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Abstract: Zircon provides essential information on the age and oxidation state of magmatic systems
and can be used to characterize magmatic-hydrothermal Au mineralizing systems. Using the Douay
intrusion-related gold system (IRGS) as a type example of Neoarchean syenite-associated mineraliza-
tion (Abitibi greenstone belt), we demonstrate that zircon from altered quartz-monzonite rocks can
also be used to infer the age of a magmatic-hydrothermal event. Here, zircon chemistry is used to
identify the following sequence of events at the Douay exploration project: (1) the crystallization of
zircon at ~2690 Ma in evolved residual melts with distinct U-contents (quartz-monzonite magma);
(2) the extensive radiation damage for the U-rich grains over a period of ~10–15 My; and (3) the alter-
ation of zircon grains at ~2676 Ma by interaction with magmatic-hydrothermal mineralizing fluids
derived from syenite and carbonatite intrusive phases. This study also distinguishes extensively
altered zircon grains from pristine to least-altered zircon formed in distinct magmatic environments
using a Th/U vs. U discrimination diagram.

Keywords: syenite-carbonatite intrusion; intrusion-related gold system (IRGS); Abitibi greenstone
belt; magmatic-hydrothermal system

1. Introduction

Magmatic-hydrothermal mineralizing systems are now frequently recognized in the
Abitibi and other greenstone belts [1–4]. This includes early porphyry Au-(Cu) and Cu-Au
deposits, e.g., the Central Camp and Côté Gold deposits [4–7], as well as Au-dominated
systems formed prior and during the main deformation phase (syntectonic period) that
led to the stabilization of the craton. These latter systems correspond to porphyries,
e.g., Bachelor deposit [8], and intrusions-related gold systems (IRGS), also referred to as
syenite-associated Au deposits [1]. In the gold-endowed Abitibi greenstone belt, Au was
also concentrated by orogenic gold systems (OGS), which correspond to hydrothermal
systems dominated by metamorphic fluids [9,10]. Additionally, OGS tend to postdate
magmatic-hydrothermal systems [1]. Most of the gold endowment of the Abitibi greenstone
belt is associated to OGS [3], even if the involvement and importance of magmatic fluids
remain debated for many deposits [2].
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Distinguishing IRGS from OGS and hybrid (e.g., IRGS overprinted by an OGS) sys-
tems is essential for exploration strategies, as well as for our understanding of fertilizing
processes and of the distribution of gold in the upper Neoarchean crust. Moreover, the
mineralizing style is an important parameter. For example, mineralization at the Douay
exploration project displays characteristics generally attributed to IRGS [1], such as a
polymetallic signature, disseminated pyrite, and spatial association to a syenite intrusion
and to high temperature alteration such as K-metasomatism [11]. However, the mineral-
ization is located next to a large-scale fault and part of the mineralization is structurally
controlled [11], with these latter characteristics being more generally attributed to OGS [9].
The Douay exploration project is a representative example of a gold mineralization of the
syntectonic period that may correspond to an IRGS, an OGS, or a hybrid system [2,3,11].

This contribution aims to determine the timing of magmatic and hydrothermal events
at the Douay project using the chemistry of zircon from an intrusive phase of the Douay
intrusion. Zircon chemistry has been used to constrain the oxidation state of magmatic
systems and their gold potential [12–14], while evaluating the maximum amount of Au that
can be dissolved by a magma requires insights into the oxygen fugacity parameter (f O2)
and volatile (S, Cl) content of the melt [15]. Zircon, in a mineralized alkaline system, can
be U-rich, metamict, and extensively altered, as is the case here. This study demonstrates
that altered zircon grains can provide insights into the crystallization age and oxidation
state of a magma, and that additional minerals (apatite, amphibole) are required to fully
characterize the volatile content. Zircon chemistry, however, can be used to discuss the
characteristics and timing of magmatic and hydrothermal events. Zircon is thus used here
to gain insights into these processes at the Douay exploration project.

2. Geological Setting

Alkaline-carbonatite intrusive complexes, including the Douay intrusion, are recog-
nized in the northern part of the Abitibi greenstone belt, which is located in the southern
part of the Superior craton (Figure 1). As is common in many other greenstone belts [16],
the tectono-magmatic evolution of the Abitibi belt can be summarized in two main stages,
i.e., the synvolcanic and syntectonic stages [17,18]. In the northern part of the Abitibi
greenstone belt, the synvolcanic stage initiates at or before ca. 2.80 Ga, as ~2.79 Ga mafic
and felsic volcanic units [19] and ~2.80 Ga tonalite intrusion [14] emplace in the upper
crust. The synvolcanic stage was followed by the syntectonic stage, which extends from ca.
2.70 to 2.69 Ga in the northern part of the Abitibi greenstone belt [1,20,21]. The syntectonic
stage follows, or initiates, during an early compressional event (D1) that is followed by the
development of Porcupine basins (flysch-like sedimentary sequences) and Timiskaming
basins (conglomerate-bearing) [1]. Coeval with basin development during an extensional
stage, alkaline magmatism and the related syenite-associated (or IRGS) style of mineral-
ization then developed in the upper crust [1,2]. Following basin development, the main
N–S compressional event (D2) and its waning stage (D3) produced the main E-W faults,
foliation planes, and folds observed in the field, and shortening is coeval with the peak of
greenschist facies metamorphism [1,22].

The Douay intrusion is located in the northwestern part of the Abitibi greenstone
belt, 55 km SW of the town of Matagami. The Douay area is an exploration project owned
by Maple Gold Mines Ltd. and Agnico Eagle Mines Ltd. The gold mineralization is
mostly contained in the Douay intrusion and its host rocks, i.e., the Cartwright Hills
and Taibi groups (Figure 1). A syenite phase of the Douay intrusive complex is dated at
2676 +5/−6 Ma (upper intercept 207Pb/206Pb age, obtained by regression of three titanite
grains and one zircon fragment) [23]. The Douay complex mostly consists of aphyric
to feldspar-phyric and quartz-feldspar-phyric syenite, as well as aplite, pegmatite, and
carbonatite dykes [11]. The Cartwright Hills Group (2721.4 ± 3.1 Ma; [24]) is dominated
by tholeiitic pillow basalts and gabbro sills, and also comprises ultramafic lava flows, as
well as interflow felsic pyroclastic and sedimentary rocks such as chert and siltstone [11,24].
The Taibi Group (<2685 ± 2.6 Ma; [25]) is a basin-restricted sedimentary unit formed in
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deep water toward the end of the synvolcanic period [3]. The sedimentary rocks consist
of siltstone, mudstone, graywacke, polymict conglomerates, and iron formations, and are
interbedded with mafic to felsic lava flows and pyroclastic rocks.
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Figure 1. (a) Geological map of the Abitibi greenstone belt showing the distribution of the main
lithologies. The map is modified from the Ministère de l’Énergie et des Ressources Naturelles of Québec
(MERN), Sigeom dataset, and from the Ontario Geological Survey (OGS). The projection is UTM
NAD83 Zone 17N. The red stars locate the main alkaline-carbonatite intrusive complexes of the
Abitibi greenstone belt. Acronyms stand for the Casa Berardi Tectonic Zone (CBTZ) and the Cadillac–
Larder Lake Fault Zone (CLLFZ). (b) Zoom on the Douay project, as mapped by Maple Gold Mines
Ltd. (Vancouver, BC, Canada), showing the location of orebodies (yellow stars), the sample dated by
Davis et al. [23] (blue dot), the main faults documented by Maple Gold Mine Ltd. (dashed lines), as
well as the main lithologies, including the Douay intrusion, the Taibi Group, and the volcanic rocks
(dark green) and interflow sedimentary rocks (light green) of the Cartwright Group.

The Douay gold project is spatially associated to the Casa Berardi Tectonic Zone
(CBTZ), which overlaps the Cartwright Group to the south and the Taibi Group to the
north [11]. The CBTZ is an E–W trending fault that accommodated brittle-ductile movement
evolving from reverse (during the D2 deformation stage) toward dextral-transpressive
motion (D3 stage) [11,26]. Mineralization at the Douay project comprises disseminated and
structurally controlled styles, hydrothermal breccia, and hydrothermal alteration induced K-
metasomatism, albitization, hematization, carbonatization, silicification (quartz-carbonate
veins included), and fluoritization [11].

