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Abstract: Spatial variability is unavoidable for soils and it is important to consider such a feature
in the design of geotechnical engineering as it may lead to some structure behaviors which cannot
be predicted by a calculation assuming homogenous soils. This paper attempts to evaluate the
performance of a shallow circular tunnel, in a context of the service limit state, considering the soil
spatial variability. The Log-normal distributed random fields, generated by the Karhunen–Loeve
expansion method, are used for the spatial modeling. A two-dimensional numerical model, based on
the finite difference method, is constructed to deterministically estimate two quantities of interest
(i.e., tunnel lining bending moment and surface settlement). The model is combined with the random
fields and is implemented into the Monte Carlo simulation to investigate the effects of the soil spatial
variability on the tunnel responses. The autocorrelation distance, an important parameter for random
fields, is varied within multiple probabilistic analyses. For both of the two tunnel responses, their
variabilities are increased with increasing the autocorrelation distance, while a minimum mean value
can be observed with this parameter being approximately the tunnel radius. Such finding is very
useful for practical designs. A sensitivity analysis is also conducted to show the importance of each
random parameter.

Keywords: tunnel; convergence-confinement method; random field; spatial variability; Monte
Carlo simulation

1. Introduction

In recent years, many efforts have been devoted to investigating the probabilistic
analysis of geotechnical structures. Using random variables, uncertain parameters were
modeled based on simplified methods in which the soil is considered as a uniform material.
However, in nature, soil parameters vary spatially in both the horizontal and vertical
directions due to the gravity deposition and post-deposition processes. The behavior of
geotechnical structures (foundations, tunnel, and slope stability) will then be affected by
the spatial variability. Therefore, the soil parameters should be defined by random fields.
In the literature, the probabilistic approaches were proposed. Due to the complexity of the
geotechnical structures, deterministic models based on numerical methods (finite difference
method (FDM) or finite element method (FEM)) are often developed. For the determination
of the failure probability, the random field discretization should be converted into a number
of random variables. Then, the obtained spatially variable values have to be implemented
in the mesh discretization of a numerical model (deterministic model). In the literature,
several methods for generating random fields are available such as the expansion optimal
linear estimation (EOLE) and the Karhunen–Loeve (K-L) expansions. Several authors
studied the spatial soil variability effects on the behavior of geotechnical structures by the
use of these methods [1–16].
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In recent years, several attempts were made to investigate the random variability effect
of soil parameters on tunnel’s behavior. The tunneling phenomenon is a three-dimensional
(3D) problem. However, during the design phase, two-dimensional (2D) calculations based
on the stress release process remain the most commonly used approaches due to their low
computational cost.

The approach of random variables was mainly used in the existing studies. Refer-
ence [17] studied the reliability of a tunnel for its face stability issue, by using random
variables for soil variability modeling, with the classical reliability methods, such as the
first-order reliability method (FORM), the first-order second-moment (FOSM) [18], the re-
sponse surface method (RSM) [19], and the collocation-based stochastic response surface
methodology (CSRSM) [17]. References [20,21] used the surface response methodology
optimized by a genetic algorithm to study the reliability of shallow circular tunnels in
homogeneous soils. Some works are based on the random field theory for tunnel reliability
analysis. References [22,23] studied the spatial variability effects of the soil friction angle on
the tunnel face stability, using a 2D failure mechanism based on the limit analysis theorem
combined with the Monte Carlo simulations (MCS). Reference [10] evaluated the failure
probability of a tunnel face in spatially variable soils by adopting the sparse polynomial
chaos expansion-based MCS. Reference [24] studied the spatial variability influence of the
soil Young’s modulus on the tunnel convergence using a linear elastic constitutive model
with isotropic stratified random fields. Reference [25] studied the spatial variability effect
of the soil Young’s modulus using a linear elastic constitutive model for the soil move-
ments analysis caused by tunneling. Other researchers have investigated the tunnel lining
bending moment reliability using the hyperstatic reaction method (HRM). Reference [26]
calculated the reliability index using the FORM method with RSM. Homogeneous soils
were simulated using random variables. In their analyses, they proposed five individual
failure modes considering lining forces. Reference [12] followed this study and adopted
the limit state functions proposed by [26] to consider the soil spatial variability. All the
above-mentioned works clarified the effect of the soil uncertainties on the movements due
to the tunneling. In the case of random variables, a significant underestimation of the het-
erogeneity of the soil was noted. Therefore, the simulation of soil properties with its spatial
variation is essential to extend the currently existing probabilistic analyses of tunnels.

