Y direction it is 350,000 m. The maximum depth of
the aquatic area reaches 7600 m. At the center of the water area, we applied a single pulse
with a height of 30 m and a width of 40 km.
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To simulate the propagation of the generated waves, a mesh model of 3 million cells
was generated. The size of the cells in horizontal directions was ensured to be 2000 m. The
mesh became more refined towards the surface of the phase division to simulate wave
propagation more accurately; minimum cell size in the vertical direction for the region of
phase division was 0.2 m. The required computational resources were 80–120 processors
and the computation time was 3–5 h.

Its decay created cylindrical waves that traveled over the water surface. When the
waves reached the open boundaries of the water area, they had to leave the domain without
reflection. To test the performance of the method, we simulated two cases. In the first
case, all the side boundaries were non-reflective. In the second case, the wall boundary
conditions were applied.

Figure 7 shows the problem schematic. The non-reflective boundary is implemented
as a near-boundary damping layer simulating a porous region, which absorbs incident
waves (shown with a dashed line). Figure 7 shows the locations of the tide gauges. Tide
gauge 1 was placed in the way of the propagating wave, and tide gauge 2 was placed in
the damping zone. The tide gauge data from point 1 allowed us to estimate the amplitude
of the waves reflected from the side boundary, while tide gauge 2 indicated the degree of
attenuation in the damping zone.

Figure 8 shows the time series for the free surface position for both cases. Figure 9
presents the tide gauge data at points 1 and 2. As one can see in Figure 8, at 700 s, when
the waves reached the side boundaries the wave patterns in both cases were the same,
which is evidenced by the tide gauge data at point 1 (Figure 9) up to 1000 s. In the first
case (non-reflective boundary conditions), at 1200 s and 1400 s, one can see that the waves
decayed when they reached the side boundaries, while in the second case (wall boundary
conditions) one can clearly distinguish that the waves reflected from the side boundaries.
The tide gauge data at point 2 (Figure 9) indicate that the amplitude of the first incident
wave in the damping zone was 65% lower. At 1200 s, the wave reflected from the side wall
came back to tide gauge 1. The pane with its data (Figure 9) shows that the wave amplitude
at this point in space and time, considering the reflected wave, was 80 percent higher in the
second case than in the first case.

It is important to note that a part of the land located in the left upper corner of the
domain is in the shallow water area, which results in the deceleration of the propagating
wave and growth of its height. As research on groundswells is not the purpose of this
numerical experiment, we ignored the fact that the wave that came in the direction of
this piece of land had changed its propagation shape. In case we need to reproduce the
groundswell of such waves at the shore without changes in its shape under the effect of
damping force, we could reformulate the initial problem’s setup.

The amplitude of the second peak in the pane displaying tide gauge data at point 2 for
the non-reflective boundary conditions is less than 10 cm (indicated by the arrow), which is
considered to be an acceptable error due to the mesh resolution in the area of free surface.
Even if it returns into the domain, this wave has almost no effect on the primary wave.

Thus, the numerical simulations demonstrate that the implemented method for non-
reflective boundaries can be used to simulate tsunami waves in water areas within the
world’s oceans while considering their real bathymetry.
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4. Conclusions

In this paper, we considered a wave absorption method implementation in free-
surface simulations. The discussed wave absorption method employs an artificial damping
zone. We identified free parameters for the damping method and revealed an empirical
relationship between the values of the damping zone parameters and the depth of the
simulated channel. We also investigated different functions of distribution for the free
geometric parameter of the method under consideration. As a case study, we simulated
waves traveling in a water area in the Pacific Ocean near Sakhalin Island.

Author Contributions: Conceptualization, A.K. (Andrey Kozelkov) and A.K. (Andrey Kurkin); data
curation, E.T., V.K. and D.U.; formal analysis, A.K. (Andrey Kozelkov) and V.K.; investigation, E.T.,
A.K. (Andrey Kozelkov), A.K. (Andrey Kurkin), D.S., V.K. and D.U.; methodology, A.K. (Andrey
Kozelkov) and A.K. (Andrey Kurkin); software, E.T., V.K. and D.U.; supervision, A.K. (Andrey
Kozelkov); validation, E.T., D.S. and D.U.; visualization, E.T. and D.U.; writing—original draft,
A.K. (Andrey Kozelkov) and A.K. (Andrey Kurkin); writing—review and editing, A.K. (Andrey
Kozelkov) and A.K. (Andrey Kurkin). All authors have read and agreed to the published version of
the manuscript.