3. Materials and Methods
3.1. Petrography and Whole Rock Chemistry

Only a single outcrop of the alkaline intrusive complex can be found on the Douay
property. Five samples were taken from this outcrop in August 2020 (Table 1). Thick
(50 µm) polished sections were obtained from these five samples. Petrographic observations
were performed using an Olympus BX53M petrographic microscope equipped with a
motorized stage and a SC50 camera. Further characterization was performed using a
petrographic microscope (Olympus Instruments, Olympus Corporation, Tokyo, Japan)
and cathodoluminescence (CL8200 Mk5-1 Optical, CITL, Hertfordshire, United Kingdom)
at UQAC.
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Table 1. Sample location (WGS84 datum) and general description.

Sample Latitude Longitude Description

D1A 49.531720 −78.142188 coarse-grained intrusive phase (carbonatized)
D2 49.531588 −78.142307 coarse-grained intrusive phase (carbonatized)
D3 49.531649 −78.142220 aplite dyke
D4 49.531677 −78.142260 strongly altered intrusive phase (‘red rock’)

D5 49.531620 −78.142139 coarse-grained feldspar-phyric
intrusive phase (carbonatized)

Whole rock analyses were performed by ALS Canada Ltd. on the samples. The major
elements were analyzed by inductively coupled plasma (ICP) atomic emission spectroscopy
(AES) following acid digestion and the detection limit is 0.01%. Trace elements were
analyzed by ICP mass spectrometry (MS) using lithium borate fusion and the detection
limits are between 0.01 and 5 ppm (Supplementary Material S1). Quality assurance and
quality control procedures, including the use of blanks, duplicates, and standards, were
maintained rigorously to obtain precise and accurate results.

The chemistry of the Douay intrusion is compared to the chemistry of another alkaline
complex of the Abitibi greenstone belt, i.e., the Beattie syenite. The Beattie syenite is
selected because its chemistry is well documented and because this syenite intrusion is
genetically related to an IRGS [27]. The chemical composition of the Beattie syenite (n = 32)
is compiled from the literature [27–29].

3.2. Zircon Chemistry and Geochronology

Zircon concentrates were produced for two samples (D1A and D3) by the Overburden
Drilling Management Ltd. (ODM) laboratory (Ottawa, ON, Canada). At ODM Ltd., the
rocks were crushed using the electric pulse disaggregation method. Heavy minerals were
separated using a shaking table and heavy liquids with densities of 3.0 and 3.3 g·cm−3.
Pan concentrates containing the zircon fraction were poured on a tap, mounted onto epoxy
resin and fine-polished at UQAC. In both samples, zircon grains have distinct sizes and the
largest (heaviest) fraction separated gravitationally from the smaller zircon grains during
the preparation of epoxy mounts. The large grains (~70–200 µm) and small grains (<100 µm)
were mounted separately. The mounts were imaged in transmitted light using an Olympus
BX53M microscope at UQAC and by backscattered electron (BSE) and cathodoluminescence
(CL) imaging using a Tescan Vega 3 SEM at the MERC-Isotope Geochemistry Laboratory
(MERC-IGL) of Laurentian University. The images were used to identify altered and
fractured grains, as well as apatite and other types of inclusions, which are avoided during
subsequent laser ablation analysis.

Zircon U-Th-Pb isotopes and trace element analyses were conducted on ~300 zircons
per sample at MERC-IGL, Laurentian University. Laser ablation sampling was performed
using a Photon Machines Analyte G2 ArF excimer laser, with 193 nm wavelength, <4 ns
pulse width, and HelEx II cell. Ablation durations were 30 s, with a laser fluence of 2 J/cm2

and 7 Hz repetition rate, leaving estimated ablation pit depths of <15 µm. Sixty seconds of
background were measured at the beginning and end of the analytical session, with 30 s
of background measured between each ablation. Helium carrier gas flows through the
ablation cell were 0.525–0.55 L/min (cup) and 0.1 L/min (cell), with 1.68 L/min Ar and
0.015 mL/min N2 makeup gas added downstream of the cell. The ablated aerosol was split
downstream of the sample cell, so that U-Th-Pb and trace elements measurements could be
conducted simultaneously (LASS; e.g., [30]).

The U-Th-Pb isotopes measurements were conducted using a Thermo Scientific Nep-
tune Plus multicollector (MC) ICP-MS, equipped with a Jet interface and nine Faraday
cups. All MC-ICP-MS analyses were conducted in a low resolution, static mode to ensure
maximum sensitivity and stability. All cups were coupled with 1011 Ω amplifiers, with
the exception of L2, which was coupled with a 1012 Ω amplifier for better precision on
the low intensity 207Pb signal. Ion beam drift is typically <0.05 amu, with a flat top peak
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width typically ~0.2 amu, ensuring stable on-peak measurements throughout long-duration
analytical sessions. Cool gas and Ar auxiliary gas flows were set to 0.07 L/min, respectively,
and RF power was set to 1200 W. Trace element measurements were conducted using a
Thermo Scientific iCap-TQ ICP-MS in single quad mode to ensure maximum sensitivity on
the low to intermediate mass range. The masses measured and associated dwell times are
shown Table S4.

The raw U-Th-Pb and trace element data were synchronized in Iolite, along with the
laser log file, prior to processing, so that the same timeslices (selections) for each analysis
were used in the calculations. Baseline subtraction, instrumental drift, and downhole
fractionation corrections were performed with the U-Pb Geochronology reduction scheme
(DRS) implemented within Iolite v4 [31,32], with U-Th-Pb isotope ratios normalized to
the zircon reference material OG1 (OG1; 3465 ± 1 Ma; [33]). The OG1 standard was
analyzed three times at the beginning and end of the session, and once every ten unknowns
throughout the session. Typically, 3 s at the beginning and 1 s at end of the ablation period
were excluded from the selections in order to minimize potential fractionation effects,
leaving ~26 s of signal for integration. The within run variance in the measured ratios for
OG1 (i.e., the additional percent error required to achieve MSWD = 1) was propagated into
the 2 standard errors (2SE) uncertainty for all unknowns.

Verification reference materials DD91-1/DM18 (2682 ± 1 Ma; [34]) and Maniitsoq
(3008.7 ± 0.66 Ma; [35]) were analyzed repeatedly throughout the session to ensure accuracy
of the U-Pb ratios, and measured dates identical to the published TIMS ages and low
uncertainty and MSWD were obtained. Trace element data were processed using the
Internal Standard DRS method within Iolite v4 and normalized to the synthetic glass
NIST610. An assumed stoichiometric concentration of 15.284 wt% Si was used for all
zircon, to account for the differing ablation characteristics between the glass and zircon.
The synthetic glasses NIST610 and NIST612, and zircon 91500 (1065 Ma; [36,37]), were
used to verify the accuracy of the trace elements analyses. Analytical results and operating
parameters are provided in Supplementary Material Tables S1–S4.

4. Results
4.1. Fieldwork

The Douay alkaline-carbonatite intrusive complex is covered in glacial material and
is mostly known from drill core. A significant volume of rock was taken from the single
outcrop that exposes the alkaline intrusive phases in the study area. This outcrop is located
in the Porphyry zone delineated by exploration (Figure 1) [11]. This natural outcrop,
enlarged by stripping, mostly exposes a coarse-grained equigranular to feldspar-phyric
alkaline intrusive phase that is pervasively hematized and carbonatized. This intrusive
phase comprises red patches of strongly altered rock (‘red rock’) that are elongated in
the E–W to ESE–WNW direction over 1–5 m. Thin and elongated silicified zones are
also observed (Figure 2a). The main intrusive phase is cut by several 10 cm to 1 m thick
aplite dykes, oriented NW–SE (Figure 2b). Samples were taken from the main intrusive
phase, including altered (samples D1A, D2, and D5; Figure 2c,d,g) and strongly altered (D4;
Figure 2f) samples. A sample was also taken from the thickest aplite dyke observed in the
field (D3; Figure 2e).

