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Abstract: Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall
and storm tide. However, existing approaches lack the ability to model the combined effect of these
flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood
resilience of coastal cities, modeling techniques to improve the understanding and prediction of
the combined effect of these flood hazards are critical. To address this need, this study presents a
modeling system for assessing the combined flood impact on coastal cities under selected future
climate scenarios that leverages ocean modeling with land surface modeling capable of resolving
urban drainage infrastructure within the city. The modeling approach is demonstrated in quantifying
the impact of possible future climate scenarios on transportation infrastructure within Norfolk,
Virginia, USA. A series of combined storm events are modeled for current (2020) and projected
future (2070) climate scenarios. The results show that pluvial flooding causes a larger interruption to
the transportation network compared to tidal flooding under current climate conditions. By 2070,
however, tidal flooding will be the dominant flooding mechanism with even nuisance flooding
expected to happen daily due to SLR. In 2070, nuisance flooding is expected to cause a 4.6% total link
close time (TLC), which is more than two times that of a 50-year storm surge (1.8% TLC) in 2020. The
coupled flood model was compared with a widely used but physically simplistic bathtub method to
assess the difference resulting from the more complex modeling presented in this study. The results
show that the bathtub method overestimated the flooded area near the shoreline by 9.5% and 3.1%
for a 10-year storm surge event in 2020 and 2070, respectively, but underestimated the flooded area
in the inland region by 9.0% and 4.0% for the same events. The findings demonstrate the benefit
of sophisticated modeling methods compared to more simplistic bathtub approaches, in climate
adaptive planning and policy in coastal communities.

Keywords: coastal flooding; urban hydrology; storm surge; climate change; sea level rise; combined
flood impact

1. Introduction

Coastal cities are increasingly vulnerable to flooding exposure owing to the growing
population, urbanization, climate change, and relative sea level rise (SLR) [1–5]. Flood-
ing can be destructive in these low-lying, densely populated, and highly developed
regions [6,7]. For example, Hurricanes Katrina (2005), Sandy (2012), Harvey (2017), and
Florence (2019) caused significant loss of life and damage on the U.S. Gulf and Atlantic
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Coasts. According to Hanson et al. (2010) [1], about 40 million people were exposed to a
100-year coastal flood event in the 136 largest port cities in the world in 2005. By the 2070s,
the population exposed to such an event could increase threefold. Hallegatte et al. [2] esti-
mated flood losses in a single year by 2050 to be more than 10 times those in 2005. Despite
facing these hazards, protection measures in coastal cities have often been inadequate [8],
primarily due to short-term economic decisions and the uncertainty of future risk [3].
Therefore, to help inform policy decisions, it is necessary to enhance the understanding and
modeling capacities for assessing flood hazards in coastal cities under a changing climate.

Individual flood mechanisms, such as pluvial flooding and tidal flooding, can cause
widespread impacts in coastal cities [9]. However, if multiple mechanisms occur con-
currently, flood severity can be greatly exacerbated [10–13]. Prior studies have demon-
strated the statistical dependence of rainfall and storm tide in coastal regions [11,12,14].
Batten et al. [12] analyzed the temporal dependence of rainfall and storm tide in Virginia
Beach, Virginia, and found that the correlation coefficients between rainfall and storm tide
vary between 0.336 and 0.452 across different data sources. Meanwhile, they indicated that
over half of the rainfall events occurred while the tide level was higher than the average
high tide. Wahl et al. [11] estimated the likelihood of a joint occurrence of rainfall and storm
tide across the contiguous United States (US) Coast and concluded that the possibility of
a compound storm is higher on the Atlantic/Gulf Coast than on the Pacific Coast. Mean-
while, they found that the frequency of compound storms has significantly increased in the
past century, and this trend is expected to continue due to climate change. Xu et al. [14]
estimated the bivariate return periods of compound rainfall and storm tide based on copula
functions and failure probability and showed significant correlation between rainfall and
storm tide.

Given the correlation between storm tide and rainfall, considerable efforts have been
made to develop methodologies for modeling the combined impact from these flood
mechanisms. In prior works, the proposed modeling systems are normally the coupling
of a one-dimensional (1D: [7,15,16]) or two-dimensional (2D: [17–19]) overland model
with a 2D or three-dimensional (3D) storm surge model (e.g., ADCRIC, MIKE21, and
Delft3D). Yin [17] proposed a coastal inundation model by coupling a storm surge model
(ADCIRC) with an urban flood model (FloodMap). At the city scale, the coupled model
demonstrates improved results over ADCIRC modeling alone for both flood extent and
depth. In Silva-Araya et al. (2018) [18], a 2D hydrologic model was coupled with a 2D
storm surge model for Puerto Rico. In an execution, the storm surge model will run first to
prepare a tidal boundary for the hydrologic model. The results show that the interaction
between pluvial flooding and tidal flooding caused increased flooding compared to a storm
surge alone. Coastal regions are often located in low-relief terrain without a large amount
of storage potential. Furthermore, the topography complexity increases significantly in
urban environments due to the surface and subsurface infrastructure. Routing water
in such environments requires high-resolution 2D hydrodynamic formulation to model
the complex street-level overland flooding ([7,13]). In urban environments, subsurface
drainage systems play a key role in managing urban flooding, and their capacity can be
significantly influenced by downstream tidal boundary conditions. However, in prior
work, subsurface drainage systems are often not explicitly included in modeling combined
coastal flooding ([17,18]). This is primarily due to the difficulty in obtaining a large-scale
drainage system database in order to parameterize the model. Without explicitly including
subsurface drainage systems, flood models may inaccurately estimate the effect of not
only pluvial flooding, but also tidal flooding due to the backing up of ocean water into the
city through storm drainage pipes during storm surge events. Therefore, to increase the
accuracy of coastal city flooding, this study used an overland flood model consisting of
a large-scale 1D subsurface drainage network and a 2D surface overland hydrodynamic
model. This model system is capable of simulating the dynamics of surface runoff and pipe
flow, as well as the interaction between them. The model was then coupled with a physics-
based storm surge model built in [20] to obtain ocean boundary conditions. This coupled
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modeling system provides a powerful tool to explore the impact of flooding on a complex
physical system under both current climate conditions and future climate scenarios. Model
outputs with a high spatial-temporal resolution can be applied to investigate the flood
impact at a street-scale, which is needed for flood mitigation and engineering design under
climate change.