Geosciences 2022, 12, 427 13 of 14

Funding: The results have been obtained with financial support from the Ministry of Science and
Higher Education of the Russian Federation (Project No. FSWE-2021-0009) and the Council of the
Grants of the President of the Russian Federation for state support of Leading Scientific Schools of
the Russian Federation (Grant No. NSH-70.2022.1.5).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fürst, J.; Musil, J. Development of non-reflective boundary conditions for free-surface flows. In Proceedings of the Topical

Problems of Fluid Mechanics, Prague, Czech Republic, 21–23 February 2018.
2. Mani, A. On the reflectivity of sponge zones in compressible flow simulations. In Annual Research Brief ; Ames Research Center:

Mountain View, VA, USA, 2010.
3. Salvesen, H.-C.; Teigland, R. Non-reflecting boundary conditions applicable to general purpose CFD simulators. Int. J. Numer.

Meth. Fluids 1998, 28, 523–540. [CrossRef]
4. Giles, M. Non-Reflecting Boundary Conditions for the Euler Equations; Computational Fluid Dynamics Laboratory, Department of

Aeronautics and Astronautics, Massachusetts Institute of Technology: Cambridge, MA, USA, 1988.
5. Granet, V.; Vermorel, O.; Leonard, T.; Gicquel, L.; Poinsot, T. Comparison of nonreflecting outlet boundary conditions for

compressible solvers on unstructured grids. AIAA J. 2010, 48, 2348–2364. [CrossRef]
6. Dorodnitsyn, L.V. Non-reflecting boundary conditions for the gas dynamics equations systems. J. Comput. Math. Math. Phys.

2002, 42, 522–549. (In Russian)
7. Givoli, D.; Neta, B. High-order nonreflecting boundary conditions for the dispersive shallow water equations. J. Comput. Appl.

Math. 2003, 158, 49–60. [CrossRef]
8. Carmigniani, R.A.; Violeau, D. Optimal sponge layer for water waves numerical models. Ocean Eng. 2018, 163, 169–182. [CrossRef]
9. Wei, G. The Sponge Layer Method in FLOW-3D; Flow Science, Inc.: Santa Fe, NM, USA, 2015.
10. Peric, R.; Abdel-Maksoud, M. Reliable Damping of Free Surface Waves in Numerical Simulations. Ship Technol. Res. 2016, 63,

1–13. [CrossRef]
11. Hsu, T.W.; Ou, S.H.; Yang, B.D.; Tseng, I.F. On the damping coefficients of sponge layer in Boussinesq equations. Wave Motion

2005, 41, 45–57. [CrossRef]
12. Wang, D.; Dong, S. A discussion of numerical wave absorption using sponge layer methods. Ocean Eng. 2022, 247, 110732.

[CrossRef]
13. Torregrosa, A.J.; Fajardo, P.; Gil, A.; Navarro, R. Development of Non-Reflecting Boundary Condition for Application in 3D

Computational Fluid Dynamics Codes. Eng. Appl. Comput. Fluid Mech. 2012, 6, 447–460. [CrossRef]
14. Kar, S.K.; Turco, R.P. Formulation of a Lateral Sponge Layer for Limited-Area Shallow-Water Models and an Extension for the

Vertically Stratified Case. Mon. Wea. Rev. 1994, 123, 1542–1559. [CrossRef]
15. Kozelkov, A.S. The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations. J. Appl. Mech.

Tech. Phys. 2017, 58, 1192–1210. [CrossRef]
16. Kozelkov, A.S.; Efremov, V.R.; Kurkin, A.A.; Pelinovsky, E.N.; Tarasova, N.V.; Strelets, D.Y. Three dimensional numerical

simulation of tsunami waves based on the Navier-Stokes equations. Sci. Tsunami Hazards 2017, 36, 183–196.
17. Kozelkov, A.S.; Lashkin, S.V.; Efremov, V.R.; Volkov, K.N.; Tsibereva, Y.A.; Tarasova, N.V. An implicit algorithm of solving

Navier–Stokes equations to simulate flows in anisotropic porous media. Comput. Fluids 2018, 160, 164–174. [CrossRef]
18. Kozelkov, A.S.; Kurkin, A.A.; Sharipova, I.L.; Kurulin, V.V.; Pelinovsky, E.N.; Tyatyushkina, E.S.; Meleshkina, D.P.; Lashkin, S.V.;

Tarasova, N.V. Minimal basis tasks for validation of methods of calculation of flows with free surfaces. Trans. R.E. Alekseev NSTU
2015, 2, 49–69.