The proposed study consists in investigating the soil spatial variability effects on
the tunnel design regarding two quantities of interest (surface settlements and lining
bending moments) by considering a nonlinear constitutive model for the soil. Most of the
previous studies considered the spatial variability of only one soil parameter and a classical
constitutive model (linear elastic perfectly plastic) was commonly used.

A probabilistic analysis of a circular tunnel is presented in this article. Non-Gaussian
anisotropic random fields are used for modeling the soil spatial variability. The discretiza-
tion of the random fields is realized with the Karhunen–Loeve expansion (K-L). The system
response is considered using the tunnel lining bending moment and the settlement. De-
terministic models are implemented using two-dimensional finite differences numerical
models (FLAC2D). Reference [27] showed the limitation of simple constitutive models (non-
reliable settlement values) like the linear elastic perfectly plastic model (Mohr Coulomb
shear failure criteria). It is why in this work, a nonlinear elastic model with a cap-yield hard-
ening (CYsoil) is adopted to simulate a clayey sand behavior. The convergence-confinement
method (CCM) is used to simulate the ground-support interaction analysis. The probability
density function (PDF) of the tunnel response is determined by using the MCS. Another
aim of this study is to investigate the effects of the autocorrelation distance and coefficient
of variation on the tunnel lining bending moment and on the surface settlements.

2. Random Fields and Discretization

An autocorrelation function and a distribution law are used to define the random fields.
The generated random fields are two-dimensional and follow a log-normal distribution
(transformed from standard-normal distribution) in this work. The mean and standard
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deviation of the field (Z) are respectively named µZ, σZ, and then the mean (µln) and the
standard deviation (σln) of the lognormal field Z are given by

σln =

√
ln
(

1 + COV2
Z

)
(1)

µln = ln(µZ)− 0.5σ2
ln (2)

Among the available methods, the Karhunen–Loeve expansion (K-L) [28,29] and the
Cholesky decomposition [30,31] are often used to randomly generate spatially correlated
values. In this study, the K-L expansion was used.

The Karhunen–Loeve (K-L) series expansion method presented by [32] is used to
express random fields through truncated series using a number (M) of terms [33,34]. Then
the random field expression is divided into a part defined by a representation of the
mean µln, and a random element depending on ϕi eigenvalues and functions λi of the
corresponding covariance function

Z(X, θ) ≈ exp

(
µln +

M

∑
i=1

√
λiφi(X)ξi(θ)

)
(3)

With θ is a series of standard normal random variable, ξi(θ) represents the ith realiza-
tion and X is the vector coordinates where the Z values are to be generated.

The main advantage is that this method allows the decoupling of stochastic and spatial
variables (X and θ, respectively). The solutions of Equation (4) are the eigenfunctions and
eigenvalues (respectively λi and ϕi) of the covariance function C (X1, X2)∫

D
C(X1, X2)φi(X1)dX1 = λiφi(X2) (4)

For some autocorrelation function types, this integral can be resolved analytically.
Reference [32] gave an analytical solution for the exponential autocorrelation function
which is adopted in this study. Through the random variables ξi the stochastic dependence
appears. The spatial correlation is defined by the eigenmodes (λi and φi) of the covariance
kernel (Equation (4)).

The correlation length L and the variance σ2 of the Gaussian random field are intro-
duced by the covariance function expression and presented in Equation (5). The covariance
function contains all the terms C12 of the covariance matrix between node 1 (position X1)
and node 2 (position X2) of the spatial mesh.

C12 = C(X1, X2) = V exp
(
−‖X1 − X2‖

L

)
(5)

In this paper, two spatial directions are distinguished by two correlation lengths
(horizontal and vertical). When a two-dimensional field is considered, the covariance
function is given as

C12 = σ2
ln exp

(
−|x1 − x2|

Llnx
− |

y1 − y2|
Llny

)
(6)

The covariance between node 1 and 2 is given by Equation (6), for which the coor-
dinates of node i are (xi, yi). The autocorrelation distances in the horizontal and vertical
directions are respectively Llnx and Llny.

The number of terms M depends on the targeted accuracy as shown in the following
equation which allows commutating the error of a K-L random field due to truncation [35].

