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Abstract: In hydrogeology, the pressure front diffusion equation is crucial for the interpretation of
pumping tests. It describes the displacement around the pumping well of the pressure front gener-
ated by a hydraulic disturbance, such as pumping or injection. This equation serves to physically
locate the hydraulic objects (the recharge boundary, impermeable boundary, fault and hydraulic
connection) that are able to influence the hydrodynamic behaviour of aquifers during a transient
hydraulic test. However, several authors who have attempted to characterize this equation have
come up with different expressions because the pressure front has been defined according to different
approaches. This paper first clarifies the origin of the divergence between authors before reviewing
seven approaches used to characterize the diffusion equation. In addition, a new approach is pro-
posed, which is more practical and which defines the pressure front using the logarithmic derivative
of the drawdown. Finally, all these reviewed approaches, plus the new one, are unified into a single
general approach that defines the pressure front according to a general criterion, which is the critical
drawdown, noted as sc. To do this, the pressure front criteria of each existing approach, including the
new one, were converted into equivalent critical drawdowns. The ultimate goal of this study is to
enable hydrogeologists to use all these approaches correctly in order to improve the accuracy of the
interpretation of pumping test data for the better characterization of the geometry of aquifers.

Keywords: aquifer; pumping test; pressure front; diffusion regime; diffusion equation

1. Introduction

Groundwater management requires the appropriate characterization of hydraulic
properties (transmissivity T and storage coefficient S) governing aquifer hydrodynam-
ics [1–4]. Constant-rate pumping tests (or aquifer pumping tests) are the most common
and routine direct investigations used by practitioners [5–7]. They consist of creating a
disturbance of the groundwater piezometric head in the vicinity of the well and measuring
the transient variation of the piezometric head as a function of the time and distance from
the pumping well.

The habitual interpretation of the time-series datasets relies on conventional flow
models that assume a homogeneous, isotropic, two-dimensional domain and confined
conditions, in which a radial flow regime occurs [8,9]. The term “flow regime” refers to a
specific form of the aquifer’s hydraulic response to pumping. Although conventional flow
models have their uses, they have been proven to be inaccurate in numerous applications
where aquifers have non-uniform and/or discontinuous properties, thereby, leading to
inaccurate interpretations [10–14].

Several field investigation studies have reported that the flow regimes occurring in real
media are actually much more complex and diversified than what is modeled by the simple
radial flow regime [14–21]. To overcome this issue, some pioneering publications [22–25]
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have improved the interpretation of transient hydraulic tests by introducing a diagnostic
plot approach that typically combines the logarithmic derivative of the drawdown (ds/dlnt)
as reported by Bourdet, Whittle, Douglas and Pirard [24] and the flow dimension parameter
(n) conceptualized by Barker [26].

This type of analysis makes it possible to achieve a more realistic representation of
various specific natural conditions, due to its greater sensitivity to variations of the aquifer’s
hydrodynamics [27]. The flow dimension n (n ∈ [0; 4]) is a parameter that characterizes a
linear log-derivative response, such that n = 2(1− v) where v is the slope of ds/dlnt on a
bi-log plot [28–30]. Figure 1 below summarizes the published theoretical flow dimensions
and their associated flow regimes.
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Figure 1. Summary of published theoretical flow regimes and their associated flow dimensions n in
bi-log scale of dlogs/dt vs. time (redrawn from [12]).

Any change in the flow dimension during a transient hydraulic test reflects a change
in the hydrodynamic conditions that control the shape of the pressure front pulse diffusing
through the aquifer [26,30–32]. The pressure front pulse is theoretically considered as
the moving limit between the zones that are and are not influenced during a pumping
test [32]. In some cases, the changes in the flow dimension may reflect the attainment of
discrete hydraulic heterogeneities (or hydraulic objects) by the pressure front pulse, such
as hydraulic boundaries, faults or connections to another aquifer [14,30].

A sequence of flow dimensions n may then provide information on the geometry of
the aquifer as it is scanned by the pressure front pulse propagating around the well during
pumping. The modelling of the aquifer geometry ultimately requires the spatial location of
hydraulic objects that successively alter the flow dimension. This points out the necessity
of determining the distances of these objects within the aquifer.

The diffusion equation (Equation (1)) links the distance traveled by the pressure front
pulse from the source to the elapsed time [33]. Assessing this equation is necessary for any
spatial location of hydraulic objects within the aquifer [34–37]. The time it takes for any
hydraulic object to impact the drawdown response at the source and potentially alter the
flow dimension is referred to as the time of influence [35,38,39]. The knowledge of this
parameter, as well as the diffusion equation (Equation (1)) in its explicit form, makes it
possible to determine the distances of the objects from the source (pumping well) if several
observation wells are available. 〈

r2
〉

∝ tγ (1)
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where r is the distance traveled by the pressure front [L], t is the time [T] and γ is a real
constant depending on the flow regime.

The time exponent γ is a key parameter in the characterization of the diffusion equation
because it defines the diffusion regime. A normal diffusive regime corresponds to γ = 1
while an abnormal diffusive regime refers to γ 6= 1 [12,33,40,41].