Methodologies with varying complexities have been developed in prior works to
estimate the flood impact on critical infrastructure systems such as transportation infras-
tructure under climate change and SLR [17,21–24]. One simplified approach, the so called
“bathtub” method, assumes that the water surface is level so that flood inundation can
be easily estimated by using a digital elevation model (DEM). Because of its algorithmic
simplicity and computational efficiency, the bathtub method is commonly applied to evalu-
ate the impact of SLR and/or a storm surge in coastal environments. Sadler et al. [23], for
example, used the bathtub method and traffic information to identify critical roadways in
Norfolk and Virginia Beach, Virginia exposed to future flood hazards. A similar method
was adopted by [25] to assess the increasing vulnerability of roadways to nuisance flooding
on the U.S. east coast. While the bathtub method is convenient, past studies suggest that it
tends to overestimate flood depths and extents because of its physical oversimplification of
flood routing [26,27].

The objective of this study, therefore, is to advance methods for modeling the combined
impact of rainfall and storm tide in coastal cities under selected future climate scenarios.
As a demonstration, the method was applied to a portion of Norfolk, Virginia to assess
the flood impact on the transportation network for a series of storm scenarios under the
current climate conditions and possible future climate scenarios. The results are compared
to the widely used bathtub approach to quantify the advantage of complex dynamic flood
models in coastal urban environments. The main contribution of this study, therefore, is to
advance the method for dynamically modeling the combined impact of rainfall and storm
tide in coastal cities and demonstrate the application of this method in assessing flooding
impact under both the current climate condition and possible future climate scenarios.
The scope of the current study is to demonstrate the capability of dynamic modeling of
combined flooding in coastal cities under possible future scenarios. The methodology can
be applied to support efforts by coastal communities to improve future resiliency through
testing alternative climate and infrastructure investment scenarios. In future studies, with
sufficient computational resources, the proposed methodology could be further applied to
estimate future flood risk by simulating a large number of combined storms and climate
change scenarios to quantify flooding probabilities. The research also contributes (1) an
investigation of the flood hazard to the transportation network in the case study region; (2) a
quantification of improvements over more simplified bathtub modeling approaches; and
(3) new approaches to evaluate high-resolution, city-scale flood model using drone footage.

2. Materials and Methods
2.1. Study Area

The proposed methods are demonstrated in a portion of the City of Norfolk, Virginia,
USA. Norfolk is in the heart of the Hampton Roads metropolitan area in southeast Virginia,
and it is the home of the world’s largest naval base. This highly urbanized and low-lying
city is located at the confluence of the James River, Elizabeth River, and Chesapeake Bay.
Norfolk faces a series of natural hazard challenges, including flooding and other impacts of
climate change, SLR, and subsidence [28,29]. This region is experiencing the highest rate
of relative sea level rise (RSLR) on the US Atlantic Coast [28,30]. Studies have shown that
flood frequency in this region has significantly increased due to SLR in the past decades,
and this trend is expected to continue in coming decades [31–33]. Burgos et al. [32] indicates
that nuisance flooding has increased 325% in Norfolk since 1960. More frequent major
storm surge events have been observed in Norfolk over the past two decades and 17 major
storm surge events have occurred in the past 85 years in Norfolk, but more than half of
these events occurred in the past 15 years [34]. Meanwhile, because of climate change, the
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intensity of a 24-h duration rainfall with a greater than 1-year return period is expected to
increase in Norfolk [35]. Studies have shown that rainfall intensity in Norfolk is projected to
increase 30% to 40% by 2075 compared to 2000 levels under the high emission scenario [35].

2.2. Storm Surge Model

The coupled hydrodynamic and wave model developed by [20] was adopted to
simulate storm tide under the current and future projected sea level conditions. The model
is built on the Delft3D modeling suite (https://oss.deltares.nl/web/delft3d (accessed on
19 January 2018)). Because a storm surge is a shallow water process and the flow can
be assumed well-mixed in the vertical direction, the model is applied in a 2D or depth-
averaged mode with a single vertical layer.