εrr(X) = 1−
(

1
σln

) M

∑
i=1
λiφ

2
i (X) (7)
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To meet certain conditions, the mesh should be discredited according to the deforma-
tion’s location (fine mesh in the areas close to the tunnel). A transfer of the stochastic data
towards the mesh is then necessary. To this end, two transfer methods exist:

- References [36–38] use the middle method. In this method, the random field represen-
tation is carried out by its value at the gravity centered of the finite difference (or finite
element) mesh.

- The spatial averaging method (or local averaging) proposed by [39,40] consists in
assigning to each domain cell a determined value by averaging the stochastic mesh
field values which fall into the finite difference (or finite element) mesh.

The local average method tends to under-represent the true field variability, while the
middle method over-represents the field variability [36]. A comparative study between
these two methods was conducted by [41]; they found that the middle method is better
suited to non-Gaussian random fields because it retains the initial field probability distribu-
tion. The middle method is thus used in this study since the soil properties are represented
by non-Gaussian random fields.

3. Numerical Modeling
3.1. Geometry and Parameters

The Italian Bologna-Florence high-speed rail tunnel project is considered as the ref-
erence case in this study. The project focuses on the excavation of a tunnel in Bologna.
The tunnel has an external excavation diameter of 9.4 m and an internal diameter of 8.3 m,
for a useful area of 46 m2.

The tunnel was excavated at 20 m deep in clayey sand. Table 1 summarizes the
main parameters adopted in this study [42,43]. The numerical simulations are done using
the finite difference program FLAC2D [44]. The cap-yield (CYsoil) constitutive model is
adopted to govern the soil behavior. The CYsoil model allows to consider the nonlinear
behavior and to represent the loading/unloading response of soils. It includes frictional
strain-hardening and softening shear behavior, an elliptic volumetric cap with strain-
hardening behavior, and an elastic modulus function of plastic volumetric strain [45].

Table 1. Soil mass properties.

MC Model Value CYsoil Model Value

E (Young’s modulus) (MPa) 150 Reference elastic tangent shear modulus Ge
ref (MPa) 58

ν (Poisson ratio) 0.3 Reference Elastic tangent bulk modulus Ke
ref(MPa) 125

ϕ (friction angle) (degrees) 37
Elastic tangent shear modulus

Ge(MPa)Ge = Ge
ref

(
σ3/Pref

) 98

Ψ (dilation angle) (degrees) 0
Elastic tangent bulk modulus

Ke(MPa)Ke = Ke
ref

(
σ3/Pref

) 213

C (cohesion) (kPa) 5 Reference effective pressure pref (kPa) 100

k0 (lateral earth pressure
factor) 0.5 Failure ratio Rf 0.90

Density (kg/m3) 1700 Ultimate friction angle ϕf (degrees) 37

Calibration factor β 2.35

Cohesion (kPa) 5

M Constant (m < 1) 0.5

The Young’s module, in the CYsoil model, is calculated according to the effective
confinement and leads to a higher unload-reload modulus.

Ge
ref = E/(2(1 + υ)) (8)
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which is the elastic tangent shear modulus Ge
ref at the reference effective pressure pref (equal

to 100 kPa),
Ke

ref = E/(3(1− 2 υ)) (9)

the elastic tangent bulk modulus Ke
ref at the reference effective pressure pref (equal to

100 kPa),

• Rf: the failure rate which is constant and lower than 1,
• ϕf: the ultimate friction angle,
• β: a calibration factor,
• m: a constant (m < 1).

The parameters given by [42] were adopted due to the lack of experimental data from
the excavated soil. These parameters are for the well-known constitutive model: linear
elastic perfectly plastic model using Mohr Coulomb criterion.

For other parameters that are necessary for the CYsoil model, they were obtained by
calibrating with three numerical triaxial tests. The confinement stresses (σ3) of 100 kPa,
170 kPa, and 250 kPa were chosen to take into account the stress level at which the tunnel is
excavated. The results of the calibration are showed in Table 1. The stress–strain curves
obtained for the different values of σ3 are illustrated in Figure 1. To calibrate the initial
modulus value (Table 1), the confining pressure σ3 equaling to 170 kPa in the center of the
tunnel (20 m deep) has been chosen.

Figure 1. Stress–strain curves with loading phases.