In the first instance, the normal diffusion regime refers to the Fickian regime (r ∝
√

t) [41,42].
This may relate to a continuous, homogeneous and isotropic medium [12,33,40,41]. Moreover,
the normal diffusion regime is also produced in heterogeneous aquifers where the het-
erogeneity is diffuse and follows a homogenous Euclidian statistical scheme (ex. Log-
normal) [43]. In contrast, the abnormal diffusion regime is produced in fractured aquifers
with a fractal geometry [11,40,41] or relates to the transient hydraulic interactions between
Euclidian hydraulic objects and non-equal topological dimensions—typically a fault within
a conductive matrix [12,33]. In both cases, the abnormal regime induces a slowdown of
diffusion; hence, γ < 1.

The explicit characterization of Equation (1) requires an understanding of the relation-
ship between the diffusion regime and the flow regime—in other words, between γ and n.
Conceptual flow models published by authors suggest that, as a general rule, flow regimes
with integer flow dimensions (n = 1, 2, 3) pertain to normal diffusion (γ = 1), while
non-integer flow dimension regimes are caused by abnormal diffusion (γ < 1) [11,40,41].

Indeed, the abnormal diffusive regime was initially attributed to fractal geometry
models to explain non-integer flow dimensions [26,40,41,44]. However, in nature, non-integer
flow dimensions have been observed outside the hypotheses of the fractal medium [30,45–48].
In other perspectives, Doe [31], Rafini and Larocque [12] extended the interpretation of
fractional n values to the concept of non-fractal geometries [30].

Particularly, [12] numerically demonstrated that n = 1.5 was generated by an aquifer
crosscut by a single leaky fault, which is non-fractal by definition. This fractional flow
response corresponds to the specific abnormal diffusion regime γ = 0.25. Finally, abnormal
diffusion and corollary fractional flow regimes remain as unconventional models and are
beyond the scope of this review paper. This article focuses on characterizing the diffusion
equation in normal diffusion and associated integer dimension flow regimes.

Integer flow dimensions n = 1, 2, 3, respectively refer to linear, radial and spherical
flow regimes [26,28,30,49]. The explicit form of the diffusion equation in these conditions is
given by Equation (2) in which T is the transmissivity [L2/T], S is the ideal storage coefficient
of the aquifer [dimensionless], α is the diffusion coefficient [dimensionless] [32,36,50,51]. For
groundwater radial flow, the transmissivity T and the storage coefficient S of the aquifer
are: T = Kb and S = Ssb, where K is the hydraulic conductivity [L/T], Ss is the specific
storage coefficient [L−1] and b is the aquifer thickness [L].

r = α

√
T
S

t (2)

In Equation (2), the hydraulic properties T and S are typically determined by concep-
tual models that are based on specific hydraulic and geometric assumptions [8,9,30,52,53].
However, consensus has not been reached in the literature on how to best determine the
diffusion coefficient α as it is supposed to have a constant value and does not depend on
the hydraulic properties of the medium. Indeed, the different approaches proposed by
different authors to define the pressure front pulse produce divergent values of α [54–57].
Such a lack of agreement causes uncertainties in the interpretation of transient test results,
particularly in regards to the location of hydraulic objects, which directly challenges the
hydrogeologist community.

Bresciani, Shandilya, Kang and Lee [39] recently performed a review in which they of-
fer a practical guide to assist hydrogeologists in choosing the suitable operational definition
of the diffusion equation depending on the practical context. The objective of this study is
to first investigate the origin of the problem related to the characterisation of the diffusion
equation, which has led to different values of the diffusion coefficient α. Then, seven
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approaches used by various authors to characterize the diffusion equation are reviewed
and discussed with an emphasis on the conceptual flow models and the quantitative factors
influencing the differences in value of the diffusion coefficient α.

A new approach for characterizing the diffusion equation is developed, and it is
more practical and based on the drawdown log-derivative function. Finally, all reviewed
approaches plus the new one are unified by a single approach, which defines the pressure
front according to a general criterion, which is the critical drawdown sc. To do this, the
pressure front criteria of each existing approach, including the new one, are converted
into equivalent critical drawdowns. The reader is forewarned that all equations presented
in this article are converted into the metric unit system and may, therefore, appear in a
different form than in the original publication.

2. Background

The current section aims to investigate the origin of the divergence between authors
in characterizing the diffusion equation, which led to different values of the coefficient α.
To reach this goal, the Generalized Radial Flow model (GRF) proposed by Barker [26] is
considered. The theory underlying the GRF model is first reviewed.

Barker [26] developed the GRF model in a context where conventional models [8,9] were
not suitable for interpreting the complex hydraulic responses of aquifers. The GRF is a
mathematical model that includes a comprehensive set of equations describing groundwa-
ter piezometric head changes during all of the commonly employed forms of hydraulic
testing [26]. Flow is generalized by introducing the parameter of flow dimension n, which
describes the flow regime or the nature of the flow that occurs in the aquifer during a pump-
ing test. In addition, the GRF model is based on the flow regime concept, which has proven
to be versatile and efficient in reproducing natural flow behaviours in various contexts of
aquifer media, including integer and non-integer flow dimension regimes [14,26,30,33,58].

The basic assumptions of the GRF model are as follows: (1) Flow is radial, occurring
in a homogeneous, isotropic and confined medium from a single source and filling an
n-dimensional space. (2) Flow obeys Darcy’s law. (3) The source is an n-dimensional
sphere of radius rw and storage capacity sw. (4) The source has infinitesimal skin. (5) Any
piezometers in the medium have negligible size and storage capacity [26].

