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Abstract: Benthic foraminiferal assemblages have been studied at 11 sediment surface samples
located in the Neretva Channel covering the delta habitat and the adjacent open sea areas. The major
objective of the investigation was to explore the main environmental parameters affecting the benthic
foraminifera compositional changes. To this end, a statistical approach was applied that integrates
micropaleontological data with physical, geochemical and sedimentological parameters (total organic
carbon and grain size). Statistical analyses identified four distinct groups (cluster A1, A2, B1, B2)
corresponding to different environmental settings. Cluster A1 groups samples under Neretva river
influence and is characterized by Aubignyna perlucida, Nonionella turgida, Eggerelloides scaber and
Rectuvigerina sp.; species able to live in organic-matter-rich sediments and in a wide range of oxygen
content. Cluster A2 includes samples distant from the fluvial outlet and samples along the NW
coast partially influenced by the Neretva river plume. In these environmental conditions, Ammonia
beccarii, Bulimina marginata, Nonionella turgida and Textularia sp. resulted as the most characteristic
taxa. Cluster B1 distinguishes the deepest stations which are in connection with the open Adriatic
Sea. Here Asterigerinata mamilla, Buccella granulata, Cibicides group, Reussella spinulosa and Textularia
sp. reach their maximum abundance associated with coarse-grained sediments. Cluster B2 groups
samples collected in the inner bay of the southernmost sector of the studied area characterized by silt
and clay and a negligible influence by river inputs. The benthic microfauna is principally composed
of Miliolids, Porosononion granosum and Textularia sp.

Keywords: benthic foraminifera; Neretva Channel; organic matter; water depth; riverine influx

1. Introduction

Benthic foraminifera (unicellular protists) have been widely used to reconstruct pa-
leoenvironmental changes since they are very sensitive to ambient conditions including
organic matter fluxes, oxygen content, salinity, type of substrate and others [1–6]. Moreover,
foraminiferal assemblages are influenced by their immediate environment and have often
served as modern and past analogues to characterize paleoenvironments [7–9]. There-
fore, documenting and understanding the regional distribution and ecological response of
foraminifera is of pivotal importance. The majority of surveys on the current distribution of
benthic foraminifera have been carried out in the western part of the Adriatic Sea [10–19],
whereas less is known about their presence on the eastern coast [20–26]. Here we report for
the first time the distribution patterns of benthic foraminifera in the Neretva Channel, a
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semi-enclosed basin located along the southernmost part of the Croatian coast. The Neretva
river is the fifth largest Mediterranean river, ranked by annual water discharge [27]. The
river mouth and its adjacent semi-enclosed marine environment provide a good example of
land–sea interactions, particularly between sediment type and organic matter content in a
microtidal, low-wave energy, and river-dominated coastal sedimentary system [28]. While
the sediment dynamics and geochemistry were examined [28–30], no investigation of the
microfauna was performed. The aims of this study are: (1) to examine the quantitative
distribution of the benthic foraminifera taxa in the Neretva Channel and (2) to identify the
main factors affecting the spatial compositional changes of the foraminiferal assemblages.
This kind of study adds information on benthic foraminiferal ecological preferences useful
for a better reconstruction of past environmental conditions.

2. Study Area

The Neretva Channel is bounded to the NE by the Croatian coastline, to the NW
by the open Adriatic Sea through the Korcula Channel, and to the SW by the Peljesac
Peninsula (Figure 1). The hydrological setting is influenced by the intrusion of the highly
saline oligotrophic waters from the open Adriatic Sea [31] and by the freshwater discharge
from the Neretva River [28,32,33]. The Neretva is the largest river on the Croatian part of
the eastern Adriatic coast, and the only one forming a deltaic system [34]. The Neretva
Channel is a microtidal low-wave energy environment characterized by river-dominated
sedimentation processes [30,35].
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Figure 1. Map of the study area with the locations of the 11 investigated samples (orange circles). 
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(www.emodnet.eu/bathymetry, accessed on 13 October 2022 ). Bathymetry contour interval is 20 m. 
Red box in the inset indicates the study area. 