Precast reinforced concrete segments are used as lining elements for the tunnel. Each
precast concrete ring is 0.4 m thick and 1.5 m long and has a diameter of 9.1 m. The behavior
of the tunnel structure is assumed to be linear elastic (no joints are considered between the
segments in the numerical modeling). The employed lining parameters, based on [42,43],
are summarized in Table 2.

Table 2. Mechanical properties of the precast segments.

Parameter E (Young’s Modulus)
(MPa) ν (Poisson’s Ratio) γ (Unit Weight)

(kN/m3)

Tunnel Lining 35000 0.2 25
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The two-dimensional numerical model implemented to simulate the tunnel excavation
is shown in Figure 2. Quadrangular elements with four nodes of discretization are used for
the mesh [44]. The elements size increases as one moves away from the tunnel. The numer-
ical model has a width of 240 m in the x-direction and a depth of 60 m in the y-direction.
It consists of approximately 7500 elements. The nodes are blocked in all directions at the
model base while a horizontal fixation of the nodes on the two vertical limits is considered.

Figure 2. Adopted numerical model.

To consider the three-dimensional effect due to the tunnel excavation, the convergence-
confinement method (CCM) is used. This method has already been carried out by other
authors [20,21,27,43]. Their works underlined that, for certain geotechnical conditions and
construction process, after having estimated the stress relaxation ratio, the CCM method is
one of the better methods to correctly simulate the surface settlements. The stress relaxation
ratio is generally specified on the basis of a feedback analysis that uses the monitoring data
obtained on the tunneling process.

A three-phase process was used to simulate the tunnel excavation and setting up of
the lining as follows:

• Phase 0: Initial state of stress (σ0). Considering the gravity effect and the coefficient at
rest, the initial state of stresses is calculated.

• Phase 1: Stress release phase. The excavated soil inside the tunnel is deactivated and
a radial pressure to the tunnel wall is applied. The value of this pressure is done by
using Equation (10). This pressure is not constant over the circumference of the tunnel
and depends on the initial stresses state (Figure 3).

σ = (1 − λd) σ0 (10)

where λd: the stress relaxation ratio; σ0: the initial soil stresses (kN/m2); σ: the applied
radial pressure (kN/m2). A gradual reduction of this radial pressure is applied to
the excavation circumference until its value reaches the specified stress relaxation λd.
In this study, the coefficient λd is taken equal to 0.65. This value was obtained by a
previous analysis in 3D calculations by [43].

• Phase 2: Installation of the tunnel lining. The lining is activated around the tunnel
wall considering its total relaxation (λd = 1).

3.2. Deterministic and Sensitivity Analysis Results

Figure 4 illustrates the vertical movements at the ground surface from a deterministic
analysis. At the tunnel center, the settlement values increase, with a maximum value
located above the tunnel center, due to the conditions of symmetry. Then, far from the
center of the tunnel, the settlement decreases.

The structural lining forces in terms of bending moments are shown in Figure 5. In the
studied case, the maximum bending moment occurs at the bottom of the tunnel.
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Figure 3. Tunneling simulation considering CCM.

Figure 4. Surface settlement curve.

Figure 5. Lining bending moment (kN·m/m).
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To assess the influence of the input parameters on the tunnel behavior, a parametric
study was carried out. The maximum lining bending moment and the maximum sur-
face settlement respectively called Mmax and Smax are the output parameter considered.
These two model responses are considered as they are often used in the tunnel design of
real projects.

Using Equations (8) and (9), E and υ can be deduced from Ke
ref. and Ge

ref and are used
in the following work.

In order to evaluate the input parameters’ influence on the system behavior, the values
of the two output parameters (Mmax and Smax) are deduced by using numerical calculations
for the reference case. The obtained values are: Sref = 12.44 mm and Mref = 30.18 kN·m.
Then, numerical calculations were done to study the influence of each input parameter in a
given range defined by its minimum and maximum values (Table 3). When studying the
influence of a parameter, the other parameters are kept at their reference value. The results
of this parametric study are shown in Figure 6; Figure 7. The soil parameters which have
the main influence on Smax are the soil unit weight, Young’s modulus, and Poisson’s ratio.
For the Mmax, only the Poisson’s ratio and Young’s modulus have significant impacts. It is
noted that the calibration parameters (effective reference pressure pref, calibration factor β,
and failure rate Rf) are remained constant in the parametric studies.

Table 3. Influence of the soil parameters on the tunnel behavior.