The generalized flow equations are developed using a system of n-dimensional spher-
ical surfaces centered on a common point that represents the source or the well [31]. The
areas An of these surfaces vary with distance r from the source according to Equation (3),
in which an is the area of a unit sphere in n-dimension [26]. For instance, in the linear
flow regime (n = 1), the equipotential surfaces are constants while in radial (n = 2) and
spherical (n = 3) flow regimes, An is proportional to r and r2, respectively (Figure 2).

An(r) = anrn−1 with an =
2πn/2

Γ(n/2)
(3)

where Γ(x) is the gamma function of argument x and n is the flow dimension.
Applying the principle of conservation of mass (Equation (4)) between the regions

bounded by two equipotential surfaces, which have radii r and r + dr, and then assuming
that the flow obeys Darcy’s law (Equation (5)), Barker obtained the generalized flow
equation (Equation (6)). In this equation, K is the hydraulic conductivity [L/T], Ss is the
specific storage coefficient of the aquifer [L−1], h is the hydraulic piezometric head [L], r is
the distance [L] and t is the time [T].

∆V = q∆t, with ∆V = Ssb3−nanrn−1∆r∆h (4)

q = Kb3−nan

[
(r + ∆r)n−1 ∂h(r + ∆r, t)

∂r
− rn−1 ∂h(r, t)

∂r

]
(5)

Ss
∂h
∂t

=
K

rn−1
∂

∂r

(
rn−1 ∂h

∂r

)
(6)
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The boundary conditions assumed to solve Equation (6) are: the well has an infinitesi-
mal radius in which a constant flow-rate pumping test occurs; the flow region is infinite; a
zero drawdown is assumed at infinite distance from the source (s(∞, t) = 0); and a zero
drawdown is assumed as initial boundary condition (s(r, 0) = 0).

The general drawdown solution obtained by solving Equation (6) is given by Equation (7).
In this equation, s(r, t) is the drawdown predicted at any distance r, and at any time t, Q
is the pumping flow rate [L3/T], Γ is the incomplete gamma function. In the particular
case of the Theis radial flow conceptual model (n = 2), the Γ function is equal to the well
function W or the exponential integral function E1.

s(r, t) =
Qr2v

4π1−vKb3−n Γ(−v, u) with u =
r2Ss

4Kt
and v = 1− n

2
, v < 1 (7)

As the pressure front pulse is theoretically considered as the moving limit between
the zones that are and are not influenced during a pumping test, then the characterization
of the diffusion equation requires solving the equation s(r, t) = 0, which leads to:

r2v = 0, v 6= 0 (8)

or
Γ(−v, u) = 0 (9)

Equations (8) and (9) have two meanings: either an instantaneous pressure front
diffusion, i.e., the disturbance created at the source is instantly felt everywhere throughout
the aquifer, even at infinite distances, or the pressure front stays at the source and does not
move during the entire duration of the pumping test.

Both solutions are not physically based, which means that the analytical characteriza-
tion of the diffusion equation is a theoretical deadlock. This dilemma poses a challenge
to researchers regarding their ability to detect the pressure front. Authors have resorted
to setting a given threshold of detectability of the pressure front, according to different
conceptual models and approaches. This has resulted in a variety of values of the diffusion
coefficient α values, thereby, leading to quantitative bias in the interpretation of aquifers.

3. Literature Review of Different Approaches Used to Characterize the Diffusion Equation

The purpose of this section is to present different approaches that characterize the
diffusion equation according to specific pressure front criteria. Conceptual models associ-
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ated to the different approaches are also outlined. Indeed, seven different methods used by
various authors to characterize the diffusion equation in the normal diffusion regime are
reviewed, and a new method is proposed.

3.1. The Cooper Jacob Approximation (CJA) (1946) Approach

The approach based on the CJA considers the pressure front as the limit beyond which
the drawdown is zero. The aquifer conceptual model of this approach derives from that of
Theis, which assumes a two-dimensional groundwater flow occurring in a homogenous,
isotropic medium of constant thickness with an infinite extension and the source has
infinitesimal radius. The drawdown solution sCJ(r, t) proposed by Cooper and Jacob [9]
results from approximating the Theis well function to a straight-line for large dimensionless
time. Chapuis [59] stated that the Cooper–Jacob approximation is tolerable for u < 0.01;
indeed, critical values equal to 0.02 and 0.05 are commonly practiced in hydrogeology
applications [60–62].

Thus, taking Equation (10) and solving sCJ(r, t) = 0 leads to Equation (11), in which
the diffusion coefficient value is 1.5.

sCJ(r, t) =
Q

4πT
ln
(

2.25Tt
r2S

)
(10)

r = 1.5

√
T
S

t (11)

The advantage of the CJA approach is that it allows characterizing the diffusion
equation by simply solving the equation sCJ(r, t) = 0. In addition, the fact that α = 1.5 is a
constant is easier to implement by practitioners when calculating the distance of hydraulic
objects. This value is also recommended by some hydrogeology manual [59]. However,
the CJA approach is arbitrary because the value α = 1.5 induces an interpretation error
of the pressure front. When the drawdown predicted by the CJ model is zero at the time
t0 (Figure 3), the drawdown predicted by the Theis model is equal to the critical value
εTheis−CJ given by Equation (12).
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Figure 3. Illustration of simulated drawdown curves predicted by Theis and CJ models at r = 6 m
for a pumping test with Q = 0.2 m3/s, T = 0.01 m2/s and S = 0.001.