The surface sediment is composed mainly of clayey silt, in particular in the area in 
front of the river delta and in the northeast part of the channel. Sedimentation is uniform 
in most of the area; this is because the river creates a hypopycnal plume at the mouth that 
distributes fine-grained particles over the entire channel [23,29]. However, two coarser-
grains depositional zones with different natures are observed [28]. In detail, in the north-
western part of the channel, the sediment is composed mainly of sand, probably related 
to the influence of higher energy currents from the Adriatic Sea that remove the finer part 
of the sediments [28]. The southernmost part of the southeastern sector of the channel is 

Figure 1. Map of the study area with the locations of the 11 investigated samples (orange circles).
Shaded relief image derived from bathymetric data with sun illumination from NW, 45◦ over the
horizon and no vertical exaggeration. Elevation and bathymetry data from EMODnet gridded data
(www.emodnet.eu/bathymetry, accessed on 13 October 2022 ). Bathymetry contour interval is 20 m.
Red box in the inset indicates the study area.

The surface sediment is composed mainly of clayey silt, in particular in the area
in front of the river delta and in the northeast part of the channel. Sedimentation is
uniform in most of the area; this is because the river creates a hypopycnal plume at the
mouth that distributes fine-grained particles over the entire channel [23,29]. However, two
coarser-grains depositional zones with different natures are observed [28]. In detail, in the
north-western part of the channel, the sediment is composed mainly of sand, probably
related to the influence of higher energy currents from the Adriatic Sea that remove the
finer part of the sediments [28]. The southernmost part of the southeastern sector of the
channel is instead characterized by relict sandy-silt sediment as this zone only receives river
sediment sporadically during events of strong hydro-dynamism in the channel [28,30,36].

www.emodnet.eu/bathymetry
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The mineral composition of sediments is quartz, calcite and clay, with a secondary
presence of plagioclase and dolomite [30]. Marine sediment compositions are mainly con-
trolled by the local geology, but can also reflect anthropogenic discharges from industrial
and urban activities, thus increasing concentrations of trace metals and organic matter [37].
Most of the mainland coast is built of highly permeable limestone without a natural barrier
between the groundwater of the karstic fields in the hinterland and the freshwater subma-
rine springs [38]. Higher discharge of the submarine springs in winter causes a spreading
of the less saline surface waters into the Neretva Channel and a compensatory inflow in the
bottom layer. The strong NE “Bora” wind can, however, reverse that circulation. During
the summer, the circulation pattern depends entirely on the wind direction [39].

3. Materials and Methods

Sediment samples were collected in 2006 during the NERES06 cruise on board R/V
Bios DVA along three parallel NW–SE transects [28] (Figure 1; Table 1) in the frame of
the Project ADRICOSM_NERES: ADRIatic sea integrated COastal areaS and river basin
Management system—Environmental Regeneration and Sustainable Development of the
delta of the NEretva river.

Table 1. List of the 11 sites considered in this study with geographical coordinates and water depth.

Site Latitude Longitude Water Depth (m)

1 BC 43◦00.702′ 17◦25.080′ 24
2 BC 43◦00.017′ 17◦23.998′ 29
6 BC 43◦05.946′ 17◦14.193′ 47
7 G 43◦04.629′ 17◦11.948′ 51
8 G 43◦07.120′ 17◦16.524′ 46

9 BC 43◦04.878′ 17◦19.591′ 39
11 G 43◦02.939′ 17◦21.937′ 32
12 G 43◦01.496′ 17◦22.343′ 34

14 BC 43◦08.256′ 17◦22.343′ 29
15 G 42◦58.147′ 17◦27.579′ 24
16 G 42◦56.645′ 17◦29.626′ 26

Here we report micropaleontological results of benthic foraminifera from the upper
0–2 cm surface sediment layer collected in 11 sites using Van Veen grab (G) and box-corer
(BC) samplers (Table 1). In detail, small cores (about 30 cm long and 8 cm in diameter)
were collected by subsampling the central part of the grab samples, which was assumed as
relatively undisturbed.

3.1. Environmental Parameters

The environmental parameters used in this study are from the dataset provided and
described in [28]. Here we consider sedimentological (percentage of clay/silt/sand) and
geochemical (TOC, C/N) data performed on the same samples analysed for micropaleonto-
logical investigation (surface levels 0–2 cm).

3.2. Benthic Foraminiferal Analysis

In this study, we considered the total benthic foraminiferal assemblages (living and
dead specimens). The total assemblage represents a more reliable picture of the population
as it integrates many multiple generations (seasonal variation) of foraminifera [40,41]. Con-
sequently, the considered foraminiferal content (living and dead specimens) corresponds
to average environmental conditions throughout the deposition of the collected sediment
layer (0–2 cm).