Considering the computational cost of the storm surge simulation, models are normally
designed to have a relatively coarser resolution at open sea and a higher resolution near
shorelines, especially near critical regions. However, the computational efficiency is likely
low when using a single grid crossing a large geographic region. Because the simulation
time step is determined by the smallest cells in the grid, one approach to reduce the
computational time is to set up the storm surge model in a nested structure. Tahvildari and
Castrucci [20] nested the storm surge model at two levels, where low-resolution Model 1
covered most of the Chesapeake Bay, the Eastern Shore, and areas immediately offshore the
Chesapeake Bay in the Atlantic Ocean, and the high-resolution Model 2 covered most of
the urban areas at the south of the Chesapeake Bay. Model 1 used an equidistant grid with
cell size 125 m × 200 m while Model 2 used a curvilinear grid with resolution of 10 m near
critical infrastructures and 30–90 m away from these spots. Figure 1 shows the domains of
the storm surge model and its location relative to the urban flood model introduced in the
Section 2.3. During simulation, the velocity and water level estimates from Model 1 are
transferred to Model 2 as boundary conditions.

Figure 1. Storm surge model and urban flood model domains: (a) Model 1, (b) Model 2, and (c) urban
flood model.

https://oss.deltares.nl/web/delft3d
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The publicly available topography and bathymetry data from the National Oceano-
graphic and Atmospheric Administration (NOAA) were used to build the model. The
bathymetry and topography used in Models 1 and 2 were obtained from the Coastal Relief
Model (CRM; 90 m horizontal resolution) and a regional dataset (10 m to 30 m horizontal
resolution). The open boundary condition of Model 1 uses TPXO8 global tide model [36].

2.3. Urban Flood Model

The urban flood model that includes a 1D subsurface drainage network and a 2D
surface domain was built for the southwest portion of Norfolk, as showed in Figure 2. The
model domain has a total area of 56.4 km2, of which 8.7 km2. is open water. The study
domain is a highly urbanized area with many artificial structures, including commercial
and residential buildings, transportation networks, and stormwater infrastructure. The
low-lying topography along with these structures create complex flow patterns and paths
on both the land surface and in underground pipe networks. To accurately simulate
street-level urban flooding, a 1D pipe/2D overland hydrodynamic flood model was built
using the Two-dimensional Unsteady Flow (TUFLOW) model [37]. TUFLOW was adopted
because it is capable of simulating both surface flow on a 2D domain and pipe flow via its
1D functionality along with a dynamic link between the two domains. TUFLOW is also
capable of leveraging Graphical Processing Units (GPUs) in parallel, which can significantly
speed up the model simulations. In [13], an urban flood model was built for the Hague
Community located near downtown Norfolk. The spatial datasets, pipeline network, and
parameter settings from [13] were adopted to build the urban flood model for the larger
study domain in this study.

Figure 2. Urban flood model and locations of tide and rain gauges.

In this study, tide level observations were collected from the Sewells Point station
(Station ID: 8638610) located along the northwest coast of Norfolk. The Sewells Point station,
established in 1927, represents the longest tide record in Virginia. Rainfall observations
were collected from two rain gauges maintained by the U.S. National Weather Service
(NWS) and two rain gauges maintained by the Hampton Roads Sanitation District (HRSD).
The locations of these gauges are shown in Figure 2.

The accuracy of topography representation is one of the most sensitive factors in
the urban flood model. In this study, digital elevation model (DEM) representing the
topography was built from a LiDAR-derived DEM dataset provided through the Virginia
Geographic Information Network (VGIN) with 0.76 m × 0.76 m horizontal resolution [38].



Geosciences 2022, 12, 224 6 of 24

This dataset, acquired in 2013, has a vertical accuracy of ±0.066 m. Buildings are another
major factor describing the landscape in urban environments. Building footprint and
height information were also gathered from VGIN. In the study domain, there are more
than 29,000 commercial and residential buildings. To reduce the complexity and increase
numerical stability of the model, only buildings with areas greater than 500 m2. were
represented in the model. It was assumed that water will not enter the buildings, thus 3D
building structures were added to the bare surface DEM.

The study domain has a complex drainage system. There are 9087 pipe sections with
a total length of about 222 km. In this drainage system, more than half of the pipes were
installed before 1950, and about 2000 pipes were installed before 1920. Given the age
and complexity of the system, it is challenging for the city to survey the entire pipeline
system and missing and inconsistent information may exist in the available surveyed
data. We suspect this is a common challenge for other older cities as well. To reduce
the complexity of the model, pipes with diameters smaller than 15 inches were excluded.
Pipes inside buildings, underpasses, and tunnels were also excluded. Major pipes with
missing information were retained, and it was assumed that their missing properties were
consistent with their upstream and downstream pipes. For example, a pipe with a missing
invert elevation is assumed to have the same bed slope as its upstream and downstream
pipes. Then, the upstream and downstream invert elevations of the pipe are calculated by
interpolating the inverse distance weighting (IDW). Smaller pipes with missing information
were excluded from the model. After these data cleaning steps, 6213 pipe sections were
retained with the total length of about 179 km.

TUFLOW solves the full 2D depth averaged momentum and continuity equations for
shallow water free surface flow and incorporates the full functionality of the ESTRY one-
dimensional (1D) hydrodynamic network model [37]. The same technique and parameter
settings for coupling the 2D land surface domain and the 1D pipe network used by [13]
were adopted by the current study. Please reference [13] for details. The study domain
has an average imperviousness ratio of 41% and a shallow groundwater level, which can
reach the surface during storm events that cause flooding. Thus, infiltration is expected
to not have a significant influence on significant flood events, and therefore, it was not
parameterized in the urban flood model. This presumes saturated conditions for the non-
impervious surfaces in the urbanized watershed at the start of the model simulation period.
Lastly, a detailed simulation of bridges, underpasses, and tunnels were excluded in the
model to focus on other regions within the study domain. Future work can add additional
complexity to the model to include these additional processes and features of the landscape.