This critical value, herein referred to as the pressure front interpretation error εTheis−CJ ,
is proportional to Q/T (in meters) and consequently becomes higher for low-transmissivity
aquifers or high pumping rate hydraulic tests. The CJA approach also implicitly involves a
greater error in the estimation of α, in the sense that, if the pressure front is defined using
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the Theis drawdown model according to a variable criterion sc, the obtained α value given
by Equation (13) might be higher or lesser than 1.5, which refers to the CJ model (Figure 4A).
The error of estimation of α with the CJ model, compared to that obtained with the Theis
model (∆αTheis−CJ), is displayed in Figure 4B for different values of Q/T.
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The minimum and maximum values of Q/T are, respectively, 10−5 m and 105 m
and are determined according to typical pumping test data obtained from communal and
individual water-producing wells.

εTheis−CJ = sTheis(r, t0) =
Q

4πT
E1(0.5625) =

Q
T
∗ 0.03903 (12)

α = 2

√
E1
−1
(

4πT
Q

sc

)
(13)

3.2. The Relative Critical Drawdown (RCD) Approach

The RCD approach is a method to characterize the diffusion equation that considers the
pressure front criterion as the drawdown critical threshold (sc), under which no disturbance
generated by the pumping test is measurable. This criterion sc is quantified relative to the
maximum drawdown at the pumping well s(rw, ∆t) according to Equation (14) in which, x
is the relative factor (x ∈ ]0; 1[), ∆t is the total elapsed time of the pumping test and rw is
the well radius [39,63]. Assuming the radial groundwater flow regime occurring under the
Theis assumptions, the drawdown equation used to characterize the diffusion equation is
given by Equation (15). Then, combing Equations (14) and (15) leads to Equation (16) [39].

sc = x·s(rw, ∆t) (14)

sTheis(r, t) =
Q

4πT
E1(u) , u =

r2S
4Tt

(15)

r = α

√
T
S

t with α = 2
√

E1
−1(x.E1(uw)) and uw =

rw
2S

4T∆t
(16)
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Equation (16) shows that the diffusion coefficient α value depends on the pressure
front relative factor x. Practically, Aguilera [64], Johnson [65] and Bourdarot [66], without
providing any additional details, stated that Jones [35] defined the pressure front accord-
ing to a relative factor of 1% and obtained Equation (18). Moreover, Hossain, Tamim
and Rahman [57] quantified the pressure front relative factor at 0.0000016%, and they
obtained Equation (17).

r = 8.11

√
T
S

t (17)

= 4

√
T
S

t (18)

The RCD approach makes it possible to characterize the diffusion equation both
analytically and numerically. It is an exact approach because the diffusion coefficient α
value is not constant and depends to the relative factor x, the aquifer hydraulic properties
(T and S), the total elapsed time ∆t and the well radius rw. This gives the advantage of
adapting the estimate of the diffusion coefficient value to the conditions under which the
pumping test is conducted.

However, due to the fact that aquifer hydraulic properties could vary by several orders
of magnitude depending on the nature of formations, the value of the diffusion coefficient
could also vary widely. To ensure a certain stability of the diffusion coefficient value, the
pressure front relative factor x must also vary by several orders of magnitude, thus, leading
to unrealistic definition of the pressure front in some practical cases.

3.3. The Drawdown Log-Radius Derivative (DLRD) Approach

This approach characterizes the diffusion equation based on the drawdown log-
radius derivative function Equation (19). The pressure front is defined at any distance
where drawdown log-radius derivative reaches the absolute critical threshold δ such that

δ ∈
[
− Q

2πT ; 0
[

. Then, taking Equation (19) and solving ds/dlnr = δ leads to Equation (20).

dsTheis(r, t)
dln(r)

= − Q
2πT

e−
r2S
4Tt (19)

r = α

√
T
S

t with α = 2

√
− ln

(
−2πT

Q
δ

)
and− Q

2πKb
< δ < 0 and δ in meter (20)

Equation (20) shows that the diffusion coefficient α depends on the pressure front
criterion δ, the pumping rate Q and the aquifer transmissivity T, which give the advantage
of the DLRD approach to adapt the value of the diffusion coefficient to the conditions
under which the pumping test is conducted. For instance, Rahman et al. [37] proceeded by
numerical simulations to determine the diffusion Equation (21). They arbitrarily estimated
the pressure front criterion at |δ| = 1 psi (or |δ| = 6894.76/ρg in meters).

r = 2.5495

√
T
S

t (21)

Although the DLRD approach has the advantage of better determining the value of
the diffusion coefficient, it is not easy to put it into practice in a real pumping test case
where drawdown time series data are recorded. Moreover, this approach is also subject to
uncertainties in the definition of the pressure front as it is the case for the RCD approach,
because the pumping rate Q, as well as the aquifer transmissivity T could widely vary
in realty.
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3.4. The Relative Critical Flow (RCF) Approach

The RCF approach consists in defining the pressure front relatively to the fluid flow
rate within the aquifer. During a pumping test, the propagation of the pressure disturbance
induces a groundwater flow rate q(r, t) into the aquifer, which is analytically expressed by
Equation (22) assuming the Theis conceptual model. This flow rate decreases as a function
of the radial distance r from the pumping well. The RCF approach considers the pressure
front criterion as the flow rate critical threshold (qc), under which no flow is measurable.
The value of the criterion qc is quantified according to the pumping flow rate Q at the
source Equation (23). In this equation, x is the relative factor such that x ∈ ]0; 1[. Then,
combining Equations (22) and (23) leads to Equation (24).