For foraminiferal investigation, samples were washed over a 63 µm sieve then oven-
dried at 50 ◦C and weighed. Identification and counting analysis were performed under a
Leica MZ 8 stereomicroscope on the sediment fraction > 125µm. We considered all speci-
mens present in the whole sample or in representative aliquots using an Otto microsplitter,
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containing at least 300 specimens. Taxonomy identification of foraminifera was based
mainly on systematic studies from Adriatic and extra-Mediterranean areas [42–44]. Online
World Modern Foraminifera Database [45,46] was also consulted.

Less abundant species with similar ecological characteristics were merged together
into major species groups. Adelosina mediterranensis and Adelosina sp. were merged into the
Adeloisina group. Both species are indicative of shallow marine environments (e.g., [47]).
Other porcelaneous taxa were grouped in Miliolids (Miliolinella, Pyrgo, Quinqueloculina,
Spiroloculina and Triloculina genera).

Although phylogenetically distinct species, Lobatula lobatula (i.e., Cibicies lobatulus, [48]),
and Cibicides refulgens are often grouped together in environmental studies due to their
notable morphological similarity and intermediate forms between the two species [49].
They are both typical taxa of the infralittoral environment with strong near-bottom cur-
rents [50–53]. Here they are referred to as the Cibicides group.

Identified Elphidium specimens were divided into two groups based on different life
strategies (having a keel or not, being infaunal or epifaunal, according to [24,26,54,55]).
Keeled elphidiids species are here represented by Elphidium crispum and Elphidium macellum.
They are known as typical epiphyte shallow marine taxa [54,56,57]. Unkeeled elphidiids
species in our data set include only Porosononion granosum, an infaunal organism, abundant
in marginal-marine environments that tolerates wide salinity changes (euryhaline) [54,58].

The data are reported in the percentage of specimens on the total assemblage (relative
abundance %) and the number of specimens per gram of dry bulk sediment for each of
the examined samples (BFN) (Supplementary Table S1). Foraminiferal biodiversity was
estimated using different diversity indices: Shannon (H) (that varies from 0 for commu-
nities with only a single taxon to high values for communities with many taxa, each with
comparable abundance); Dominance (D) evidences the occurrence of the opportunistic taxa
(it ranges from 0, all taxa are equally present, to 1 one taxon dominates the community
completely), and Simpson’s Index of Diversity (1-D) (the value of this index also ranges
between 0 and 1, the greater the value, the greater the sample diversity. The index repre-
sents the probability that two individuals randomly selected from a sample will belong to
different species).

All indices were calculated using the PAlaeontological STatistics (PAST) package [59,60].

3.3. Statistical Analyses

Statistical analyses include all taxa with relative abundance > 3% in at least one sample
(total 23 taxa/groups) in order to reduce background noise due to the infrequent taxa.

As physical and chemical variables TOC, grain size and water depth were considered.
The foraminiferal assemblage was analysed by means of a cluster analysis based

on Ward’s criterion [61]. In order to investigate patterns of covariance between the
foraminiferal data and the chemical and physical variables, we performed a two-block
partial least squares analysis (2B-PLS). This statistical technique is suitable for studying
matrices with a relatively low sample size and highly correlated variables [62]. Recently it
was successfully applied to examine relationships between benthic foraminiferal communi-
ties and seafloor morphology in the southern Mediterranean area [63]. The two-block PLS
method differs from other established multivariate statistics (e.g., Canonical Correlation
Analysis) in that it aims to find latent variables that can explain the covariance between
two multivariate matrices, returning variables that explain the covariance between two sets
of variables as much as possible [64]. All analyses were performed in R 4.2.0 (R Core Team
2022- Foundation for Statistical Computing, Vienna, Austria)

4. Results
4.1. Environmental Data

Sediment grain size analyses indicated that the Neretva Channel deposits are generally
composed of clayey silts with a silty dominant fraction and a low fraction of sand (Figure 2).
In particular, the percentage of clay is overall high in the entire channel, with a minimum
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of 52.30% in site 7 G and a maximum of 69.90% in site 8 G. In the upper 2 cm surface
sediment, the coarser materials were found in the southernmost zone (sand 31% in site
15 G) and in the north-western sector of the channel (sand 51% and 39% at sites 7 G and
6 BC, respectively; Figure 3; [28]). As a consequence, the silt fraction was the lowest in the
7 G and 6 BC sites (3.02% and 4.24%, respectively).