Parameters Reference Value Variation

Min Max

Young modulus (MPa) 150 120 180

Poisson’s ratio 0.3 0.24 0.36

Friction angle (◦) 37 29.6 44.4

Cohesion (kPa) 5 4 6

Dilation angle (◦) 0 0 5

Unit weight (kN/m3) 17 13.6 20.4

Figure 6. Influence of the input parameters on the maximum surface settlements.



Geosciences 2022, 12, 97 9 of 17

Figure 7. Influence of the input parameters on the maximum liner bending moments.

According to the parametric study of the input soil parameters, the parameters to be
modelled by random fields for the following probabilistic analyses are the soil unit weight,
Young’s modulus, and the Poisson’s ratio.

The proposed study focuses on the spatial variability of the soil parameters (E, ν,
and γ). The corresponding random field follows a log-normal distribution, where only
positive values for the soil parameters (E, ν, and γ) can be generated. The mean and the
standard deviation are respectively noted µln and σln. An exponential autocorrelation
function allows representing the correlation between two distinct points of the soil mass.

Each random field of the soil parameters (E, ν, and γ) is implemented in the con-
structed numerical model using MATLAB. A two-dimensional field represents the whole
soil mass and is discretized in Nx × Ny elements, where Nx and Ny are the elements num-
ber in respectively the directions x and y. For each soil element, a value of soil parameters
(E, ν and γ) is given. Using the Karhunen–Loeve (K-L) series expansion method, developed
by [32], each element is assumed to be homogeneous and is affected by a single value of the
soil parameters at its centered. In other words, according to the distribution law and the
selected autocorrelation function, a given soil configuration is generated for each random
field realization. The values of the soil parameters (E, ν and γ) assigned to the center of
each elements is done according to its position in space. The middle method [41] is used
to assign the values of the random field at the gravity center of each element on the finite
difference mesh.

Finally, to reduce the computation time, a link between the MATLAB and FLAC2D
was created with an automatic data exchange in both directions.

The lognormal distribution defines the spatial variability of the soil parameters (E, ν
and γ). The following parameters were considered: µE = 150 MPa, COVE = 15% [18,19,46],
µν = 0.3, COVν = 5% [46], µγ = 17 kN/m3, and COVγ = 10% [47,48] with an autocorrelation
distance equaling to 1.0 m in both directions and a second-order exponential autocorrelation
function. Figure 8 shows a random field for the tangent bulk modulus.
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Figure 8. Transformation of the random field data to the numerical model.

4. Probabilistic Analysis Using the Monte Carlo Simulations
4.1. Selection of the Optimal Number of Monte Carlo Simulations

The effect of the soil spatial variability on the surface maximum settlement and the liner
maximum moment is evaluated using the MCS for several combinations of autocorrelation
distances in both directions (x and y). For each studied combination, MCS requires the
generation of a large number of samples. Each one is represented by a random field
realization. The maximum settlement (Smax) and the liner maximum tunnel lining moment
(Mmax) are then calculated for each of these realizations. The means (µSmax, µMmax) and the
standard deviations (σSmax and σMmax) of all the values for the two quantities of interest
are then compared. The required number N of simulations is determined by regarding the
convergence of the two statistical moments. Figure 9 illustrates both the variations of the
calculated means and of the COV with respect to the simulation number N. It is observed
from Figure 9 that the variation of the means and of the COV is <2% when N is higher than
800. Consequently, convergent solutions of these two statistics can be obtained roughly
at 800 simulations. Thus, N = 800 is adopted for the following MCS-based probabilistic
analysis. It should be noted that N = 800 is only sufficient for the analysis of the mean and
the COV of the behavior of the tunnel in this study. It may not be sufficient to estimate low
probabilities of failure when the strain limit is strict in tunnel engineering.

4.2. Influence of Isotropic and Anisotropic Random Fields on Smax and Mmax

The aim of this section is to study the effect of the different probabilistic governing
parameters (autocorrelation distances) of the random fields on the PDF of Smax and Mmax.

Several combinations of the autocorrelation distances (L) in the two directions were
used to study the effect of the soil spatial variability on the maximum surface settlement
and the lining maximum bending moment. In fact, when a small autocorrelation length is
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considered, the random field values of the soil parameter are strongly correlated and quickly
change its value from one point to another in the concerned direction. However, when the
autocorrelation distance is large, the values change slowly and tend to be homogeneous.