q(r, t) = Qe−
r2S
4Tt (22)

qc = xQ (23)

r = α

√
T
S

t with α = 2
√
− ln(x), x ∈ ]0; 1[ (24)

The diffusion coefficient α in Equation (24) depends only on the relative factor x. For
instance, Tek, et al. [67] used the RCF approach to characterize the diffusion equation. They
arbitrarily defined the pressure front according to a relative factor of 1%, leading to the
following result:

r = 4.29

√
T
S

t (25)

The fact that the diffusion coefficient from the RCF approach depends only on the
relative factor x makes this approach less restrictive than the RCD and DLRD approaches.
As a result, using the RCF approach to calculated the distance of hydraulic objects may
induce errors as this approach does not take into account the aquifer properties, the flow
rate Q. In addition, the RCF approach is not easy to apply in the real-world context of a
pumping test because it is not common to measure the fluid flow into the aquifer during
transient hydraulic tests.

3.5. The Maximum Drawdown Rate (MDR) Approach

The maximum drawdown rate approach consists of characterizing the diffusion equa-
tion using the drawdown derivative function (ds/dt). This approach considers the pressure
front as the pic of the ds/dt function [66]. In other words, it finds the moment at which the
second derivative of the drawdown function is zero (d2s/dt2 = 0) as illustrated on Figure 5.
Assuming classic constant flow pumping test occurring in an aquifer formation that ver-

ifies the Theis hypothesis, the second derivative of the drawdown function d2sTheis(r,t)
dt2 is

given by Equation (26). Then, taking Equation (26) and setting it equal to zero leads to
obtaining Equation (27).

d2sTheis(r, t)
dt2 =

Q
4πT

(u− 1)
e−u

t2 with u =
r2S
4Tt

(26)

r = 2

√
T
S

t (27)

The MDR approach gives a physical meaning to the pressure front, which is the peak
of the ds/dt curve. Then, the diffusion coefficient that is obtained is a constant (α = 2) and
does not depend on any parameter, such as the flow rate, the hydraulic properties, which
makes the MDR approach subject to uncertainties. In other words, the fact that α is constant
could induce some error of estimation of the distances of hydraulic objects.
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3.6. The Maximum Drawdown (MD) Approach for an Impulse Test

The maximum drawdown (MD) approach uses the same principle as the maximum
drawdown rate (MDR) method except that the MD approach directly relies on the draw-
down function. Indeed, this approach considers the pressure front as the pic of the draw-
down function for an impulse test. In other words, it determines the time at which the first
derivative function of the drawdown is zero. To apply this approach, Lee [36] conceptual-
ized a homogeneous and isotropic line source model with an infinite lateral extension. The
drawdown solution (s(r, t)GR) corresponding to these hypotheses for a pulse test is given
by Equation (28) as proposed by Gringarten and Ramey [52].

s(r, t)GR =
S

4πTt
exp

(
− r2S

4Tt

)
(28)

Equation (28) is similar to the first derivative of the drawdown solution predicted by
the Theis model, which implies a long-time pumping test (LTPT). The relationship between
both equations is given by Equation (29). This similarity is explained by the fact that a
long-time constant flow rate pumping test (Theis hypothesis) is considered as an extension
of a flow pulse test in the same conceptual model; thus, the drawdown produced by a LTPT
is an integral of that produced by a pulse test [45,61].

Therefore, solving the diffusion problem with the flow pulse test by applying the max-
imum drawdown approach, i.e., ds(r, t)GR/dt = 0 [36], is equivalent to taking the second
derivative of the Theis drawdown solution and setting it equal to zero (d2s(r, t)Theis/dt2 = 0),
as presented in the previous section (Section 3.5). Both approaches lead to the same result
(see Equation (27)). Therefore, the MD approach could be subject to the same uncertainties
related to the MDR approach as stated in the previous section.

s(r, t)GR =
S
Q
∗ ds(r, t)Theis

dt
(29)
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3.7. The Deviation Time (DT) Approach

The concept of deviation time was introduced by Wattenbarger et al. [68] to refer to
the time of influence of a hydraulic object in order to characterize its distance from the
source during a transient hydraulic test. The time of influence is considered as the moment
in time when a change in flow regime is judged significant enough to be detected on the
drawdown signal. Wattenbarger et al. [68] simulated a long-time constant flow transient
test in a vertical hydraulically fractured well whose fracture extends all the way to the
lateral boundaries. The well is in the center of a rectangular drainage area as illustrated
in Figure 6.
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Figure 6. Example of hydraulic fracture in the center of a rectangular reservoir.

The flow regime that occurs is linear. The normalized drawdown solutions is given
by Equation (30). Representing this equation on a bi-logarithmic scale shows a half-slope
linear flow reflecting the natural behaviour of the aquifer, followed by a deviation illus-
trating the contribution of external boundaries to the aquifer hydrodynamics (Figure 7).
Wattenbarger et al. [68] make a graphical approximation by stating that the deviation ap-
pears at tDye = 0.5 without providing details on the precision with which the pressure
front is read. Taking the expression of the parameter tDye, and setting it equal to 0.5 leads
to Equation (31).