Surficial Total Organic Carbon (TOC) (Figure 2) varies from 0.6% (6 BC) to 1.06%
(1 BC). The maximum values of TOC are detected in samples in the sites close to the river
mouth (1 BC and 2 BC) (Figure 2). The C/N ratios range from 6.81% (16 G) to 9.6 (1 BC)
(Figure 2; [28]). Samples closer to the river mouth display significantly higher C/N ratios
(Figure 2) indicative of a terrestrial signature due to the fluvial input [28].
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Table 2. Relative percentages of the most common species (>3% in at least one sample) identified in
the surface sediment layer (0–2 cm).

Sample 1 BC 2 BC 6 BC 7 G 8 G 9 BC 11 G 12 G 14 BC 15 G 16 G

Adelosina group 0.91 1.15 1.42 3.24 0.95 1.32 0.57 0.81 0.89 0.55 3.08
Ammonia beccarii 4.97 5.95 2.84 2.23 6.64 5.38 3.41 9.80 8.93 3.02 2.20
Aubignyna perlucida 3.66 5.18 0.19 0.45 2.70 1.84 3.87 1.78 1.76
Asterigerinata mamilla 0.19 1.83 3.04 1.33 0.45 0.43 1.43 2.47 0.44
Buccella granulata 0.39 0.77 4.67 4.86 0.34 2.61
Bulimina basispinosa 2.09 1.34 2.84 2.23 4.17 3.81 6.83 3.06 1.79 1.65 1.76
Bulimina elongata 7.85 2.88 1.42 1.72 5.12 3.36 5.69 4.08 3.27 3.57 6.17
Bulimina marginata 2.36 1.20 2.84 2.53 10.25 6.05 3.70 6.33 4.17 0.55 4.41
Cibicides group 0.65 1.54 4.67 7.09 1.90 2.58 1.28 2.04 3.57 1.92 2.20
Hanzawaia boueana 0.13 0.19 1.42 3.75 0.19 0.34 2.61
Keeled elphidiids species 1.04 1.15 1.42 2.23 2.09 3.25 2.84 1.84 2.38 0.55 3.96
Nonionella turgida 7.85 4.03 1.62 0.71 3.80 9.19 6.83 6.12 7.44 4.66 1.76
Miliolids 4.70 6.13 5.08 4.55 7.03 10.21 9.66 7.55 8.64 12.07 15.85
Rectuvigerina sp. 8.77 6.91 1.62 0.71 2.85 3.59 3.41 2.65 3.57 4.12 2.64
Reussella spinulosa 0.65 3.65 14.40 11.65 4.93 3.36 3.56 1.63 3.27 5.76 6.17
Rosalina sp. 0.92 3.84 1.42 4.36 3.61 1.46 1.42 1.84 2.08 5.08 4.41
Unkeeled elphidiids species 9.55 8.06 17.04 15.91 12.52 11.66 11.1 12.04 10.42 20.58 13.22
Valvulineria bradyana 7.33 8.06 2.09 3.59 7.40 7.76 5.65 1.92 1.76
Adercotryma glomeratum 0.39 3.45 0.20 0.19 0.56 1.19
Eggerelloides scaber 8.64 3.07 0.20 0.10 2.66 3.25 2.99 2.24 2.98 0.41 0.44
Lagenammina difflugiformis 6.41 6.53 1.22 0.10 0.76 1.91 1.28 0.61 2.98 1.78 0.44
Sigmoilopsis schlumbergeri 0.39 2.30 1.01 1.42 2.28 2.69 2.70 3.67 1.19 0.27 3.52
Textularia sp. 11.78 11.13 23.73 20.36 15.75 14.01 16.64 17.96 15.48 13.31 17.18

4.2. Benthic Foraminifera

A total of 50 taxa were identified in the surface samples, including 4 groups (Adelosina,
Cibicides, keeled and unkeeled elphidiis) and generic Miliolids (Table S1). The recorded
individuals were predominantly calcareous forms (mainly Ammonia beccarii, Bulimina
marginata, Bulimina elongata, Porosononion granosum, Nonionella turgida and Valvulineria
bradyana) and agglutinated forms (e.g., Eggerelloides scaber, Lagenammina difflugiformis and
Textularia sp.).