2.4. Model Coupling

The storm surge model and the urban flood model were linked through the tidal
boundary portion of the study domain, as shown in Figure 2. The total length of the tidal
boundary is 12.5 km. The tidal boundary was split into nine sections approximately parallel
to the regional coastlines with no sharp change in orientation. The length of these sections
varies from 950 m to 2000 m. In a simulation, the storm surge model was executed first,
separately from the urban flood model. Then, time series of tide level from the simulation
were extracted and averaged across each section in the flood model using an automatic
post-processing procedure. This step prepared the boundary condition of water stage
versus time for each tidal boundary section. In the urban flood model, the initial tide level
was set as the averaged low tide level in the past four decades, which is about −0.9 m
(NAVD88) at Sewells Point station. Then, the tide level boundary conditions and rainfall
inputs were fed into the urban flood model to generate high-resolution flood simulations.

The simulated tide flow velocity from the storm surge model was not used by the
urban flood model because of the inability to specify velocity boundary conditions in the
version of TUFLOW used in this study. This simplification may cause underestimation of
direct storm tide inundation, but we do not suspect this underestimation to be significant.
Nonetheless, in an effort to compensate for potential underestimation, a post-processing
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procedure was applied to modify the inundation extent for each time step and the maximum
inundation maps. First, simulations from the storm surge model were extracted within
the urban flood model domain. Second, these storm surge simulations were resampled to
the mesh of the urban flood model. Third, these resampled storm surge simulations were
compared with the urban flood model simulations in each cell, and the maximum values
were selected as the final result. This procedure was then repeated for each simulation time
step. The procedure resulted in the combined results that can be thought of as the worst-case
situation from the two models, which are valuable for flood hazard mitigation purposes.

2.5. Model Evaluation

Direct flood observations in urban areas are rare; however, they are essential for
urban flood model evaluation and calibration [39]. A USGS gauge (latitude: 36.8588◦,
longitude: −76.2986◦) was installed in the Hague Community near downtown Norfolk
during Hurricane Irene (2011). Records from this gauge were used to assess the model
performance at that location near the shoreline.

Spatially distributed flood observations, for example flood extent, have unique values
for evaluating the performance of 2D models. Crowdsourced data, such as photos or camera
footage of flooded areas, newspaper reports, personal interviews, and flooding information
shared by users on social media, can be converted to inundation information ([39–42]). The
inundation information is valuable for evaluating 2D urban flood models. In this study,
imagery data were adopted as an additional innovative data source to evaluate the coupled
flood model. On 10 October 2016, the day after the peak of Hurricane Matthew in Norfolk,
drone footage was captured by the Norfolk Department of Emergency Management and
is available online (https://www.youtube.com/watch?v=R8ZYxubUo-w (accessed on 23
May 2019)). In the drone footage, three scenes were captured inside the current study
domain. Because the flight information, such as flight height, orientation, camera angle, and
precise geolocation, is missing from the record, the footage cannot be directly georeferenced.
Therefore, we created a method to extract flood extent by manual flood edge identification
and GIS processing.

As a demonstration, Figure 3 shows the procedure of the proposed method for extract-
ing flood extent. The first step was to identify flood edges from multiple frames captured in
the same scene. For example, in Figure 3a, the flood edge intersected with several features
in the surrounding area, such as streetlamps, street curbs, and parking space lines. Flood
edge points close to these features were manually selected and geolocated (Figure 3b). The
following step was to generate elevation contour lines crossing each flood edge points
by using the high-resolution LiDAR dataset (Figure 3c). The next step was to separately
calculate the total distance of each contour line to all flood edge points. Among all the
contour lines, the one with the minimum total distance was selected as the inundation edge
(Figure 3d). Finally, the areas lower than the contour line elevation were assumed to be
flooded at that time. Using the same procedure, the flood extents in all three scenes were
extracted. One assumption of the procedure was that the water surface is level or nearly
level, which is plausible for this case because the footages were captured one day after the
storm peak.

https://www.youtube.com/watch?v=R8ZYxubUo-w
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Figure 3. Procedure to extract flood extent from drone footages: (a) identify clear flood edge points;
(b) manually geo-locate flood edge points on a world coordinate system; (c) generate elevation
contour lines crossing each flood edge point; (d) select the contour line with the minimum total
distance to all flood edge points; and (e) determine the flood extent.

2.6. Combined Storm Scenarios
2.6.1. Relative Sea Level Rise Scenarios

Virginia’s coast is a hot spot of RSLR due to climatic and non-climatic (e.g., subsi-
dence) processes. The primary non-climatic component is vertical land movement (VLM;
subsidence or uplift), but it also includes sea surface height changes associated with glacial
isostatic adjustment [29]. In this study, the RSLR scenarios were obtained from [29]. RSLR
is equal to the sum of global mean sea level (GMSL) change and local relative sea level
(RSL) change as follows:

RSLRx,t = ∆GMSLt + ∆RSLx,t (1)

where RSLRx,t is the total RSLR estimated for spatial location x and time t, ∆GMSLt is the
GMSL rise at time t, and ∆RSLx,t is the total RSL change relative to RSL at the reference
time (t0). From [28], the RSL change that occurs in each GMSL rise scenario consists of
contributions from climate-related processes and non-climatic background RSL changes.
The total RSL change is defined as

∆RSLx,t = Climatic ∆RSLx,t + Background RSL Ratex(t − t0) (2)

where Climatic ∆RSLx,t is the RSL change affected by climate-related processes at spatial
location x and time t, and Background RSL Ratex is the non-climatic component of RSL
change, which is assumed to be linear in time.