χ−1swDconstant− f low =
1

ρg

[
π

2

[
1
3
+ tDye

]
− 2

π2

∞

∑
n=1

(
1
n2

)
exp

[
−n2π2tDye

]]
(30)

where

χ =
ye

x f
, tDx f =

0.00633kt
∅µctx f

2 , swD(rw, t) =
kb

141.2qBµ
s(rw, t), tDye =

0.00633kt
∅µctye2

r = 1.42

√
T
S

tehs (31)

where tehs is considered by Wattenbarger et al. [68] as the time corresponding to the end of
the half-slope (ehs) regime (Figure 7).
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Figure 7. Representation of the drawdown solution for constant rate pumping test in a closed linear
reservoir (redrawn from [68]).

The value of the diffusion coefficient (α = 1.42) obtained by the DT approach for a constant
flow rate is constant. This value depends on the accuracy with which Wattenbarger et al. [68]
identified the value of the deviation time tDye. However, these authors did not provide
details about this accuracy. Therefore, the DT approach may be subject to uncertainties in
its application for the localisation of hydraulic objects.

3.8. Developing a New Approach: The Drawdown Log-Time Derivative (DLTD) Approach

In addition to the methods presented in the previous Review section, a novel approach
is proposed in this study to characterize the diffusion equation. We show that this new
approach produces a more realistic diffusion coefficient value. The assumptions related to
the Theis model are considered, i.e., the flow is two-dimensional and horizontal, occurring
in a homogenous, isotropic medium of constant thickness with an infinite extension, and
the source has an infinitesimal radius.

The DLTD approach is similar to the Wattenbarger approach and is applied to the
Theis conceptual model, where the flow regime is radial. The objective is to characterise
the diffusion equation from the influence of a hydraulic boundary—in our case, an imper-
meable boundary located at a distance r from the source. The purpose of the approach is
to determine the time of influence ti of the impermeable boundary on the drawdown log-
derivative curve recorded at the pumping well. For this purpose, the “image-well” theory
is applied, which considers an imaginary well to be located twice as far from the pumped
well as the impermeable boundary (Figure 8A). The principle of the DLTD approach is
first to determine the expressions of both the total drawdown produced into the real well
st(rw, t) and its log-time derivative dst(rw, t)/dln(t).
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The Cooper Jacob Approxima-
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front corresponds to the time 

when the drawdown predicted 
by the CJ model is zero. 
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Constant flow 

rate drawdown 
test 

Radial [35] 
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rate drawdown 
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Radial [57] 
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Derivative (DLRD) Approach: 
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Constant flow 

rate drawdown 
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Radial [67] 

Figure 8. (A) Aquifer conceptual model with linear impermeable boundary. (B) Drawdown s(r, t)
and log-derivative ds/dlnt curves.

Indeed, the total drawdown produced in the real well (Equation (32)) is the sum of that
produced by the real well itself s(rw, t) and that produced by the imaginary well located at
the distance (2r) from the real well s(2r, t). Thus, the expression of the log-time derivative
dst(rw, t)/dln(t) is given by Equation (33).

st(rw, t) =
Q

4πT
[W(uw) + W(u2r)] with uw =

rw
2S

4Tt
and u2r =

(2r)2S
4Tt

(32)

dst(rw ,t)
dln(t) = Q

4πT

[
d

dln(t)W(uw) +
d

dln(t)W(u2r)
]

= Q
4πT

[
e−

rw2S
4Tt + e−

(2r)2S
4Tt

] (33)

Both drawdown and log-time derivative signals are represented in Figure 8B. The
time of influence (ti) can be defined as the time at which the influence of the impermeable
boundary starts to be felt in the real well. Then, in long time periods before the influence
of the impermeable boundary is felt in the real well (t < ti), the natural behaviour of the

aquifer dominates; thus, the term e−
(2r)2S

4Tt becomes negligible and e−
rw2S
4Tt → 1 .

Therefore, Equation (33) simplifies to Equation (34), which illustrates the first plateau
of the log-time derivative curve corresponding to the value Q/(4πT) in Figure 8B. The
value Q/4πT corresponds to the slope of the Cooper–Jacob drawdown straight-line in
semi-logarithmic scale.

In very long time periods, after the influence of the impermeable boundary is felt

in the real well (t � ti), e−
rw2S
4Tt → 1 and e−

(2r)2S
4Tt → 1 , then Equation (33) simplifies to

Equation (35), which corroborates the second plateau corresponding to the value Q/(2πT).
This value is equal to two times the Cooper–Jacob slope.

dst(rw, t)
dln(t)

=
Q

4πT
; t < ti (34)

dst(rw, t)
dln(t)

=
Q

2πT
; t� ti (35)



Geosciences 2022, 12, 201 14 of 20

The time of influence ti of the impermeable boundary reflects the time at which a devi-
ation from the natural behaviour of the aquifer is observed on the log-time derivative curve.
This time of influence depends on the accuracy with which the deviation is interpreted.
Indeed, if we consider the absolute criterion σ (deviation of the ds/dlnt curve with respect
to the first plateau), it is then possible to characterise the distance of the impermeable
boundary Equation (36) by solving ds

dlnt =
Q

4πT + σ (Figure 8B).

r = α

√
T
S

ti with α =

√
− ln

(
4πT

Q
σ

)
and 0 < σ <

Q
4πT

(36)

The diffusion coefficient obtained with the DLTD approach depends on both the crite-
rion σ at which the time of influence of the hydraulic boundary is determined, the aquifer
transmissivity T and the pumping flow rate Q. The knowledge of these parameters makes it
possible to accurately determine the location of a hydraulic object using Equation (36). This
approach is simpler and more practical, as it is based directly on the drawdown logarithmic
derivative curve, which is usually employed by hydrogeologists to interpret pumping test
data. However, due to the noise of the real pumping test data, the application of the DLTD
approach to locate hydraulic objects may be subject to uncertainties.