Regarding microhabitat, the most predominant were infaunal species, [4,14,65–67]
such as Ammonia beccarii, Bulimina basispinosa, Bulimina elongata, Bulimina marginata, Non-
ionella turgida, Reussella spinulosa, Eggerelloides scaber and Textularia sp. Less abundant
species were epifaunal taxa belonging to the keeled elphidiids and Quinqueloculina gen-
era [47,54]. Miliolids ranged largely in the studied samples, from 4.55% (7 G) to 15.85%
(16 G). The relative abundance of the common species (>3% in at least one sample) were
listed in Table 2 and their spatial distribution is shown in Figure 3. These species were
selected for statistical analyses.

Diversity indexes for the different assemblages are reported in Table 3 and Figure 4.
On average, 43 taxa were identified per sample, ranging from a minimum of 35 (12 G) to a
maximum of 50 taxa off the Neretva river mouth (1 BC, 2 BC). The number of specimens
per gram of dry sediment mass (BFN) was largely variable, ranging from a minimum of 33
(12 G) to a maximum of 663 specimens (6 BC).

Benthic foraminiferal assemblages are characterized by the Shannon (H) index ranging
between 2.77 in 6 BC and 3.29 in 2 BC, with a median of 3.03; Dominance (D) varied
between 0.05 in 2 BC and 0.11 in 6 BC, with a median of 0.07; finally, the Simpson index (S)
is not significantly different in the investigated area with comparable values throughout
the samples, the extremes found in samples 6 BC and 2 BC (0.89–0.95, respectively) have a
median of 0.92.
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Table 3. Diversity indexes for the foraminifera assemblages in the different samples: number of Taxa,
number of specimens/gr sediment (BFN), Shannon–Wiener entropy index (H), Dominance (D) and
Simpson’s Index of Diversity (1-D).

Sample Taxa BFN Shannon_H Dominance_D Simpson_1-D

1 BC 50 38 3.06 0.07 0.93
2 BC 50 38 3.29 0.05 0.95
6 BC 41 663 2.77 0.11 0.89
7 G 42 394 2.87 0.10 0.90
8 G 41 67 3.06 0.07 0.93

9 BC 50 76 3.19 0.06 0.94
11 G 44 45 3.06 0.07 0.93
12 G 35 33 2.94 0.08 0.92

14 BC 38 29 3.07 0.07 0.93
15 G 44 199 3.03 0.08 0.92
16 G 37 54 3.06 0.07 0.93
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The cluster analysis on foraminiferal fauna enabled the distinction of two major groups
of samples (A and B). Both of them can be subdivided into two more (A1, A2; and B1, B2)
(Figure 5).

Cluster A1 comprises two box-corer samples (1 BC and 2 BC) sited in front of the Neretva
river mouth. In these assemblages, the most common species are P. granosum (8.06–9.55%),
V. bradyana (7.33–8.06%), Rectuvigerina sp. (6.91–8.77%), N. turgida (4.03–7.85%), A. beccarii
(4.97–5.95%), A. perlucida (3.66–5.18%) and the agglutinants taxa Textularia sp. (11.13–11.78%)
and E. scaber (3.07–8.64%). Abundance ranged from 29 to 38 individuals, H ranged from
3.06 to 3.29, D ranged from 0.05 to 0.07, and S from 0.93 to 0.95.
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Cluster A2 includes samples 8 G, 9 BC, 11 G, 12 G and 14 G located along the northern
part of the Croatian coastline and in the central sector of the Neretva channel. The benthic
assemblages are mainly defined by the presence of Textularia sp. (14.01–17.96%), P. gra-
nosum (11.1–12.5%), Miliolids (7.03–9.66%), A. beccarii (5.38–9.80%), N. turgida (3.80–9.19%),
B. marginata (3.70–10.25%), B. elongata (3.27–5.12%) and V. bradyana (2.09–7.76%). Abun-
dance ranged from 33 to 76 individuals, H ranged from 2.93 to 3.19, D ranged from 0.06 to
0.08, and S from 0.93 to 0.94.

Cluster B1 groups the two deeper samples (6 BC and 7 G), located in the north-western
sector, principally represented by Textularia sp. (20.36–23.73%), P. granosum, (15.9–17%),
R. spinulosa (11.65–14.40%), Cibicides group (4.67–7.09%) and B. granulata (4.67–4.86%).
Abundance ranged from 394 to 663 BFN, H ranged from 2.77 to 2.86, D ranged from 0.09 to
0.11, and S from 0.89 to 0.90.