19. Tyatyushkina, E.S.; Kozelkov, A.S.; Kurkin, A.A.; Pelinovsky, E.N.; Kurulin, V.V.; Plygunova, K.S.; Utkin, D.A. Verification of the
LOGOS Software Package for Tsunami Simulations. Geosciences 2020, 10, 385. [CrossRef]

20. Efremov, V.R.; Kozelkov, A.S.; Kornev, A.V.; Kurkin, A.A.; Kurulin, V.V.; Strelets, D.Y.; Tarasova, N.V. Method for taking into
account gravity in free-surface flow simulation. Comput. Math. Math. Phys. 2017, 57, 1720–1733. [CrossRef]

21. Chen, Z.J.; Przekwas, A.J. A coupled pressure-based computational method for incompressible/compressible flows. J. Comp.
Phys. 2010, 229, 9150–9165. [CrossRef]

22. Hrabry, A.I.; Zaitsev, D.K.; Smirnov, Y.M. Numerical simulation of currents with free surface based on VOF method. Trans. Krylov
State Res. Cent. 2013, 78, 53–64. (In Russian)

23. Roache, P. Computational Fluid Dynamics; Mir: Moscow, Russian, 1980; 618p, (Translated into Russian).
24. Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Department

of Mechanical Engineering, Imperial College of Science, London, UK, 1996.
25. Jasak, H.; Weller, H.G.; Gosman, A.D. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J.

Numer. Methods Fluids 1999, 31, 431–449. [CrossRef]
26. Gaskell, P.H. Curvature-compensated convective-transport—SMART, A new boundedness-preserving transport algorithm. Int. J.

Numer. Methods Fluids 1988, 8, 617–641. [CrossRef]

http://doi.org/10.1002/(SICI)1097-0363(19980915)28:3&lt;523::AID-FLD735&gt;3.0.CO;2-5
http://doi.org/10.2514/1.J050391
http://doi.org/10.1016/S0377-0427(03)00462-X
http://doi.org/10.1016/j.oceaneng.2018.05.068
http://doi.org/10.1080/09377255.2015.1119921
http://doi.org/10.1016/j.wavemoti.2004.05.003
http://doi.org/10.1016/j.oceaneng.2022.110732
http://doi.org/10.1080/19942060.2012.11015434
http://doi.org/10.1175/1520-0493(1995)123&lt;1542:FOALSL&gt;2.0.CO;2
http://doi.org/10.1134/S0021894417070057
http://doi.org/10.1016/j.compfluid.2017.10.029
http://doi.org/10.3390/geosciences10100385
http://doi.org/10.1134/S0965542517100086
http://doi.org/10.1016/j.jcp.2010.08.029
http://doi.org/10.1002/(SICI)1097-0363(19990930)31:2&lt;431::AID-FLD884&gt;3.0.CO;2-T
http://doi.org/10.1002/fld.1650080602


Geosciences 2022, 12, 427 14 of 14

27. Muzaferija, S.; Peric, M.; Sames, P.; Schelin, T. A two-fluid Navier-Stokes solver to simulate water entry. In Proceedings of the
22nd Symposium of Naval Hydrodynamics, Washington, DC, USA, 9–14 August 1998.

28. Waclawczyk, T.; Koronowicz, T. Remarks on prediction of wave drag using VOF method with interface capturing approach. Arch.
Civ. Mech. Eng. 2008, 8, 5–14. [CrossRef]

29. Volkov, K.N.; Kozelkov, A.S.; Lashkin, S.V.; Tarasova, N.V.; Yalozo, A.V. A Parallel Implementation of the Algebraic Multigrid
Method for Solving Problems in Dynamics of Viscous Incompressible Fluid. Comput. Math. Math. Phys. 2017, 57, 2030–2046.
[CrossRef]

http://doi.org/10.1016/S1644-9665(12)60262-3
http://doi.org/10.1134/S0965542517120119

	Introduction 
	Governing Equations 
	Mathematical Model 
	Damping Method 

	Numerical Experiments. Bathymetry-Aware Simulation of Tsunami Waves Traveling across a Real Water Body 
	Conclusions 
	References