Finally, the highlights of the seven approaches revised from the literature as well as
the one developed in this paper are summarized in Table 1. For each approach, the pressure
front criterion, the general expression of the diffusion coefficient α, the specific pressure
front criterion (if applicable), the different values of α, the hydraulic test conditions, the
flow regime and the names of the authors are mentioned. The approaches appear in the
same order as they were discussed in the main body of the article.

In the end, all approaches summarised in Table 1 are based on the definition of
the pressure front from theoretical criteria that use mathematical tools often difficult to
access for practising hydrogeologists (DLRD, MDR and MD approaches). Sometimes these
pressure front criteria are based on theoretical quantities that are difficult to measure in
the field, such as the critical flow rate qc (the RCF approach). These different theoretical
criteria make it difficult to implement the different approaches developed in real contexts
of pumping test interpretation excepted those based on the critical drawdown values (CJA
and RCD approaches) and the absolute criterion of the drawdown logarithmic derivative
(the DLTD approach).

For this reason, we decided to convert all criteria into terms of critical drawdowns
excepted the deviation time (DT) approach as it is based on a graphic determination of
the parameter tDye. In other words, it is a matter of determining the equivalent critical
drawdown value sceq of each criterion. The different steps, as well as the results of this
standardization, are summarized in Table 2.
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Table 1. Summary of the relevant points of the different approaches.

Approaches and Definition of the Pressure Front
Pressure Front General

Criteria and/or Expression of
the Diffusion Coefficient α

Pressure Front
Specific Criteria Value of α

Hydraulic Test
Condition

Flow
Regimes Authors

The Cooper Jacob Approximation (CJA) Approach:
For any position r, the pressure front corresponds to the

time when the drawdown predicted by the CJ model
is zero.

s(r, t)CJ = 0

s(r, t)CJ =
Q

4πT ln
(

2.25Tt
r2S

) sc = 0 1.5 Constant flow rate
drawdown test Radial [9]

The Relative Critical Drawdown (RCD) Approach:
At any time t, the pressure front is defined at the position
r, where the drawdown reaches a certain percentage x of

the total drawdown at the source.

sc = x.s(rw, ∆t)
α = 2

√
E1
−1(x.E1(uw))

x = 1% 4 Constant flow rate
drawdown test Radial [35]

x = 1.6·10−6% 8.11 Constant flow rate
drawdown test Radial [57]

The Drawdown Log-Radius Derivative (DLRD) Approach:
At any time t, the pressure front is defined at the distance
r, where the drawdown log-radius derivative reaches the

absolute criterion δ.

ds
dln(r) = δ

α = 2
√
−ln

(
−2πT

Q δ
)

with− Q
2πT < δ < 0

|δ| = 1 psi 2.5495 Constant flow rate
drawdown test Radial [37]

The Relative Critical Flow (RCF) Approach:
At any time t, the pressure front is defined at the distance
r, where the fluid flow reaches a certain percentage of the

pumping flow rate at the source.

q(r, t) = xQ
α = 2

√
−ln(x) x = 1% 4.29 Constant flow rate

drawdown test Radial [67]

The Maximum Drawdown Rate (MDR) Approach:
At any distance r the pressure front is defined at the time t

when the pressure variation rate is maximum.

d2s(r,t)
dt2 = 0 d2s(r,t)

dt2 = 0 2 Constant flow rate
drawdown test Radial [66]

The Maximum Drawdown (MD) Approach:
At any distance r the pressure front is defined at the time t

when the pressure disturbance is maximum.

ds(r,t)
dt = 0 ds(r,t)

dt = 0 2 Flow impulse test
(injection) Radial [36]

The Deviation Time (DT) Approach:
The pressure front is defined at the dimensionless time

when a deviation is observed on the normalized
drawdown curve.

Starting of the deviation tDye = 0.5 1.414 Constant flow rate
drawdown test Linear [68]

The Drawdown Log-Time Derivative (DLTD) Approach:
The pressure front is defined at the time when the

deviation on the drawdown log-derivative curve reaches
the absolute criterion σ.

ds
dln(t) = σ

α = 2
√
−ln

(
4πT

Q σ
)

0 < σ < Q
4πT

Constant flow rate
drawdown test Radial This work
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Table 2. Standardization of the criteria used in the different methods. (The steps 1 to 5 indicate the operation used to standardize the criteria of the
different approaches).