We adopted the RSLR scenarios from [29], which revised the upper and lower bounds
of SLR scenarios from the most up-to-date scientific literature. Sweet et al. [29] recommends
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six GMSL rise scenarios from 0.3 m to 2.5 m by the year 2100. These six GMSL rise scenarios
are Low, Intermediate-Low, Intermediate, Intermediate-High, High, and Extreme, which
correspond to GMSL rises of 0.3 m, 0.5 m, 1.0 m, 1.5 m, 2.0 m, and 2.5 m, respectively. Based
on [29], Tahvildari and Castrucci [20] calculated the RSLR scenarios at the Sewells Point tide
gauge with the mean background RSL rate of 2.47 mm/y. In this study, we adopted these
RSLR projections, as shown in Figure 4. Note that these RSLR projections are referenced to
zero at 2000.

Figure 4. Historical and projected relative sea level at the Sewells Point tide gauge in Norfolk, VA [20].

In this study, 10 and 50-year storm surge events, based on water level observation at
the Sewells Point tide gauge, were chosen to represent a moderate and a high storm surge,
respectively. The storm surge elevations for the 10-year (1.55 m NAVD88) and 50-year
(2.07 m NAVD88) recurrence intervals were obtained from the FEMA Flood Insurance
Study for Norfolk [43]. The strongest hurricane that affected the region in the past century
was the Chesapeake–Potomac hurricane (1.95 m NAVD 88 at peak) in 1933, which caused a
storm surge slightly lower than a 50-year water level. The peak of Hurricane Irene (1.81 m,
2011) falled between the 10-year and 50-year tide levels under the current climate condition.
The track and central pressure information of Hurricane Irene (2011), obtained from the
NOAA National Hurricane Center [44], were used to generate the pressure and wind field
over the storm surge domain. Then, the wind intensity was adjusted to produce the 10 and
50-year water levels. For further details, please refer to [20]. We selected the high RSLR
scenarios The track and central pressure information for a conservative scenario. The high
GMSL rise projection corresponds to a 2.0 m rise by 2100 with the probability of exceedance
at 0.1% (RCP2.6) and 0.3% (RCP8.5). We selected 2070 as the targeted year to compare with
the current climate condition. Table 1 summarizes the storm surge and RSLR scenarios
investigated in this study. Note that the current climate condition refers to water level and
climate conditions in year 2020.
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Table 1. Relative sea level rise and storm surge scenarios (NAVD88) prepared for the storm surge
model from [20]. Water levels are at the Sewells Point tide gauge in Norfolk, VA.

Year Storm Surge Return Period (Year) RSLR Scenario

2020 10 (1.55 m), 50 (2.07 m) No RSLR
2070 10 (1.55 m), 50 (2.07 m) High (1.471 m)

2.6.2. Rainfall under Climate Change Scenarios

The impact from the change in rainfall intensity due to climate change is demonstrated
by one climate change scenario. Changes in rainfall intensity are one of the primary impacts
of climate change in urban areas [45]. Changes in other factors, for example, temperature
and wind speed, were not simulated in this study. Following the example of [35], the
changes in rainfall intensity in Virginia were estimated under multiple climate change
scenarios. Generally, the future rainfall frequency for the study area was estimated by
analyzing future rainfall projections. Then, rainfall scenarios were generated based on
rainfall frequency and assumed rainfall distribution.

Rainfall projections from global climate models (GCMs) or regional climate models
(RCMs) are commonly used to estimate the impacts of climate change. The spatial resolu-
tions of GCMs are generally coarse, i.e., greater than 100 km [45]. The spatial resolutions
of RCMs are typically in between 12 km to 50 km [22,45]. In this study, the rainfall projec-
tions were collected from the Coordinated Regional Climate Downscaling Experiment [46],
which is a global repository of RCM simulations covering all continents of the globe. In
CORDEX, climate projections are downscaled using dynamic RCMs for 14 domains with
the IPCC 5th GCMs outputs as the boundary condition. The CORDEX products in North
America are available for the Representation Concentration Pathway (RCP) 4.5 and RCP 8.5
climate scenarios. The spatial resolutions of these products vary from 22 km to 44 km. In
the current study, the daily rainfall projections for the period of 1950 to 2100 were extracted
at the Norfolk International Airport. Then, the rainfall projections were bias corrected
using historical observations from 1950 to 2005 by using the modified Empirical Quantile
Mapping (EQM) method proposed by Themeßl et al. (2011). In the EQM method, the
historical observation and hindcast simulation from 1950 to 2005 were used to build a
quantile–quantile mappings (QQMs). Next, the QQMs were applied to correct the bias in
the precipitation projections.

The bias corrected rainfall projections were then used to estimate rainfall frequency.
Because future rainfall is non-stationary under a changing climate, rainfall frequency is
not fixed. However, an assumption in this study was that rainfall frequency is fixed for
the periods of interest, for example, from 2056 to 2085. The same statistical methods and
probability distribution, Generalized Extreme Value (GEV), used to construct the NOAA
Atlas 14 IDF curves [47], were chosen to construct the rainfall frequency used in this study.
Shen et al. [13] summarized and analyzed the rainfall durations of large storm events
observed at the Norfolk International Airport. This study found that the majority of these
large storms had rainfall durations of about 24 h. Thus, the current study focused on
the 24-h rainfall event to represent large storm events. The rainfall intensities for a 24-h
duration storm event with return periods varying from 1 to 100 years were estimated under
RCP4.5 and RCP8.5 scenarios for the period 2056–2085 (simply stated as the 2070 Rainfall
Frequency in the remainder of this paper). Figure 5 shows the comparison between the
2070 rainfall frequency and the current rainfall frequency obtained from NOAA Atlas 14
(https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html (accessed on 10 May 2019)).