4.2. Petrography

Samples D1A, D2, and D5 display similar mineral assemblages. They are dominated
by euhedral, 0.5–2 mm long, feldspars (aspect ratio = 0.3–0.6) with irregular, possibly
albitized, contacts (Figure 3a,b). Feldspar displays coarsened or irregular (chessboard
texture) perthite exsolutions (Figure 3c,d,e,h). Feldspar is dark to orange-pink, or green in
CL, possibly due to irregularly distributed Na and/or K-metasomatism, and hematization.
The D1A, D2, and D5 samples also contain a minor amount (2–5 vol%) of ~50 µm rounded
quartz included in feldspar and, less frequently, occurring as small (<10 µm) interstitial
grains. Samples D1A, D2, and D5 also contain clusters of strongly altered mafic minerals
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that occupy 5–10 vol% of the rock (Figure 3a,b). These clusters consist of biotite, chlorite,
carbonate, epidote, and/or feldspar. According to CL imaging, apatite grains are most
abundant in these mafic clusters. Small (<5–10 µm) disseminated magnetite (<1 vol%) is
also observed, which is mostly restricted to the clusters of mafic minerals. The magnetite
grains are rounded or anhedral with irregular outlines.
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Quartz and carbonate veinlets (up to 0.5 cm thick in sample D1A) occupy <2 vol%
of the rock. Carbonate stringers are most abundant in the broken-up rock located next
to the 0.5 cm thick carbonate vein observed in sample D1A (Figure 3c). Shown by CL
imaging, carbonate is found in veinlets and is most abundant in mafic minerals clusters.
Carbonate is also found disseminated in the rock, within feldspar and at the contact between
feldspars (Figure 3e). Trace amounts of minute chalcopyrite and small pyrite grains are
also disseminated in samples D1A, D2, and D5.
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Figure 3. Douay samples D1A (a) and D3 (b) observed in transmitted light. Douay samples observed
under cathodoluminescence and showing the distribution of alkali feldspar, quartz, carbonate, and
apatite in samples D1A (c,d), D2 (e), D3 (f), D4 (g), and D5 (h). The abbreviations stand for albite
(Ab), apatite (Ap), carbonate (Cb), chlorite (Chl), feldspar (Fp), magnetite (Mag), and quartz (Qz).

Sample D4 is dominated by feldspars and contains 10 vol% of clusters of mafic minerals
and trace amount of disseminated pyrite. Most feldspars are broken-up to thinly brecciated
in sample D4, and fractures are filled with fine-grained phyllosilicates, i.e., white mica
and possibly chlorite. This sample also contains 1–2 vol% of disseminated carbonates
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(Figure 3g). The aplite sample (D3) is fine-grained, equigranular, and dominated by feldspar
and ~10 vol% rounded quartz grains (Figure 3b,f). This sample also contains 2 vol% of
mafic clusters (magnetite included), 1 vol% apatite, and 1 vol% of disseminated carbonates.

4.3. Whole Rock Chemistry

The four samples from the main intrusive phase (samples D1A, D2, D4, and D5) came
from a single outcrop and display similar chemistry (Figure 4). Compared to these samples,
the D3 sample (aplite) is silica-enriched and trace elements-depleted (Figure 4). All samples
contain a moderate amount of water, i.e., 0.1 to 0.36 wt% H2O (Table S1). According to
the location of samples on the Total Alkali Silica (TAS) diagram, the main intrusive phase
is a syenite and the aplite dyke is a granite (Figure 4a)—this preliminary result should,
however, be interpreted with care as the TAS diagram is inadequate for altered rocks.
On the aluminium saturation index (ASI) vs. Al/NK diagram, the bulk of samples plot
between the fields for peralkaline and metaluminous rocks (Figure 4b).

The REE and multielement diagrams confirm the chemical similarities between the
studied samples (Figure 4c,d). The REE profiles are fractionated and lack an Eu anomaly,
as is generally the case for alkaline intrusions of the Abitibi greenstone belt (Figure 4c).
Samples from the Douay project also display the negative Nb, Ta, Zr-Hf, and Ti anomalies
observed in other alkaline intrusions such as, for example, the Beattie syenite (Figure 4d)
and in tonalite-dominated synvolcanic intrusions [38]. The main difference between the
intrusive phase of the Douay intrusion described here and syenite intrusions (e.g., the
Beattie syenite) is the general enrichment in trace elements, with the Douay intrusion
being depleted in most elements (Nb, Ta, and Ti excepted) compared to syenite intrusions
(Figure 4c,d). The aplite dyke is the most depleted in trace elements and displays more
pronounced negative Nb, Ta, Zr-Hf, and Ti anomalies compared to the main intrusive
phase (Figure 4d).

The method of Trépanier et al. [39] was applied to the studied rocks to calculate
pre-alteration major elements composition (i.e., precursor composition). This method is
based on an artificial neural network that relies on Al, Ti, Zr, Cr, Y, Nb, and Th to predict
precursor composition (i.e., major elements concentrations) for igneous rocks. The method
of Trépanier et al. [39] also performs mass balance calculations (Table 2). This method
failed for sample D3 because the Al/Ti ratio of this sample falls outside of the range of
values used to train the neural network [39]. For the main intrusive phase, results indicate
negligeable mass change for most elements. Exceptions are samples D1A and D5 that
gained a small amount of K and Ca, respectively. More significantly, the four samples
gained a moderate amount of Na and lost a small amount of Si. The main alterations are
thus Na-metasomatism, moderate silicification, as well as K-metasomatism (samples D1A)
and, possibly, calcite veining (D5).

Table 2. Results of mass balance calculation provided in g per 100 g of precursor (absolute mass
changes).

Sample CaO FeOT K2O MgO Na2O SiO2

D1A 0.84 1 −0.53 1.31 −0.89 2.12 −4.71
D2 0.14 −0.74 0.58 −0.74 1.11 −10.85
D3 calculation failed (invalid Al/Ti ratio)
D4 0.56 −0.77 −0.07 −0.63 2.80 −15.17
D5 1.13 −0.21 0.60 −0.60 1.28 −11.51

1 Mass changes are considered negligible when they are between −1 and +1 g for most elements, and between
−10 and +10 for silica [39,40].

The mass changes reported here are moderate, but these mass changes are, nonetheless,
sufficient to modify the chemistry of the rocks and to change the location of the samples on the
TAS diagram, i.e., the main intrusive phase is likely a quartz-monzonite (Figure 4a). To com-
plete the evaluation of hydrothermal alteration processes, carbonatization is discussed. Most
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samples are enriched in CO2 (3.08 to 6.96 wt% CO2), the D3 sample excepted (0.04 wt% CO2).
The carbonate saturation index (CO2/[FeO + MgO + MnO + CaO]·100 molar) returns values
of 7 for the D3 sample, and of 72–97 for the other samples, pointing to weak carbonatization
in the aplite dyke and to intense carbonatization in the main intrusive phase.
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Figure 4. Chemical composition of five rock samples from the Douay intrusive complex. Rocks
are displayed on (a) the Total Alkali Silicate (TAS) binary diagram and on the (b) Al saturation
index (ASI) vs. Al/NK binary diagram [41]. Rocks are also displayed on (c) a primitive mantle-
normalized [42] REE plot and (d) a primitive mantle-normalized multi-element arachnid diagram
modified from Pearce [43]. The chemical composition of the Beattie syenite (n = 32) is compiled from
the literature [27–29].

Whole rock chemical analyses are also used to estimate the zircon saturation tem-
perature and the activity of TiO2 (aTiO2), which will be required to apply the Ti-in-zircon
thermometer (see below). The solubility of Zr is evaluated using the method of Watson and
Harrison [44], which return saturation temperatures of 570 ◦C (sample D3) and 670–720 ◦C
(other samples). A more recent method was developed by Borisov and Aranovich [45].
This method relies on a large number of compositional parameters, as well as on experi-
ments performed for melts containing >155 ppm Zr. The studied rocks, however, contain
<155 ppm Zr, i.e., 8 ppm Zr (sample D3) and 104–152 ppm Zr (other samples). For this
reason, unrealistically low temperatures of 340 ◦C (sample D3) and 413–512 ◦C (other
samples) are obtained, indicating that the method of Borisov and Aranovich [45] cannot be
extrapolated to Zr-poor melts.

The aTiO2 parameter was estimated using the method of Hayden and Watson [46].
Using a generic temperature of 600 ◦C (sample D3) and 800 ◦C (other samples), values of
0.5 (D3) and 0.66–0.79 (other) are obtained. Repeating the calculation with the temperatures
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calculated using the method of Watson and Harrison [44] (see above), values of 0.82 (D3)
and 1.86–3.96 (other samples) are obtained for the aTiO2 parameter. The studied rocks are
Zr-poor and zircon likely crystallized after Ti-minerals and from Ti-poor residual melts.
Hence, at the time of zircon crystallization, the aTiO2 parameter was likely closer to the
lower values obtained here, such as 0.5–0.66. Typical aTiO2 values are 0.6 or more in silicic
melts at typical magmatic temperatures [46], and the value 0.6 will be used to calculate
temperature using the Ti-in-zircon thermometer (see below).