Approaches Initial Criteria Equivalent Critical Drawdown Criteria Authors

Standardization Step 1:
Summary of different approaches

Standardization Step 2:
Determining the expression of the

pressure front criteria

Standardization Step 3:
Combining the pressure front criteria in

step 1 and their expressions given in step
2 leads to obtaining the expression of the

parameter u

Standardization Step 4:
Introducing the expression of the

parameter u into the drawdown solution
leads to the equivalent critical

drawdown criterion

The Cooper Jacob Approximation
(CJA) Approach

s(r, t)CJ =
Q

4πT ln
(

0.5625
u

)
with u = r2S

4Tt

s(r, t)CJ = 0 → u = 0.5625
s(u) = Q

4πT E1(u)
sceq =

Q
T 0.03903

[9]

The relative critical drawdown
(RCD) Approach

sc = x. Q
4πT E1

(
rw

2S
4T∆t

)
with 0 < x < 1

s(r, t) = sc →
u = E1

−1
(

x.E1

(
rw

2S
4T∆t

)) s(u) = Q
4πT E1(u)

sceq = 0.07958x Q
T E1

(
rw

2S
4T∆t

) [35,57,69]

The Drawdown Log-Radius
Derivative (DLRD) Approach

ds
dln(r) = −

Q
2πT e−u

with u = r2S
4Tt

ds
dln(r) = δ →

u = − ln
(
− 2πT

Q δ
)

with− Q
2πT < δ < 0

s(u) = Q
4πT E1(u)

sceq = 0.07958 Q
T E1

(
ln
(
− Q

2πTδ

)) [37]

The Relative Critical Flow
(RCF) Approach

x = e−u

with u = r2S
4Tt

x = e−u →
u = − ln(x)

with 0 < x < 1

s(u) = Q
4πT E1(u)

sceq = 0.07958 Q
T E1

(
ln
(

1
x

)) [67]

The Maximum Drawdown Rate
(MDR) Approach

d2s(r,t)
dt2 = Q

4πT (u− 1) e−u

t2

with u = r2S
4Tt

d2s(r,t)
dt2 = 0 →

u = 1
s(u) = Q

4πT E1(u)
sceq =

Q
4πT E1(1) = 0.0176 Q

T
[66]

The Maximum Drawdown
(MD) Approach

ds(r,t)
dt = S

4πT (u− 1) e−u

t2

with u = r2S
4Tt

ds(r,t)
dt = 0 →

u = 1
s(u) = S

4πTt exp(−u)
sceq =

1
πer2 = 0.117

r2

[36]

The Drawdown Log-Time
Derivative (DLTD) Approach

ds
dln(t) =

Q
4πT e−u

with u = r2S
4Tt

ds
dln(t) = σ →

u = − ln
(

4πT
Q σ

)
with 0 < σ < Q

4πT

s(u) = Q
4πT E1(u)

sceq = 0.07958 Q
T E1

(
ln
(

Q
4πTσ

)) This work
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4. Discussion and Conclusions

The diffusion equation is important in hydrogeology to locate hydraulic objects
(around the pumping well) that can modify the hydrodynamics of aquifers. The objective
of this paper is to review seven approaches developed by many authors to characterize the
diffusion equation. The majority of these approaches characterize the diffusion equation di-
rectly according to a critical detectability criterion of the pressure front pulse, except for the
approach of Wattenbarger et al. [68], which is based on the analytic resolution of conceptual
flow problems involving a change in flow conditions due to a distant hydraulic object.

In addition to the seven approaches, a new one was developed in this article (the DLTD
approach). This is similar to the Wattenbarger approach but adapted to the conceptual
model of radial flow. The newly developed approach has the advantage of being both
practical and rigorous. On the one hand, it is based on the logarithmic derivative curve
usually used by practitioners for the interpretation of pumping tests.

On the other hand, the resulting diffusion coefficient considers the pressure front
criterion σ, the aquifer transmissivity T and the pumping flow rate Q, which is also the case
of the RCD, DLRD and RCF approaches. It is worth remembering that the procedure for
characterizing the diffusion equation from the Wattenbarger approach is indeed identical
to that of the approach developed in this paper (the DLTD approach). However, it remains
arbitrary and open to errors of interpretation as the authors do not mention the accuracy at
which the pressure front is defined.

In addition, some approaches result in constant values of the diffusion coefficient.
These approaches are subject to errors of interpretation, especially when applied to the
calculation of distances of hydraulic objects, as they do not take into account certain
variables (Q, T) that may affect the estimation of distances. This is the case for the CJA, MD
and MDR approaches.

All the approaches presented in this review paper are subject to uncertainties in
their application depending on the parameters taken into account in the estimation of
the diffusion coefficient α. Moreover, their application is strictly limited to the particular
contexts of the flow regimes for which they were developed, i.e., the radial flow regime for
most of them except for the DT approach, which corresponds to the linear regime.

Furthermore, all approaches are standardized, i.e., the criteria on which these ap-
proaches are based on are expressed in terms of critical drawdowns in order to compare
them on the basis of the accuracy of the pressure front interpretation. However, in general,
it appears that the equivalent critical drawdowns of certain approaches involve only the
flow rate Q and the transmissivity T. This is the case for the MDR and CJA approaches.
Based on these criteria, the MDR approach can be said to be more accurate than the CJA
approach. The other approaches involve other variables that make them non-comparable.

This scientific contribution, which consisted of rewriting the criteria for all approaches
in terms of the critical drawdown, will allow the characterization of the diffusion equation
to be studied more generally in the future. These future works will, therefore, serve to
facilitate and more precisely determine the value of the diffusion coefficient and enable more
appropriate use of the diffusion equation in the spatial interpretation of hydraulic objects.
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