Cluster B2 gathers two grab samples (15 G and 16 G) both located in the southeastern
sector of the study area. It was mostly characterized by Textularia sp. (13.31–17.18%),
P. granosum (13.2–20.6%), and R. spinulosa (5.76–6.17%). On the whole, in this cluster
Miliolids are generally abundant (12.7–15.85%) and are represented by the Miliolinella
subrotunda (3.52–6.31%). Abundance ranged from 54 to 199 individuals, H ranged from 3.03
to 3.06, D ranged from 0.07 to 0.08, and S from 0.92 to 0.93.

4.3. Two-Block Partial Least Squares

The results from the first axis of the 2B-PLS analysis are reported in Figure 6. The R2
for Block 1 (i.e., x-axis of the plot, Foraminifera Community) and Block 2 (i.e., y-axis of
the plot, Chemical and Physical Variables) were 0.43 and 0.63, respectively. The analysis
showed a gradient from the lower left quadrant to the upper right quadrant of the graph,
with no notable outliers. Most samples are found in the lower left quadrant, where the most



Geosciences 2022, 12, 456 10 of 16

extreme points are represented by samples 1 BC and 2 BC located in front of the Neretva
river. The variables most correlated with these observations (considering the covariance
between the matrices) are certain taxa of the foraminifera community (led by V. bradyana,
E. scaber, Rectuvigerina sp. and N. turgida) and chemical–physical variables such as silt
content and total organic carbon (TOC%). On the contrary, in the upper right quadrant,
only two samples (6 BC and 7 G) are found, which not only occur at greater depths and
with a higher sand content, but also showed a different foraminiferal community, led by a
different group of taxa (mostly R. spinulosa, B. granulata, and Asterigerinata mamilla). Some
taxa (such as Bulimina sp., Miliolids, and Sigmoilopsis schlumbergeri) contribute little to the
covariance, as do physico-chemical variables such as sand content.

Geosciences 2022, 12, 456 10 of 16 
 

 

(4.67–4.86%). Abundance ranged from 394 to 663 BFN, H ranged from 2.77 to 2.86, D 
ranged from 0.09 to 0.11, and S from 0.89 to 0.90. 

Cluster B2 gathers two grab samples (15 G and 16 G) both located in the southeastern 
sector of the study area. It was mostly characterized by Textularia sp. (13.31–17.18%), P. 
granosum (13.2–20.6%), and R. spinulosa (5.76–6.17%). On the whole, in this cluster 
Miliolids are generally abundant (12.7–15.85%) and are represented by the Miliolinella 
subrotunda (3.52–6.31%). Abundance ranged from 54 to 199 individuals, H ranged from 
3.03 to 3.06, D ranged from 0.07 to 0.08, and S from 0.92 to 0.93. 

4.3. Two-Block Partial Least Squares 
The results from the first axis of the 2B-PLS analysis are reported in Figure 6. The R2 

for Block 1 (i.e., x-axis of the plot, Foraminifera Community) and Block 2 (i.e., y-axis of the 
plot, Chemical and Physical Variables) were 0.43 and 0.63, respectively. The analysis 
showed a gradient from the lower left quadrant to the upper right quadrant of the graph, 
with no notable outliers. Most samples are found in the lower left quadrant, where the 
most extreme points are represented by samples 1 BC and 2 BC located in front of the 
Neretva river. The variables most correlated with these observations (considering the 
covariance between the matrices) are certain taxa of the foraminifera community (led by 
V. bradyana, E. scaber, Rectuvigerina sp. and N. turgida) and chemical–physical variables 
such as silt content and total organic carbon (TOC%). On the contrary, in the upper right 
quadrant, only two samples (6 BC and 7 G) are found, which not only occur at greater 
depths and with a higher sand content, but also showed a different foraminiferal 
community, led by a different group of taxa (mostly R. spinulosa, B. granulata, and 
Asterigerinata mamilla). Some taxa (such as Bulimina sp., Miliolids, and Sigmoilopsis 
schlumbergeri) contribute little to the covariance, as do physico-chemical variables such as 
sand content. 

 
Figure 6. Scatterplot of the first axis of 2B-PLS between foraminiferal community (Block 1) and 
chemical and physical variables (Block 2); inserts show the correlation within and between blocks. 

5. Discussion 
In the investigated area, the benthic foraminifera distribution results primarily 

correlated with three main factors: sediment grain size, total organic carbon and water 
depth. (Figure 6). This is in agreement with studies performed in tanatocenosis from the 

Figure 6. Scatterplot of the first axis of 2B-PLS between foraminiferal community (Block 1) and
chemical and physical variables (Block 2); inserts show the correlation within and between blocks.