4.4. Texture of Zircon Grains and Ages

Zircon separates were obtained for the D1A and D3 samples. In the D1A sample,
broken zircon grains and whole grains are 50–150 µm long (Figure 5). Incomplete zircons
(fragments) are most frequent (aspect ratio = 0.5 to 0.7). Complete zircon grains are also
found and are elongated (aspect ratio = 0.3 to 0.4). Most grains are subhedral and have
{110} (prismatic form) and {101} (pyramidal crystal form) as their dominant form, which
is characteristic of zircon crystallized in water-rich granites and pegmatites [47,48]. In
sample D1A, most grains are dark in CL and can be porous (Figure 5). A minority of
grains (<2%) display crude oscillatory zoning and irregular zoning. An additional 10%
of grains display relics of poorly preserved oscillatory zoning, with a bright core region
that can be preserved in some grains. Other grains are homogeneously dark in CL, with
more or less expressed porosity (Figure 5). Bright CL irregular and discontinuous rims
formed by coupled dissolution-reprecipitation processes are poorly developed. Zircon also
contains bright CL inclusions of apatite and of minute secondary minerals (possibly thorite
or coffinite) located along cracks.

In the D3 sample, zircon grains are incomplete fragments that are 60–180 µm long,
with an aspect ratio of 0.5 to 1 (Figure 6). These grains display thin oscillatory zoning,
with irregular zoning (up to thick transgressive zones) being more developed in some
grains. Core regions can only be distinguished in 2% of the grains (Figure 6). Cracks can
be observed that contain minute bright CL inclusions (possibly thorite). Bright CL outer
regions formed by coupled dissolution-reprecipitation processes are poorly developed.
Apatite inclusions are small (1–2 µm) and observed in a minority (10–20%) of grains.

Geochronological data for the D1A sample show significant common lead enrichment
(Figure 7a), indicating that these zircon grains behave as completely open systems. The
addition and/or loss of U and/or Pb during alteration shifted data location in the Tera–
Wassserburg plot (Figure 7a) and the trend defined by the dataset has no age significance.
As a consequence, 207Pb/206Pb data span a range of values (Figure 7b) and no crystallization
age data can be extracted from this sample. For the D3 sample, grains are mostly concordant
and analyzed grains can be enriched in Sr and La (Figure 7c,d). Applying a filter criterion
for pristine grains (i.e., Sr < 1 ppm), an intercept age of 2690.1 ± 0.96 Ma (MSDW = 0.86) is
obtained (Figure 7e,f).

4.5. Chemistry of Zircon Grains

Zircon grains from the D1A and D3 samples display distinct chemical characteristics.
In sample D1A, zircon is enriched in trace elements, including Sr and REE (Eu excepted),
compared to sample D3 (Figure 8, Table 3). The Sr and LREE enrichment, for zircon
of sample D1A, point to extensive alteration, which obscures the positive Ce anomaly
(Figure 8a) and questions the capacity of such zircon grains to provide reliable estimates of
the f O2 parameter (see below). Zircon of sample D1A also display a pronounced negative
Eu anomaly, while such an anomaly is lacking in sample D3. In both samples, the range of
HREE values is narrower than the range of LREE values. Additionally, zircon of sample D3
display a positive Ce anomaly, which is attenuated in the LREE-enriched grains (Figure 8b).
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Figure 7. Geochronological results (LA-ICP-MS analyses) for 322 and 292 zircon grains from, respec-
tively, the D1A (a,b) and D3 (c–f) samples. Ellipses in Concordia diagrams are 2σ and are colored
for 204Pb (a) and Sr (c) concentrations. Individual 207Pb/206Pb data are displayed as a function of
204Pb for the D1A sample (b), and as a function of Sr and La concentrations for the D3 sample (d).
Zircon U-Pb age spectra (e) and Concordia diagram (f) showing the data conforming to filter criteria
(Sr < 1 ppm) for the D3 sample.
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(b) samples. Zircon chemistry is also displayed on a primitive mantle-normalized [42] REE plot. The
color code displays the Sr content of the grains, with values classified using the centile method. The
yellow outline, in the background, corresponds to the range of values obtained for the opposite grain.

The chemistry of zircon is further discussed using binary diagrams (Figure 9). The
stochiometric Zr value for zircon is 431,400 ppm Zr when using an internal standard
value of 147,600 ppm Si (webmineral.com, accessed on January 2022. For sample D1A, the
Zr-content of zircon is close to expected stochiometric values, while zircon of sample D3
displays a higher than expected Zr/Si ratio (Figure 9a). The Zr values should, however,
be interpreted with care as the accuracy and reproducibility of Zr concentration is not
quantitatively evaluated (Zr is analyzed to monitor for inclusions). Zircon, in the D1A
sample and in part of the D3 sample is enriched in non-stochiometric elements, and only
3% and 45% of grains in, respectively, the D1A and D3 samples, contain <10 ppm Fe + Ca +
Sr + La and correspond to least altered zircon (Figure 9a).

In sample D3, Th and Lu are positively correlated (Figure 9b), suggesting co-incorpora-
tion in zircon during crystallization. This is possibly the result of a simple substitution
mechanism involving the substitution of Zr for trace elements such as Th, Hf [49], and
possibly Lu, with Lu being representative of all REE and some other trace elements [50]. In
sample D1A, Lu and Th are not correlated for most grains (Figure 9b).

The «xenotime» substitution (Zr + Si substituted for REE + P) [50,51] is also investi-
gated (Figure 9c). A correlation between P and LREE is observed for the D1A sample. For
the D3 sample, this correlation is investigated for the grains with a P content that is above
the detection limit (i.e., n = 138 out of 292), and the correlation between P and LREE is
observed for 53% of the grains. This suggests that the coupled «xenotime» substitution
controlled the incorporation of LREE in most grains. The P-enrichment observed for part of
the grains of the D3 sample could be related to minute apatite inclusions incorporated into
spot analyses (Figure 9c). By contrast, in sample D1A, apatite inclusions are sufficiently
large to be identified on CL images and could be more easily avoided during analysis
(Figure 9c). The diagram of Hoskin [52], established for pristine and hydrothermally altered
zircon from TTG intrusive suites, indicates that most of the studied zircons are altered, with
grains from the D1A sample being the most altered (Figure 9d).
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Table 3. General chemical composition of zircon grains (median values).

Sample D3 Sample D1A

<3 ppm Sr 1 >3 ppm Sr <32 ppm Sr >32 ppm Sr

P (ppm) 451.88 670.62 1210.88 1548.60
Ca not detected 2274.88 4958.04 6298.40
Sc 220.17 227.61 529.38 1019.42
Ti 2.57 5.93 12.49 19.89
Fe 114.02 235.30 580.58 1110.12
Sr 0.83 9.84 19.57 56.73
Y 228.16 591.78 2091.35 2627.67
Zr 52,0568 508,821 434,006 433,971
Nb 0.88 1.46 153.38 221.65
La 0.20 1.88 7.28 18.22
Ce 22.11 54.18 78.03 167.98
Pr 0.47 4.92 6.14 18.34
Nd 4.26 31.16 25.88 82.25
Sm 3.93 20.58 25.45 68.28
Eu 1.83 8.19 0.05 0.07
Gd 9.59 37.62 59.02 121.49
Tb 2.23 8.11 28.57 52.14
Dy 21.52 68.82 354.73 594.33
Ho 7.00 19.43 123.94 185.67
Er 32.27 80.66 682.79 949.87
Tm 6.70 14.92 183.55 248.54
Yb 55.53 115.15 1973.78 2760.02
Lu 8.68 17.46 403.29 561.33
Hf 5811.33 5457.94 27,517.40 29,958.15
Th 42.29 133.44 492.80 1606.59
Ta 0.09 0.13 134.90 190.82
U 110.07 209.28 5388.84 8383.87

1 3 ppm Sr (D3 sample) and 32 ppm Sr (D1A sample) correspond to median Sr values for these samples.
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4.6. Calculating the fO2 and Temperature Parameters