Figure 9. The converging trend of maximum surface settlement and liner bending moment statistics:
(a) Mean of Smax; (b) COV of Smax; (c) Mean of Mmax; (d) COV of Mmax.

In this work, input soil parameters are presented by isotropic and anisotropic random
fields according to a lognormal distribution law considering a variation of the autocorre-
lation distance in both directions (x and y). The mean and the variation coefficient of the
soil input parameter (γ, E, ν) adopted equal to 17 kN/m3; 150 MPa; 0.3 and 10%; 15%;
5% respectively. Some examples of the generated random fields for Young’s modulus E
considering different autocorrelation distances are shown in Figure 10. The lightest regions
correspond to larger values and the darkest regions to small values of Young’s modulus
where the values of Young’s modulus vary between 143 MPa and 162 MPa.

In the next analyses, isotropic and anisotropic random fields are both considered with
the following combinations:

Case 1D: Lx and Ly are different (anisotropic random fields).
In this case and for large autocorrelation distances, the ground presents stratification.

The stratified layers are parallel to the direction of the greatest autocorrelation distance.
Case 2D: Lx and Ly are the same (isotropic random fields).
This case presents a variation of the input soil parameters from one point to another

(heterogeneous soils). Several cases of autocorrelation distances (L) are considered in this
study using L = 1, 5, 10, 50, 100, and 150 m.

For all the cases considered, the first two statistical moments of the maximum surface
settlement and the maximum bending moment of the liner are calculated for 800 realizations
of the random field. The results are then compared and evaluated.
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Figure 10. Generated random fields of Young’s modulus using different autocorrelation distances:
(a) Lx = 1 m, Ly = 1 m; (b) Lx = 10 m, Ly = 1 m; (c) Lx = 100 m, Ly = 1 m; (d) Lx = 200 m, Ly = 1 m.

Figure 11 provides the PDF of Smax and Mmax for different cases of isotropic random
fields (Lx = Ly = 1, 5, 10, 50, 100, and 150 m). Figure 11 shows that the PDF is less spread
out when the autocorrelation distance decreases. On the other hand, for large values of the
autocorrelation distance, the standard deviation tends towards a maximum value.

Figure 11. Influence of the isotropic autocorrelation distance Lx = Ly on the PDF of the: (a) Smax; (b) Mmax.
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4.3. Soil Spatial Variability Effect on the Average of Smax and Mmax

The variation of the mean of Smax and Mmax as a function of autocorrelation distance
for different types of anisotropic random fields is shown in Figure 12.

Figure 12. Variation of the mean in terms of autocorrelation distance for both direction random fields.
(a) Smax; (b) Mmax.

The same shape for all curves is observed. With the increase of the autocorrelation
distance, the mean of Smax and Mmax decreases to a minimum at an autocorrelation length
equaling to a half of the tunnel diameter, and then increases. For this autocorrelation
distance, the ground around the tunnel is less stable (indicated by its minimum). Similar
results for shallow foundations were observed by [6]. This can be explained as follows:

For small autocorrelation distances, the variability of the soil is very high and this
results in a mixture of large and small values of the soil input parameters (E, ν, and γ). This
gives a Smax and Mmax close to the deterministic value.

The movement of the ground is more important in the zones where E and ν are weak
and γ large. For intermediate autocorrelation distances (e.g., length L≈ tunnel diameter/2),
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agglomerates of strong and weak zones are created. Their distribution within the tunnel
excavation zone varies from one construction to another.

For greater autocorrelation distances: For the case of a single direction, the columns
and the layers of soil alternately form large and small values of E, ν, and γ. A stabilizing
barrier for the movements of the ground is constituted by the zones of the ground with
a high E, ν, and γ value. It induces a small value of Smax and Mmax and a more stable
structure. As for cases with very high autocorrelation distances (e.g., Lx = Ly = 150 m),
the soil is close to be homogeneous. In this case, Smax and Mmax have a difference of 24.67%
and 18.09% respectively compared to the deterministic results.

In the cases where the vertical direction of the spatial variability is considered, the val-
ues are lower than those obtained for the case in the horizontal direction and close to the
deterministic model. This is due to the fact that the variation of the soil input parameters
(E, ν, and γ) along the vertical axis leads to a vertical “pounded layer” soil, which prevents
their subsidence and also makes this case different with the other cases (two directions and
horizontal direction).