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html
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Figure 5. Rainfall frequency for a 24-h duration storm from Atlas 14, representing the current period,
and for 2070 estimated under both the RCP 4.5 and RCP 8.5 scenarios.

According to Merkel et al. [48], the study domain is located in the region of NOAA
Type-C rainfall distribution zone. Therefore, we adopted the NOAA Type-C rainfall
distribution for creating synthetic rainfall hyetographs for the 24-h rainfall scenarios. We
used the 10-year and 50-year rainfall scenarios to model flooding because they represent
significant, but not catastrophic, flood impacts to the study area. We chose the RCP8.5
scenarios to demonstrate the potential impact of these more significant climate change
scenarios on flooding.

To explore the combined impact of rainfall and storm tide under both the current
climate condition and selected future climate scenarios, the designed storm tide and rainfall
scenarios were combined into a series of storms for the coupled flood model. Shen et al. [13]
investigated the time lag between storm surge and rainfall and showed how it would
significantly influence the impact of flooding in the study region. Different time lags were
not explored in this study. Instead, the time lag was set to be the same as what was observed
for Hurricane Irene (2011) where the rainfall peak was 8 h ahead of the tide level peak.
An example model inputs for a 10-year rainfall and a 10-year storm surge event in 2020 is
provided in Figure A1 of Appendix A.

2.7. Assessing Transportation Impacts

Flood simulations outputs were used to estimate impacts on the transportation net-
work within the study area. In this study, the impact on roads is described as road closures
and the criterion for closing a road was assumed to be a flood depth of 0.3 m or more on the
roadway, as predicted by the flood model. This flood depth is a conservative road closure
criterion because it is the height of the air inlets of most vehicles [17].

The transportation network was obtained from the City of Norfolk (https://www.
norfolk.gov/1596/Geographic-Information-Systems (accessed on 15 July 2019) and the
traffic data of major roads were gathered from the Virginia Department of Transportation
(VDOT: https://www.virginiadot.org/info/ct-TrafficCounts.asp (accessed on 15 July 2019).
The study domain contains 6983 road links and 450 major road links, as shown in Figure 6.
The annual average daily traffic (AADT) of the major roads varies from 60 to 151,000. About
60% of the major road links AADTs are greater than 10,000.

https://www.norfolk.gov/1596/Geographic-Information-Systems
https://www.norfolk.gov/1596/Geographic-Information-Systems
https://www.virginiadot.org/info/ct-TrafficCounts.asp
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Figure 6. Transportation network inside the study domain.

3. Results and Discussion
3.1. Model Evaluation

The storm surge model was built to assess the impact of sea level rise in Norfolk.
The storm surge model was validated at two NOAA gauges (Chesapeake Bay Bridge
and Tunnel and the Sewells Point tide gauge) during Hurricane Irene (2011) in [20]. The
comparison showed a good match between the storm surge simulation and observations
with a root-mean-square-error (RMSE) equal to 0.137 m and 0.138 m at these two gauges,
respectively [20]. For detailed information about the storm surge model validation, please
refer to the study [20]. Here we focus on evaluating the performance of the coupled flood
model, rather than just the storm surge or urban flood model in isolation.

A USGS gauge (latitude: 36.8588, longitude: −76.2986) was temporarily deployed in
the Hague Community for the Hurricane Irene (2011) storm event at the location shown in
Figure 7a. A comparison between the water level observations at this USGS gauge and the
output from the coupled model is provided in Figure 7b. Overall, the simulation showed
a close match with the observation in both phase position and magnitude. The coupled
model slightly underestimated the peak water level (by 0.02 m) and had a positive phase
shift (of about 30 min) compared to observations. Given that this study focused more on the
peak flood impact than the timing of these impacts, these results were deemed acceptable
based on this evaluation.
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Figure 7. Evaluating the coupled flood model with a temporary USGS gauge deployed during
Hurricane Irene (2011). (a) Location of the USGS gauge; (b) Comparison between observed and
simulated water levels.

Given that 2D flood models provide flood inundation map outputs, we also evaluated
the flood model using areal imagery data. As shown in Figure 8, flood extents were
extracted from drone footage at three locations inside the study domain for the Hurricane
Matthew flood event, as described in the Section 2. Area 1 is directly connected to the
tidally influenced Lafayette River, and flooding is therefore controlled by the downstream
tidal boundary condition. Area 2 is about 700 m away from the shoreline and is under
the combined impact of tidal flooding and pluvial flooding, as shown in [13]. Area 3 is
located at the shoreline and exposed to direct tidal flooding. Therefore, even though flood
extents are available only at three local regions, they represent areas where tidal, pluvial, or
tidal and pluvial flooding are at play and can serve as valuable evaluations of the overall
model system.