The f O2 and temperature parameters are calculated for the D1A and D3 samples
(Figure 10a) using the method of Smythe and Brenan [53]. The method mostly relies on the
Ce content in melt and zircon, as well as on the activity of silica (aSiO2) and titanium (aTiO2),
and on the composition of the melt. The aSiO2 parameter is set to 1 because the studied rocks
contain interstitial quartz. The aTiO2 parameter, presented above, is set to 0.6 [46]. The com-
position of the melt is unknown, as melt inclusions are lacking in the studied zircon grains
and is approximated using whole rock chemical composition. The water content of the
melt is unknown. The water content of the melt is 4–5 wt% H2O for other intrusive systems
of the Chibougamau area (i.e., alkaline intrusion, Opémisca granodiorite-monzodiorite in-
trusion, Chevrillon granodiorite-monzonite pluton, and Muscocho granodiorite pluton) for
which the water content of the melt could be estimated using amphibole chemistry [13,14].
The water content parameter is thus set to 4 wt% H2O for samples D1A and D3. Tests are
also performed using higher H2O values (not shown) and indicate that increasing the water
content parameter shifts f O2 estimates toward higher values.
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Figure 10. Binary diagrams displaying the (a,c) La vs. oxidation state, with the oxidation state
expressed in terms of deviation from the fayalite-magnetite-quartz (FMQ) buffer, and the (b) La
vs. temperature parameters. These parameters are calculated for zircon and using the methods of
Smythe and Brenan [53] (a,b) and Loucks et al. [54] (c), and results from these two methods were
compared using a binary diagram (d).

For the D1A sample, the La content increases as the estimated f O2 value increases
(Figure 10a). As pristine grains tend to be La-poor, zircon grains with the lowest La
values likely return the most reliable estimates of the f O2 parameter. In sample D1A, the
calculated oxidation state is FMQ −3.5 ± 1.3 (median ± standard deviation − std) for the
n = 140 grains with La < 10 ppm, and FMQ −2.1 ± 2.7 for the n = 4 grains with La < 1 ppm.
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Zircon, in sample D3, points to reducing conditions estimated at FMQ −3.94 ± 0.61 using
the 149 grains that contain <1 ppm La.

The f O2 and temperature parameters are also calculated using the method of
Loucks et al. [54] (Figure 10c). This empirical method requires insights into the U, Ce,
and Ti content of zircon, and knowledge of the crystallization age. Dating is used to
estimate the eU parameter, which is the age-corrected initial U content of zircon. The
age parameter is set to 2690 Ma for samples D1A and D3. In sample D1A, the calculated
oxidation state is FMQ −0.58 ± 1.3 (median ± std) for the n = 140 grains with La < 10 ppm,
and FMQ +0.80 ± 2.0 for the n = 4 grains with La < 1 ppm. In sample D3, an oxidation state
of FMQ +2.42 ± 0.64 is obtained for the 149 grains that contain <1 ppm La (Figure 10c).

Using the Ti-in-zircon thermometer [55] implemented by the method of Smythe and
Brenan [53], and using a value of 0.6 for the aTiO2 parameter, a temperature estimate of
672 ± 53 ◦C (median ± std) is obtained for the zircon grains of sample D3 that contain
<1 ppm La (n = 149 grains) (Figure 10b). The zircon grains of sample D1A return tempera-
tures comprised between 651 ◦C and 1488 ◦C, with median and std values of 849 ± 131 ◦C
(Figure 10b). The La-poor grains in sample D1A, return temperatures of 800 ± 106 ◦C (for
the n = 140 grains with La < 10 ppm) and 768 ± 46 ◦C (for the n = 4 grains with La < 1 ppm).

4.7. Comparison with Another Carbonatite-Bearing Intrusive Complex

The chemistry of the studied zircon is further discussed using a comparison to zircon
from a carbonate-nepheline-bearing syenite from the Crevier carbonatite-alkaline complex
studied by Groulier et al. [56]. This intrusive complex is located in the Proterozoic Grenville
orogeny, in Québec, and counts as one of the few alkaline-carbonatite complexes of the
North American continent for which zircon data are available. Zircon grains, in the
Crevier complex, are classified as: (1) euhedral, which are grains enriched in Ca and Fe
and crystallized from a carbonatite-saturated (pre-immiscibility) alkaline melt; and as
(2) anhedral, which correspond to grains least enriched in Ca and Fe and that may have
crystallized in a post-immiscibility syenite melt [56].

Displaying chemical data as a function of the non-stochiometric elements Ca and Fe
(Figure 11) shows that most zircon grains in sample D3, are similar to the anhedral (Ca- and
Fe-poorest) zircon from the Crevier complex, i.e., their Th/U ratio, Sr content, and Ti-in-
zircon temperature are comparable (Figure 11a,c,d). The Douay zircon grains (D3 sample)
are, however, enriched in LREE compared to the Crevier zircon grains (Figure 11b,e). For
the Douay intrusion, the f O2 parameter is uncorrelated to the Ca + Fe content (Figure 11f)
of the grains. The f O2 parameter calculated using the method of Loucks et al. [54] is higher
in sample D3 compared to the sample from the Crevier complex (Figure 11f). For the D1A
sample, zircon grains span the range of Ca + Fe values displayed by the zircons of the
Crevier complex and have little in common with the anhedral and euhedral Crevier grains
(Figure 11). The positive correlation between Ca + Fe and Th/U, LREE, Sr, temperature,
and (Sm/Yb)N observed at Crevier is not observed for sample D1A (Figure 11).
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Figure 11. Chemical composition of the studied zircon grains displayed on the binary diagrams
Fe + Ca vs. (a) Th/U, (b) sum LREE, (c) Sr, (d) temperature, (e) (Sm/Yb)N, and (f) oxidation state.
Samarium and Yb were normalized to chondrite (e). The oxidation state was calculated for zircon
and using the methods of Smythe and Brenan [53] and Loucks et al. [54] (f). The dashed lines outline
the range of compositions displayed by zircon grains from a carbonate-nepheline-bearing syenite
sample from the Crevier complex [56]. For these samples, the oxidation state (f) was calculated using
the method of Loucks et al. [54].

5. Discussion
5.1. Rock Type and Intrusive Phases

The studied rocks (except sample D3) have the chemistry and petrography of syenite
(Figures 3 and 4); however, petrographic observations indicate that feldspar has been
modified by alteration and the pre-alteration rock may have contained plagioclase, now
replaced by alkali feldspars. In addition, mass balance calculations indicate that the alkali
content has been increased by hydrothermal alteration, and this modified the location
of samples on the TAS diagram (Figure 4a). Another consequence of alteration-induced
Na-K-gains is that it would have decreased the ASI value, i.e., precursors may have
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been metaluminous. Using the method of Trépanier et al. [39], it can be concluded that the
precursors have the chemistry of quartz-monzonite. The studied rocks are also less enriched
in incompatible elements compared to the syenite intrusions of the Abitibi greenstone belt
(Figure 4c,d). We thus conclude that the studied rocks (samples D1A, D2, D4, and D5) are
quartz-monzonite and not syenite. As other parts of the Douay intrusion consist of syenite
and minor carbonatite phases [11], the identification of a quartz-monzonite phase in the
mineralized Porphyry zone (Figure 1) indicates that Douay is a polyphase intrusion or
intrusive suite. Magmas emplaced in the area of the Douay project are thus moderately
alkaline or high-K calc-alkaline (altered quartz-monzonite phase) and alkaline (syenite and
carbonatite phases). Douay is similar to other intrusive suites of the Abitibi greenstone
belt (e.g., Kirkland Lake area), which formed during the syntectonic period and consist of
quartz-monzonite, syenite, and other intrusive phases [3].

Hydrothermal alteration, for the quartz-monzonite phase, is characterized by Na-
metasomatism and minor K-metasomatism, as well as moderate to negligeable silica loss.
During the alteration process, magmatic plagioclase and ±quartz were likely destroyed
as hydrothermal alkali feldspar, which is enriched in silica compared to plagioclase, crys-
tallized. Another important hydrothermal alteration is carbonatization, which produced
disseminated carbonate and carbonate veinlets, and that induced negligeable to moderate
Ca-gain. Sulfidation formed a minor amount of pyrite and rare chalcopyrite on the studied
outcrop, because this outcrop is located at the periphery of the mineralization of the Por-
phyry zone. Within the nearby deposit, pyrite ranges from 0.5% to >10%, and chalcopyrite
is a minor phase (El Rassi [11] and F. Speidel pers. comm.). Alkali metasomatism is consis-
tent with the circulation of magmatic fluids in the studied rocks. Given the context, it is
unclear whether these fluids were exsolved from the studied quartz-monzonite intrusive
phase (i.e., autometasomatism), or whether these fluids were produced by syenite and
carbonatite phases. Other alterations, such as silicification (quartz veinlets observed in the
field) and carbonatization, are consistent with both magmatic-hydrothermal and orogenic
gold mineralizing systems, and, thus, have an unclear origin.