5. Discussion

In the investigated area, the benthic foraminifera distribution results primarily corre-
lated with three main factors: sediment grain size, total organic carbon and water depth.
(Figure 6). This is in agreement with studies performed in tanatocenosis from the North
Adriatic river-influenced shelf [14,19]. Both cluster analysis and 2B-PLS discriminate two
distinct faunal groups with two additional sub-groups reflecting different depositional
settings (clusters A1, A2, B1, B2).

Foraminiferal assemblages in samples collected in proximity to Neretva river (clus-
ter A1) result primarily controlled by organic carbon content and by fine-grained substrate
(silt). The benthic foraminiferal microfauna is characterized by the presence of shallow
infaunal taxa (V. bradyana, N. turgida and B. elongata), commonly regarded as eutrophic
species feeding on the low-quality organic matter [4,14,65–67]. The detected abundance of
these taxa was favoured by the nutrient availability linked to the Neretva river discharge.
In particular, the high relative presence of V. bradyana (Figure 3) was already documented
as associated with high organic carbon content in the Rone prodelta [68], in front of the Om-
brone River mouth (Italy) [69] and the Po delta [70]. N. turgida (Figure 3), an opportunistic
and stress-tolerant species, is able to live in hypoxic sediments enriched in low-quality
organic matter [16,70]. Similarly, B. elongata (Figure 3) is reported to thrive in shallow
marine, silty to sandy substrates under the riverine influence [15,69–71].

In addition, A. beccarii and A. perlucida show relevant importance in this cluster
(Figure 3). A. beccarii is well known to colonize environments under river influence, widely
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distributed in intertidal and subtidal zones [72]; it survives under a wide range of values of
dissolved oxygen [73], salinity, and temperature [74]. In the Adriatic Sea, A. beccarii inhabits
shallow and nutrient-rich environments near the coast under the direct influence of the Po
River [17]. A. perlucida is an infaunal species tolerant of stressed environments [13], related
to low salinity and shallow water settings [75]. Van der Zwaan and Jorissen [65] report that
this species is typical of northern Adriatic clayey sediments where nutrient inputs by the
rivers lead to periodic oxygen depletion events.

In the same way, the distribution pattern of the euryhaline taxa as E. scaber can be
correlated to the Neretva freshwater input [76,77], decreasing with distance from the shore
(Figure 3). The detected high abundance of E. scaber was documented in shallow, highly
energetic, and organic-matter-rich environments [54,78]. Additionally, the abundance val-
ues of the agglutinated L. difflugiformis (mostly in samples 1 BC and 2 BC; Figure 3) are
in agreement with fine-grained sediment enriched in organic matter [79]. The decrease in
percentages of Rectuvigerina sp. from sample 1 BC to 2 BC (Figure 3) well correlates with the
decrease in organic carbon supply moving offshore (Figure 2). This trend is in agreement
with available studies showing that Rectuvigerina is a typical shallow continental shelf
genus [80–82], generally living in sandy to muddy shelf environments with relatively high
organic matter content [83,84]. It was also recorded in different oxic environments [77,85].
We do not have available data on oxygen content, however, the described assemblages sug-
gest periodical oxygen deficiency. Within these areas, oxygen deficiency can be developed
in response to the high organic matter concentrations [65].

The foraminiferal assemblage in samples collected in the central part and in the north-
western direction along the Croatian coastline (cluster A2) is mainly composed of species
characteristic to the infra-circalittoral zones of the Mediterranean and northern Adriatic
seas [12,14,20,21,25,43,55,86,87]. Here, the significant presence of eutrophic taxa such as N.
turgida, V. bradyana and Bulimina, associated with the percentages of A. beccarii (Figure 3) still
reflect the riverine influx in the form of organic matter and sediment inputs, but to a much
lesser degree than observed in sub-cluster A1. It results that foraminiferal distribution is
affected by the position of the Neretva river plume that spreads along the coast in a NW
direction during most of the year, decreasing its influx northward [28].

The data indicate that the principal factor influencing microfauna distribution, (group A)
is the organic matter content from the fluvial input. In detail, the differences observed on
clusters A1 and A2 are well correlated with the amount and the type of organic matter.
Sediments of samples BC 1 and BC 2 (cluster A1) close to the river mouth are characterized
by large amounts of terrestrial organic carbon with a clear terrestrial signature [28] whereas
sediments at an intermediate distance from the river (cluster A2) contain lower contents of
organic carbon showing the transition between terrestrial and marine origins [28].