Precision, recall, and F1-score [49] were adopted as accuracy metrics to evaluate the
performance of the coupled flood model. Precision and recall are commonly used metrics to
compare the relevance between model predictions and ground truth for image classification.
Recall represents the proportion of flood extent that was correctly identified by the model
compared to the ground truth flood extent, taken from the imagery, and is defined as

Recall =
True flood extent simulation

Total true flood extent
(3)

Precision represents the proportion of flood extent that was correctly identified by the
model compared to the total flood extent produced by the model, and is defined as

Precision =
True flood extent simulation
Total flood extent simulation

(4)

The flood extent precision, recall, and F1-score in each evaluation area are summarized
in Table 2. Based on Figure 8 and Table 2, the spatial distribution of the simulated flood
extents match well with the flood extents extracted from the drone images. The overall
F1-scores across these three areas vary from 0.68 to 0.88. Within these three areas, the
model shows the best performance in Area 1 with a precision and recall of 0.92 and 0.84,
respectively. In Area 2, the topography and mechanisms of flooding are more complex than
in the other two areas. Figure 8 illustrates that most of the underestimated flood extent in
Area 2 was in the southwest of that area, which includes the parking lot of the Virginia
Opera and intersections of three major roads. The model shows the lowest precision and
recall in Area 3, which faces direct tidal flooding. The underestimation is most pronounced
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in the eastern portion of Area 3. There is no direct observation or footage available for
this portion of the study region, so the flood extent had to be estimated from GIS analysis
using digital terrain data. Further investigation is needed to better understand flooding in
this area and whether the model is underestimating flooding in this region. Despite these
challenges and opportunities for improvement, the model shows good performance overall
across the three evaluation areas as judged by precision, recall, and F1-score.

Figure 8. Flood extents extracted from drone footages.

Table 2. Flood extent precision, recall, and F1-score in the three evaluation areas.

Precision Recall F1-Score

Area 1 0.92 0.84 0.88
Area 2 0.88 0.74 0.80
Area 3 0.71 0.66 0.68

3.2. Comparison with the Bathtub Method

This section presents results of the comparison between the coupled flood model
and the bathtub method for assessing the impact of SLR and storm tide in coastal regions.
Results from the 10-year storm tide events in current (2020) and future (2070) sea level
conditions were taken as a demonstration (Figure 9). Similar to results shown by [27], we
found that the bathtub method estimated greater flood extent for regions topographically
and hydraulically connected to open water. The flood extent comparison is qualified by the
following function.

Diff =
Flood Areabathtub − Flood Areamodeled

Flood Areabathtub
× 100% (5)
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Figure 9. Demonstration of flood area estimation using the bathtub method and the coupled modeling
system in two scenarios: (a) 10-year storm surge under the 2020 climate conditions and (b) 10-year
storm surge under the 2070 high RSLR scenario.

In Figure 9, the bathtub method estimated greater flood extent near the shoreline by
9.5% and 3.1% in 2020 and 2070, respectively. However, due to the existence of underground
drainage systems in the coupled flood model, several inland local depression areas were
simulated by the model to be flooded by backward pipe flow from high tide level but not by
the bathtub method. Compared to the bathtub method, the flood model estimated 9.0% and
4.0% more flood extent in the inland region in 2020 and 2070, respectively. This is because
the bathtub method does not account for rainfall-driven flooding, which in combination
with the backwater pipe flow, is responsible for this inland flooding.

The coupled flood model and bathtub method were also compared for other storm
tide scenarios under the 2020 and 2070 sea level conditions. From Figure 10, we can draw
the following insights. First, the greater flood extent estimation of the bathtub method
increases as the storm return period increases. Second, when the tide peak level is lower
than a certain level, for example in the “no storm surge” 2070 scenario in Figure 10, the
total flood area from the coupled flood model can be greater than the bathtub method.

3.3. Flood Areas

The flood maps for all combined storm events under both the 2020 and 2070 climate
conditions are presented in Figures 11 and 12. As expected, tidal flooding primarily occurs
near coastline and tidal rivers with low-lying topography. In Figure 11, under the no rainfall
condition, several inland areas are flooded by the 10-year and 50-year storm tide. Flooding
in the local depression areas seems to be caused by backward pipe flow because these
stormwater pipelines in this region lack a tide gate or flap gate to prevent backward flow.
Figure 11 shows how pluvial flooding is distributed across the inland region, specifically
gathering in areas that lack effective drainage infrastructure. In the analyzed rainfall
scenarios from Figure 12, the flood extents are estimated to increase dramatically due to
the increase of rainfall intensity and SLR in 2070. Under the no storm surge condition in
2070, a large portion of the coastline region is estimated to be flooded due to the increase of
the base tide level alone. When affected by storm tide on top of SLR, the majority portion
of the study domain is expected to be flooded.
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Figure 10. Comparison between flood area estimates from the bathtub method and the coupled flood
model under the 10-year and 50-year storm surge events in 2020 and 2070 (no rain).

Figure 13 shows the percentage of the total flooded area for all analyzed combined
storm scenarios. Under the 2020 condition, the combined storm events are estimated to
flood 7% to 20% of the land area, depending on the storms return period. Under the
projected 2070 conditions, the combined storms would flood 18% to 66% of the land area
under these same return period storms. From Figure 13a,b, the so called “sunny-day flood”
scenario (just high tide with no rainfall or storm tide) in 2070 is still estimated to flood 11%
of the land area. This flood extent is nearly equivalent to a 50-year (13%) storm tide in 2020.
From 2020 to 2070, the flood extent increase by about 11% on average for both the 10-year
and 50-year rainfall scenarios under the no storm tide condition. That increase is primarily
caused by the combined effect of rainfall intensity increases and RSLR, causing backwater
pipeline flooding and a reduced pipeline capacity. Over the same time span, even with no
rainfall and only storm tide, the flooded extent increase by 32% and 49% for the 10-year
and 50-year storm tides compared to the no storm surge scenario, respectively. Taking the
50-year storm tide in 2070 as an example, storm tide alone will flood 62% of the land area.
Combined with a 50-year rainfall event, the storm tide is estimated to flood 66% of the land
area, which means that only 4% of the total flooding in this scenario is attributed to rainfall.
Therefore, tidal flooding has a greater impact on flooding compared to pluvial flooding in
the study domain, under projected RSLR scenarios.