In quartz-monzonite rocks, hydrothermal alteration also had a significant impact on
mafic magmatic minerals, such as amphibole and/or clinopyroxene. These minerals have
been altered to clusters of biotite (indicating local K-gain), carbonate (C-gain), chlorite,
epidote, feldspar, and magnetite (hydration and local reorganization of Fe, Mg, Ca, Al, and
Si). Given the extent of alteration, it is unclear whether magnetite is a secondary mineral or
whether it corresponds to a recrystallized magmatic mineral. The pre-alteration mineralogy
of the quartz-monzonite phase thus comprises two feldspars, quartz, and ±amphibole (or
clinopyroxene?), apatite, zircon, and possibly magnetite.

The aplite dyke (sample D3) is less carbonatized than the quartz-monzonite intrusive
phase. Mass balance calculation could not be performed for this sample and petrographic
observation suggests that Na-metasomatism modified the outer margins of feldspars
(Figure 3f). Sample D3 is a granite, and whether its precursor was an alkaline or a sub-
alkaline rock that gained a significant amount of Na during alteration is unclear. The trace
element profile of sample D3 is parallel to those of the quartz-monzonite phases. The
aplite dyke may thus correspond to a volatile-rich residual melt derived from the quartz-
monzonite magma. Sample D3 contains a lesser amount of trace elements compared to the
other samples (Figure 4e,d), possibly because the residual melt separated after prolonged
crystallization of trace elements-enriched phases such as zircon, apatite, and amphibole.
The pre-alteration mineral assemblage of sample D3 likely consisted of two feldspars,
quartz, and ±amphibole (or biotite?), apatite, zircon, and possibly magnetite.

5.2. Timing of Zircon Crystallization

In the studied rocks, most minerals have been modified by hydrothermal fluids and
zircon is the main magmatic mineral that can be used to further document the nature
and physical-chemical properties of the studied magma. Prior to examining zircon chem-
istry, the timing of zircon crystallization is discussed. Whole rock chemistry points to
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Zr-poor magmas, which is consistent with the possible metaluminous nature of the melt
(see previous section), as experimental studies indicate that metaluminous (and peralumi-
nous) melts generally contain ~100 ppm Zr or less [57,58], whereas peralkaline melts can
dissolve >1 wt% Zr [59,60]. Zircon saturation likely occurred late as a consequence of the
limited availability of Zr in the magmatic system.

In sample D1A, zircon grains are euhedral and anhedral (incomplete fragments), with
this latter crystal form indicating that zircon crystallized in melt pockets with a relatively
limited volume [47]. This is consistent with the crystallization of zircon during the last
stage of the evolution of the magmatic system. In addition, complete grains are strongly
elongated (aspect ratio = 0.3 to 0.4), suggesting a fast growth rate [47]—this is expected
for the feldspar-phyric quartz-monzonite phase (Figure 2a), which likely emplaced at a
shallow depth as a feldspar-bearing magma and cooled rapidly.

In zircon of the D1A sample, core regions can be distinguished on CL images, that may
correspond to inherited grains, and relics of oscillatory zoning are observed, confirming
that these zircons have a magmatic origin (Figure 5). Zircon in sample D1A, has also
been impacted by post-magmatic processes that coarsened and blurred the oscillatory
zoning in some grains [61]. In addition, most grains are dark on CL images, porous, and
have lost their oscillatory zoning, indicating that zircon is partly amorphous. This is a
likely consequence of radiation damage to the crystal structure resulting from U-decay [62].
Zircon grains in sample D1A, behave as completely open systems and are unsuitable for
dating (Figure 7).

The aplite dyke (sample D3) was likely emplaced at temperature conditions of
>570 ◦C. Zircon is recovered as incomplete fragments with partially developed crystalline
faces, indicating that it crystallized from late pools of highly fractionated residual melt [47].
Zircon grains from sample D3 lack core regions that can be easily distinguished from the
rest of the grain, and they lack multiple age populations (Figure 7e), i.e., they lack inherited
cores. This is a common feature of aplite dykes, which formed from late residual melts
that are unlikely to contain inherited zircon [63]. Oscillatory zoning is irregular in some
grains and can be cut by irregular domains with homogeneous composition indicating
a partial recrystallization of the grains. Recrystallization expelled incompatible (large
ionic radius) trace elements in parts of the grains and concentrated impurities in trace
elements-rich convolute zones, producing bright and dark CL domains (Figure 6). Such
recrystallization features can be promoted by the circulation of magmatic fluids [47], as is
likely the case here.

In addition, the bright CL corroded rims observed for both samples are typical of zircon
that has interacted with an aqueous solution [62]. These rims correspond to transgressive
recrystallization patches from which trace elements have been expelled [61]. In both
samples, zircon likely interacted with magmatic fluids either exsolved from the studied
intrusion (autometasomatism) or from other intrusive phases, and subsequent interaction
with metamorphic fluids cannot be excluded. The main difference between samples D1A
and D3 is that zircon in sample D1A was likely metamict prior to alteration, while those
of sample D3 were pristine. Metamictization, in sample D1A, would have promoted the
destruction of the crystal and exchanges of elements with the fluids, inducing the observed
enrichment in trace elements.

As indicated previously, the aplite dyke (sample D3) may correspond to a residual melt
extracted from the quartz-monzonite intrusive phase (other samples), implying that zircon
grains in samples D1A and D3 have similar crystallization ages. That a same alteration
event impacted metamict (sample D1A) and pristine (sample D3) zircon grains with similar
crystallization ages implies that metamictization occurred most rapidly in sample D1A.

It is possible to estimate the time required for complete metamictization of zircon.
Here, the calculation is performed using Equation (5) defined by Meldrum et al. [64].
This equation is derived from textural observations performed on synthetic and natural
zircon with known age and U content [64]. The method of Meldrum et al. [64] calculates
the minimum amount of eU (age-corrected initial U content of zircon) required for a
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zircon grain to become entirely metamict within a given time interval and at a defined
temperature. Several time intervals—15 My, 50 My, and 100 My—and temperatures—50 ◦C
and 100 ◦C—are tested (Figure 12a). The temperature at which the ~2690 Ma intrusions
of the Douay intrusive suite were maintained after complete cooling of the magmatic
system are unconstrained because the emplacement depth of the intrusion, as well as the
paleo-geothermal gradient, are unknown. Temperatures of 50 ◦C and 100 ◦C are considered
realistic for an intrusive complex likely emplaced a few kilometers below the surface.
Further constrains on the temperature parameter are unnecessary, because temperature
variation has a limited impact on the calculated eU parameter (Figure 12). The method of
Meldrum et al. [64] shows that zircon from the D3 sample would have required >> 100 My
to become metamict. Most zircon grains from sample D1A, however, would be entirely
metamict under 100 My, and would likely be partially metamict within a shorter time
interval of 15 My (Figure 12a).
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(b) Binary diagram showing zircon Ddpa vs. La (ppm), with the D parameter calculated for a 15 My
time interval and using the equations reported by Gao et al. [65].
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The amount of radiation damage in zircon can also be estimated using the radiation
dose in displacements-per-atom (Ddpa). The Ddpa parameter is calculated using the equa-
tions reported by Gao et al. [65]. This parameter combines U and Th concentrations, as well
as the time span of decay, i.e., 15 My in the example shown here (Figure 12b). The results
show that, for a 15 My time interval, the Ddpa parameter is >0.01 for most zircon of sample
D1A, and <0.005 for sample D3 (Figure 12b). To further interpret the Ddpa parameter, it is
compared to values calculated for the Suzhou granite, whose zircon grains show a ‘high
Ddpa effect’ at Ddpa > 0.03 [65]. For sample D1A, most grains return Ddpa values that are
also close to, or above 0.03 (Figure 12b). Metamictization, in sample D1A, may thus have
been significant a few Myrs after complete cooling of the quartz monzonite phase and
dissipation of the magmatic fluids exsolved from this intrusion, and prior to subsequent
interaction with hydrothermal fluids. Sample D3 indicates that the aplite dyke, as well as
the likely co-magmatic quartz-monzonite phase, emplaced at ~2690 Ma, i.e., 10–20 My prior
to the emplacement of the syenite and carbonatite phases dated at 2676 +5/−6 Ma [23]. We
propose that the hydrothermal process that has altered the studied zircon results from in-
teraction with magmatic fluids, exsolved from the alkaline phases (syenite and carbonatite).
Additional alteration induced by the subsequent circulation of metamorphic fluids during
the D2–D3 deformation events (or after) cannot be excluded.