Finally, for the 2D case (Lx = Ly), the values of Smax and Mmax are higher than that of
the vertical direction case and lower than that of the horizontal direction. As explained
above, this is due to the introduction of vertical variability which reduces the deformations
of the ground around the tunnel. On the other hand, the direction of the two-dimensional
autocorrelation reveals higher values compared to the vertical 1D direction.

The observation of the effect of the direction of spatial variability on Smax and Mmax
reveals that considering the same variation of input parameters in both directions leads to a
less stable tunnel. However, taking into account the spatial variability in the vertical and/or
longitudinal directions improves the settlement of the surface and the lining maximum
moment and therefore a smaller value Smax and Mmax are necessary to avoid failure of
the structure.

4.4. Effect of the Soil Spatial Variability on the Variance of Smax and Mmax

Figure 13 shows that the variance of Smax and Mmax depends on the autocorrelation
distance. All the curves have the same trend regardless of the variability considered. With
increasing autocorrelation distance, the variance increases.

Indeed, the values of the input parameters of the ground generated are very heteroge-
neous. For small autocorrelation distances, a mix of small and large values is considered.
It leads to an ‘average’ of the values soil properties. The resulting Smax and Mmax are
more homogeneous. The values of the soil input parameters, although more homogeneous
within the same soil mass. For greater autocorrelation distances, more dispersed values of
Smax and Mmax are obtained.

Figure 12 shows that the smallest variation of Smax and Mmax is observed for the case
1D along axis X and it is followed by the cases 1D along the axis Y. The greatest variation is
obtained for the case 2D and this can be explained as follows:

For very large autocorrelation distances (Lx = Ly = 150 m), the variance of Smax and
Mmax tends towards a maximum constant value. Indeed, the values of soil input parameters
(E, ν, and γ) are strongly or almost perfectly correlated, thus generating a homogeneous soil
mass in one realization. However, according to the statistical and theoretical distribution
adopted, different values of the soil input parameters (E, ν, and γ) are generated for
different realizations. A large variation in the values of the soil input parameters (E, ν,
and γ) presents the mass of the soil, which has a direct effect on the response of the system.
(i.e., Smax and Mmax) so leading to higher variability in these two quantities of interest.

The cases considering a spatial variability in one direction (case 1D), have a lower
variability Smax and Mmax than the 2D case, that is to say, Lx = Ly = 150 m. Indeed,
by introducing a variation of the soil input parameter (E, ν, and γ) in a given direction,
all the Smax and Mmax values opposite will tend to increase, thus excluding the low values
of Smax and Mmax. Consequently, the variability of Smax and Mmax will decrease compared
to the case of a homogeneous soil mass.
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Figure 13. Variation of the covariance versus the autocorrelation distance. (a) Smax; (b) Mmax.

5. Conclusions

The soil spatial variability effects on the behavior of a shallow circular tunnel are
investigated in this article within the framework of the service limit state. Deterministic
models are constructed by two-dimensional finite differences numerical methods. The soil
properties are represented by non-normal isotropic and anisotropic random fields. The ran-
dom fields are discretized using the Karhunen–Loeve (K-L) expansion method. The tunnel
response variability is then obtained by using the MCS. The main results of this paper are
as follows:

The main input parameters that have a significant effect on the lining bending moments
are the soil elastic parameters, for the settlements, mainly the elastic parameters and the
soil unit weight have a significant effect.

Numerical results have shown that the variability of Smax and Mmax increases when
the random fields autocorrelation distance increases.

Whatever the scenario studied, for an intermediate value of the autocorrelation dis-
tance (approximately the tunnel diameter divided by two), a minimum probabilistic mean
is reached. For this autocorrelation distance, the ground around the tunnel is less stable.
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An increase of Smax and Mmax is induced by taking into account a spatial variability of
the input parameters (elastic parameters and volume weight) along the transverse direction.
This results in Smax and Mmax values higher than those obtained in case of spatial variability
in both directions and longitudinal directions. The latter scenarios would lead to minimal
settlements of the surface and lining efforts.

For all the scenarios considered, the variance of Smax and Mmax increases with increas-
ing autocorrelation distance.

Finally, the importance of considering the spatial variability of soil properties is shown
by the results obtained in this article. Such as the non-symmetrical soil movements which
cannot be seen when the soil is assumed as homogeneous.
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