Water depth and coarse-grained substratum (sand) are identified as the main drivers
influencing the foraminiferal content in the northern sector (cluster B1), with open marine
water entering the gulf. In this area, the lithology is mainly composed of sand due to the
influence of higher energy currents from the Adriatic Sea that remove the finest part of
the sediment [28]. Here R. spinulosa, Textularia sp. and B. granulata reach their maximum
abundance (Figure 3). These species characterize sandy/muddy substrates along shelf
edges subject to bottom currents [88] with slight tolerance of variable salinities [50,74].
Additionally, in the area we detect A. mamilla commonly related to high hydrodynamic
energy levels with coarse-grained sediments [46,86]. The relatively deeper water and
hydrodynamic conditions favoured also the presence of the Cibicides group (Figure 3)
which is known to be associated with well-oxygenated environments with stable physico-
chemical sea bottom conditions [50–53]. Cluster B1 hosts the highest number of species
(Table 3), confirming favourable environmental conditions at the sea floor, and allowing
the development of diversified benthic foraminiferal communities.

Cluster B2 is located in the southern sector south of the river mouth. This sector is an
area where wave-generated longshore currents laterally redistribute the sediments, leading
to the presence of relict deposits [28,30]. The relatively low amount of A. beccarii (Figure 3)
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and C/N values (Figure 2) correlate with the sediment grain size in this sector where the
river influence is minimal. In this cluster, the higher percentages of Miliolids (Figure 3) may
be explained by the shallow depth with low organic matter content at the sea bottom as
similarly observed in other Mediterranean shallow marine settings [4,47]. The abundance
of M. subrotunda supports available records documenting this species in an inner-shallow
gulf environment with possible confined conditions [47]. The detected relatively high
percentages of P. granosum, unkeeled elphidiis species, suggest the preference of this taxon
for the coarse sediment and wide salinity change in agreement with observation performed
in shallow water depth (8–22 m) around the Po delta area [19,67]. In the literature, this
species is found in brackish-hypersaline bays, marshes, coastal lagoons, estuaries, and inner
shelves [7,56–58,74]. In our dataset, the relatively low percentages of P. granosum observed
in samples 1 BC and 2 BC suggest that this species does not correlate with high organic
matter content. This agrees with [89] that considers P. granosum a third-order opportunist,
increasing its abundance as a response to higher organic matter supply, but disappearing
with maximum organic matter enrichment [89].

6. Conclusions

Modern benthic foraminiferal assemblages were investigated in the Neretva Channel
to evidence their relationships with the environmental factors characterizing this area.
Statistical analysis and an integrative partial least square approach (2B-PLS) highlighted
that the diversity and distribution of benthic foraminifera studied in 11 sample sites are
principally correlated with substrate grain size, organic matter content, and water depth.

The data showed that samples collected in front of the Neretva delta contain oppor-
tunistic species, well adapted to high input of organic matter and silt content such as
A. perlucida, E. scaber, N. turgida and Rectuvigerina sp. (cluster A1). The areal foraminiferal
species distribution indicates that the influence of the river discharge is a function of dis-
tance from the shore. At the samples furthest away from the river mouth, the assemblages
were characterized by A. beccarii, B. marginata, N. turgida and Textularia sp. (cluster A2).
These species living there seem to profit from the combination of a more labile organic
matter with a transition between terrestrial and marine signatures.

In the north-west sector, thus in connection with the open Adriatic Sea, the coarse
(sand) sediment samples include a highly diversified foraminiferal assemblage with the
presence of A. mamilla, B. granulata, Cibicides group, R. spinulosa, and Textularia sp. (cluster
B1) typical of well-oxygenated and hydrodynamic environments.

On the other hand, in the inner bay, in the south of the studied area, the samples are
mainly composed of P. granosum and Miliolids reflecting the inner-shallow gulf with more
confined environmental conditions (cluster B2).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/geosciences12120456/s1, Table S1: Number of specimens per gram
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25. Vidović, J.; Dolenec, M.; Dolenec, T.; Karamarko, V.; Rožič, P. Benthic foraminifera assemblages as elemental pollution bioindicator
in marine sediments around fish farm (Vrgada Island, Central Adriatic, Croatia). Mar. Pollut. Bull. 2014, 83, 198–213. [CrossRef]
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