The quartz-monzonite and granite phases (main intrusion and aplite dyke) and the
syenite-carbonatite intrusive phases at Douay, correspond to magmatic events with distinct
ages and chemistry, and these two intrusive stages are unlikely to be co-magmatic. However,
the occurrence of successive intrusive events over a restricted area points to a structural
configuration that favored magma injection in the upper crust during the syntectonic stage.
This is important from a metallogenic point of view as structures that can facilitate the
transport of magma through the crust can also channel mineralizing fluids. This study also
has implications for our understanding of magmatism in the Abitibi greenstone belt. Indeed,
the quartz-monzonite of the Douay intrusive suite is part of a broader magmatic event in
the northern part of the belt. This quartz-monzonite phase is coeval with several alkaline
and subalkaline intrusions, such as the 2691 +5/–3 Ma Lac Shortt intrusion (see above),
the 2692.1 ± 2 Ma O’Brien syenite-monzonite-granodiorite stock [3,8], the 2688 ± 8 Ma
Saussure syenite [14], and the Chevrillon quartz-monzonite pluton [66]. The ~2676 Ma
syenite-carbonatite intrusive phases of the Douay intrusion emplaced late and possibly
toward the end of (or after) the syntectonic period, which is generally considered to extend
from 2700 to 2690 Ma in the northern part of the Abitibi greenstone belt [1,20,21]. These
syenite-carbonatite intrusive phases may be coeval with the Dolodau intrusion, which is
approximately dated at 2630–2680 Ma [67–69]. The syenite-carbonatite intrusive phases of
the Douay suite is also coeval with alkaline and subalkaline magmatism in the southern
part of the belt, where the syntectonic period extends from 2690 to 2665 Ma [1,17].

5.3. Physical-Chemical Properties

Zircon saturation temperatures of 667 ◦C (sample D1A) and 570 ◦C (D3) can be
obtained using a method [44] that relies on whole rock chemistry. These temperatures are
unrealistic because they are close to below the wet granite solidus [70]. The method of
Watson and Harrison [44] is thus imprecise in the study area, possibly because bulk rock
composition has been modified by hydrothermal alteration.

Zircon crystallization temperature can also be calculated using a Ti-in-zircon ther-
mometer [53], given that the aTiO2 parameter can be estimated. This parameter is likely
overestimated when calculated from whole rock analysis [44], as whole rock is unrepresen-
tative of the chemical composition of the residual melt pockets out of which the studied
zircon crystallized, and we elected to use a generic value of 0.6 for the aTiO2 parameter [46].
The Ti-in-zircon thermometer also requires data on the Ti content of zircon, analyzed here
using the LA-ICP-MS instrument. Finally, the thermometer method requires that Ti be
incorporated in zircon following Henry’s Law behavior and that its distribution is not
modified by alteration. This latter assumption may be questioned given the extent of
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alteration observed in the studied rocks. To limit the impact of alteration on the results,
the temperature is estimated for the least-altered (<1 ppm La) zircon grains of the D3 and
D1A samples, which return temperatures of 672 ± 53 ◦C and 768 ± 46 ◦C, respectively.
The Ti-in-zircon thermometer thus indicates that zircon crystallized at ~700–800 ◦C in
the quartz-monzonite phase, prior to crystalizing at ~600–700 ◦C from the most evolved
residual melt (aplite dyke) extracted from the quartz-monzonite phase.

To estimate the f O2 parameter, we used the method of Smythe and Brenan [53] that
relies on several parameters, with the most important being: (1) the Ce content of zircon;
and (2) the estimate of the water content of the melt (i.e., 4 wt% H2O). Other parameters,
such as aSiO2, aTiO2, and melt composition (water excepted) have a lesser impact on final
results [13,14]. The f O2 parameter is also estimated using the method of Loucks et al. [54]
that is based on the U, Ce, and Ti content of zircon. Both methods return f O2 values that
are highest for La-rich than for La-poor grains (Figure 10). This indicates that alteration
may affect the concentration of Ti, U, and/or Ce. Temperature estimates obtained using the
Ti-in-zircon thermometer are also correlated to La content (Figure 10b), suggesting that Ti is
indeed affected by alteration. Uranium is strongly compatible in zircon, as it is incorporated
by a simple substitution mechanism (U(IV) = Zr(IV); [49]), and may thus be difficult to
remove from zircon during an alteration process; however, U can be mobilized by F-Cl-
bearing fluids [71]. Such fluids may have circulated in the Douay mineralized system,
where fluoritization is reported and where base metals-bearing sulfides (chalcopyrite,
molybdenite, sphalerite, galena) are observed [11] that are indicative of Cl-bearing fluids.
Modification of the initial U content of the studied zircon cannot be excluded. Cerium, on
which the f O2 calculation relies extensively, has a ionic radius close to this of HREE and,
like HREE, is abundant in zircon [49]. Results presented here show that the LREE content
varies more than the Ce and HREE contents (Figure 8), suggesting that the alteration has a
limited impact on Ce concentration. In addition, Ce(IV) is strongly compatible in zircon
because it likely substitutes for Zr(IV), and Ce(IV) is unlikely to be easily removed from
zircon and to be mobile in the presence of a fluid.

For sample D1A, the least-altered (<1 ppm La) zircon grains return values of FMQ
−2.1 ± 2.7 (method of Smythe and Brenan [53]) and of FMQ +0.8 ± 2 (method of Loucks
et al. [54]). The f O2 value obtained using the method of Loucks et al. [54] compares to
the FMQ 0 to +1 values obtained for several syntectonic intrusions of the Chibougamau
area (i.e., the Saussure, Opémisca, Chevrillon, and Muscocho plutons) [13,14] and also
compares to the oxidizing conditions generally reported for alkaline systems of the Abitibi
greenstone belt, e.g., the Murdock Creek intrusion [72]. Moderately oxidizing conditions of
FMQ +0.8 ± 2 are also consistent with the occurrence of magnetite in the Douay samples
(see Section 4.3). We thus conclude that the method of Loucks et al. [54] returns results
that are more realistic than the low f O2 values returned by the method of Smythe and
Brenan [53]. A possible explanation for the poor performance of this latter method is an
imprecise estimate of the water content of the melt. Additional calculations (not shown)
indicate that increasing the water content of the melt to 7–10 wt% H2O is sufficient for
the method of Smythe and Brenan [53] to return realistic estimates of the oxidation state
of ~FMQ 0 to +1. We thus conclude that the magma was enriched in water, and this is
consistent with the shape (i.e., {110}) and {101} as the dominant form) of zircon in the
D1A sample.

For the D3 sample, the method of Loucks et al. [54] points to oxidizing conditions
of FMQ +2.42 ± 0.64, suggesting an increase in the oxidation state in the highly evolved
residual melt injected to form aplite dykes. To obtain similar results using the method
of Smythe and Brenan [53], water content of up to 30–40 wt% H2O is required. Even if a
high water content is expected for a volatile-rich residual melt injected as an aplite dyke,
values of 30–40 wt% H2O are considered to be unrealistically high. Modification of the melt
composition parameter (e.g., decrease of the alkali content) also shifts the results provided
by the method of Smythe and Brenan [53] toward higher f O2 values. This latter hypothesis
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is favored as zircon in sample D3 crystallized within isolated pools of residual melt, whose
chemistry is likely poorly represented by whole-rock chemistry.

Results show that, even in the strongly altered zircon population of sample D1A, a few
grains have retained their initial Ce content and return a f O2 value that is close to the value
of FMQ 0 to +1 obtained for several syntectonic intrusions of the Chibougamau area [13,14].
We thus conclude that the Ce content of pristine to moderately altered zircon can be used
to document the f O2 parameter. In altered rocks, constraining the parameters required by
the method of Smythe and Brenan [53] is difficult, while the method of Loucks et al. [54]
performs best for such rocks.

5.4. Chemical Composition of Zircon

Zircon from sample D1A is significantly enriched in all trace elements (Eu excepted)
compared to zircon from the D3 sample (Table 3). This trace elements enrichment in
sample D1A, is likely a consequence of hydrothermal alteration that impacted U-rich and
radiation-damaged (metamict) zircon grains, which is consistent with alteration through a
diffusion-reaction process [62]. Zircon of sample D1A is also characterized by a complete
re-equilibration of the isotopic system (Figure 7a), inclusions of thorite-coffinite, and
micrometer-sized pores, which are characteristics generally attributed to the dissolution-
reprecipitation process [62]. The diffusion-reaction process is considered more likely here,
because of the extreme enrichment in non-formula elements observed in sample D1A
(Table 3) and because those zircon grains were likely metamict prior to alteration. Zircon in
sample D3 was likely altered through a dissolution-reprecipitation process, which impacts
pristine grains [62]. In this section, we will examine additional impacts of alteration on the
chemistry of zircon grains.

A first consequence of the incorporation of trace elements is to modify the Zr/Si ratio
of zircon, which is higher in the D3 than in the D1A sample (Figure 9a). In addition, zircon
in sample D1A is enriched in common Pb, which is a known consequence of alteration [73].
Zircon is also Eu-depleted in sample D1A (Figure 8a). This is unlikely to be a consequence
of crystallization from an Eu-depleted melt and/or to crystallization from a reduced (Eu(II)-
dominated) magma, as the studied rocks lack negative Eu anomalies (Figure 4) and as
zircon from the most evolved melt (sample D3) also lack negative Eu anomalies (Figure 8b).
A more likely explanation for sample D1A is that Eu and possibly other trace elements
were preferentially removed from the radiation-damaged grains before being re-introduced
by hydrothermal fluids unable to transport Eu(III) efficiently. These fluids may have
transported Eu(II) but, as only Eu(III) can substitute into the zircon lattice [74], zircon grains
in sample D1A maintained the Eu-depletion that they acquired during metamictization.

The Eu(III)-depleted fluids discussed here likely correspond to high temperature fluids.
Indeed, high temperature fluids mobilize Eu(II) and not Eu(III) according to experiments
performed using aqueous and chloride-rich solutions [75]. Additional experiments are,
however, required to evaluate the mechanism of Eu transportation in the oxidized, and
likely CO2-, F-, and LREE-bearing magmatic fluids exsolved from the ~2676 Ma syenite
and carbonatite phases of the Douay complex, and which correspond to the fluids that
likely re-introduced trace elements in zircon of the D1A sample.

The positive correlation between Th and Lu, which is a consequence of a simple
substitution mechanism between Zr and trace elements in pristine zircon, is lost in sample
D1A. Zircon in this sample displays enrichment in both Th and Lu, with Lu > Th (Figure 9b).
This is likely a consequence of the low mobility of Th in a hydrothermal fluid [76], which
is more likely to migrate toward thorite micro-inclusions within zircon, while the syenite-
carbonatite complex emplaced at ~2676 Ma may have produced Th-poor and REE-bearing
fluids, rendering Lu available to the radiation-damaged zircon of sample D1A.

Compared to zircon from the Crevier intrusive complex, zircon from sample D3 has
similar chemistry to that of zircon interpreted to have crystalized from a carbonate-poor
syenite melt of the Crevier complex [56]. Only the LREE enrichment is more pronounced
at Douay, inducing higher values for the Sm/Yb ratio (Figure 11b,e). The REE content of
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zircon depends on the REE content of the melt and on co-crystalizing minerals [77], and
the melt composition and crystallization sequence may have been different at Douay and
Crevier. Moreover, the LREE-enrichment displayed by zircon of sample D3 could be a
consequence of alteration induced by REE-enriched magmatic fluids at Douay. Regarding
the D1A sample, the chemistry of altered zircon is different from that of the zircon grains
of the Crevier complex that display similar Fe + Ca contents. Alteration in the D1A sample
induced a significant enrichment in Ca, Fe, Sr, and LREE that can be compared to that
observed at Crevier; however, the Th/U ratio, the Sr vs. Fe + Ca positive correlation, and
the Ti-in-zircon temperature are not comparable (Figure 11) and can be used to distinguish
strongly altered zircon (sample D1A) from zircon that crystallized from a carbonate-rich
alkaline magma (Crevier complex).

5.5. Discrimination Diagrams

The impact of the diffusion-reaction process on the chemistry of zircon in the D1A
sample is further investigated using a comparison with the D3 sample, and with sam-
ples from other syntectonic and synvolcanic plutons of the Chibougamau area and com-
piled from recent studies [13,14]. This comparison is presented in detail in the electronic
Supplementary Material Figure S1, and results indicate that U, Th, Pb, Y, Sr, and Eu are
diagnostic of magma type and alteration processes. The Th/U ratio is also useful to dis-
tinguish crystallization environments (Figure 11a). The Th/U ratio is well characterized
and generally takes values of 1, or 0.2–0.8, in magmatic zircons [78], while it takes values of
<0.1 in metamorphic zircon due to the expulsion of Th from the structure of zircon [77,79].
In sample D1A, the Th/U ratio is within the range expected for magmatic zircon but the
U, Ca, and Fe contents are much higher than in most magmatic zircon, enabling a clear
distinction between extensively altered and least-altered zircon (Figure 11a).

Following these observations, several discrimination diagrams are tested to facilitate
the interpretation of zircon chemistry. The Th/U vs. La binary diagram (Figure 13a), which
is equivalent to a Th/U vs. Sr diagram (not shown), can discriminate between zircon that
crystallized in carbonate-nepheline-bearing syenitic magma (Crevier carbonatite-alkaline
complex), zircon grains that were modified by a diffusion-reaction process following
interactions with magmatic fluids exsolved from a carbonatite-alkaline complex (Douay
intrusion), zircon modified by metamorphism (with Th/U < 0.1, see above), and other
zircons, i.e., pristine and altered zircon crystalized in alkaline and sub-alkaline magmas.
This latter category can be further discriminated using a Th/U vs. U binary diagram, as
sub-alkaline magma produced zircons that contain ~100–1000 ppm U and with a Th/U ratio
comprised between 0.2 and 1 (field A in Figure 13b), while alkaline magma (Crevier complex
and Saussure intrusion) produce zircon with a chemistry that falls in field B in Figure 13b.
Zircon in sample D3, falls in fields A and B (Figure 13b), possibly because it crystallized
from a sub-alkaline magma and was subsequently partially altered by magmatic fluids
exsolved from an alkaline magma.
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intrusion. For the Crevier (n = 103), Saussure (n = 46), Chevrillon (n = 45), Muscocho (n = 236), and
Anville (n = 52) plutons, data are compiled from the literature [13,14,56]. The location of field C
(metamorphic environment) is deduced from the literatures [77,79].

6. Conclusions

The Douay intrusive complex, Abitibi greenstone belt, hosts part of the gold of the
Douay exploration project. The petrogenesis of the Douay intrusion, as well as the met-
allogenic processes that led to the concentration of Au in the upper crust in and near this
intrusion, remains debated. The aim of this study is to demonstrate that zircon from altered
intrusive rocks can be used to infer the age of magmatic and hydrothermal events. The
Douay intrusion was known as a ~2676 Ma syenite-carbonatite intrusive complex and
this study demonstrates that Douay is an intrusive suite that also comprises a ~2690 Ma
quartz-monzonite intrusive phase. Both intrusive phases are unlikely to be co-magmatic
given the age and chemical differences between these magmatic events. Investigation of
zircon chemistry shows that the following sequence of events occurred: (1) crystallization
of zircon at ~2690 Ma in an evolved residual melt enriched in trace elements, U-included
(sample D1A), and in a highly evolved residual melt depleted in trace elements (sample
D3); (2) extensive radiation damage for the U-rich grains (sample D1A) over a period of
~10–15 My; and (3) alteration of zircon grains by interaction with magmatic fluids likely
exsolved from the ~2676 Ma syenite-carbonatite Douay complex. Alteration is controlled
by the diffusion-reaction process (sample D1A) and the dissolution-reprecipitation process
(sample D3). Characterization of zircon chemistry led to the identification of the Th/U vs.
U discrimination diagram that can be used to distinguish extensively altered zircon grains
from pristine to least-altered zircon formed in distinct magmatic environments (Figure 13b).
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accompanying text: PCA analysis.
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