3.4. Flood Impact on the Transportation Network

The coupled flood model provides a method for estimating flood impact on critical
urban infrastructure systems. As a demonstration, the flood model was applied to assess
the flood impact to transportation networks under a set of storm scenarios.

The impact to the transportation network was quantified as a percentage of flooded
road length to total road length in the study region (Figure 14). Under 2020 conditions,
the analyzed storm events would flood between 4.6% (10-year storm surge alone) to 22.3%
(50-year storm surge and 50-year rainfall) of roadways. In 2070, the flooded roadways are
estimated to vary from 19.0% (10-year rainfall alone) to 66.9% (50-year storm surge and
50-year rainfall). Meanwhile, in a sunny day scenario (high tide alone with no rainfall or
storm surge) in 2070, 5.2% of the road length would be flooded. This sunny day or nuisance
flooding projected for 2070 is similar to the impacts of a 10-year storm tide in 2020.
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Figure 11. Flood maps for different combined storm scenarios under current climate and sea level
conditions.

One major advantage of a dynamic flood model, compared to static methods such as
the Bathtub method, is its ability to simulate the duration of flooding rather than just the
peak flooding impacts. Figure 15 shows the percentage of roadway links flooding during
the storm scenarios. The rainfall peak is 8 h ahead of the tide level peak in these scenarios,
as explained in the Section 2, resulting in two peaks for roadway flooding impacts. Under
2020 conditions (Figure 15a), storms with both significant rainfall and storm tide result in
similar impacts during the starting (rainfall dominate) and ending (storm tide dominate)
portions of the storm event. However, under 2070 conditions (Figure 15b), the storm
tide becomes a more impactful flooding mechanism. In this scenario, a storm with both
significant rainfall and storm tide would suffer the most impact during the portion of the
storm where storm tide was the dominant flooding mechanism. Looking at the impact from
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storm scenarios with only rainfall-driven flooding, the maximum number of flooded road
links is projected to increase by 8.7% and 14.8% under the impact of 10-year and 50-year
rainfall events, respectively, from 2020 to 2070. For a tidal-driven flooding scenario with no
rainfall, the maximum percentage of flooded road links will increase by 51.7% and 62.4%
for 10-year and 50-year storm tide events, respectively. This suggests the impact of flooding
on the transportation network will be most affected by tidal-driven flooding compared to
rainfall-driven flooding under the projected RLSR and climate change scenarios.

Figure 12. Flood maps for different combined storm scenarios under 2070 climate and sea level
conditions.
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Figure 13. Percentage of total flood extent (flood depth > 0.3 m) for (a) 2020 and (b) 2070 under a
high SLR scenario and RCP8.5 climate change scenario.

Figure 14. Percentage of flooded road length under the tested storm scenarios: (a) 2020 conditions
and (b) 2070 conditions under high SLR and RCP8.5 scenarios.

To summarize the spatial-temporal impact on the transportation network, a metric
named the total link closed time (TLCT), is introduced. TLCT is defined as

TLCT =
∑N

i Tclosed, i

Ttotal × N
× 100% (6)

where, N is the total number of road links, Tclosed, i is the total closed (due to flooding) time
of link i during a storm event, and Ttotal is the total length of the simulation period. The
TLCT for the road links in the study domain was computed for all storm scenarios, and
the results are shown in Figure 16. The TLCT is sensitive to the increase of both rainfall
intensity and storm surge under the 2020 conditions, as illustrated in Figure 16a. Under
these conditions, a 10-year rainfall would result in a TLCT of 4.2%, but a 50-year storm surge
would cause a TLCT of only 1.8%. This is because the duration of pluvial flooding is longer
than tidal flooding in the study region under current conditions. However, these conditions
are expected to change by 2070. As shown in Figure 16b, the 10-year and 50-year storm
tide events will result in TLCTs of 16.9% and 23.6%, respectively. Interestingly, adding the
impact of rainfall to these scenarios increases the TLCT by only 1.3% to 4.1%. Therefore,
storm tide events are expected to be the dominant factor interrupting the transportation
network in 2070. Finally, sunny day or nuisance flooding is expected to cause a TLCT of
4.6%, which is more than two times that of a 50-year storm surge in 2020. Considering the
duration of flooding and its impact on transportation systems, nuisance flooding in 2070
is likely to be a serious challenge for transportation management unless efforts are made
to prevent tidal flooding impacts, such as preventing the backflow of tidal water through
subsurface drainage networks.
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Figure 15. Percentage of flooded road links in time series during the simulation periods of all the
tested combined storm scenarios: (a) current climate conditions and (b) 2070 high SLR scenario and
RCP8.5 climate change scenario.

Figure 16. Total links closed time (TLCT) for all road links in the study domain under the analyzed
storm scenarios: (a) 2020 conditions and (b) 2070 conditions with high SLR and RCP8.5 climate
change scenarios.

4. Conclusions

The overarching objective of this study is to advance methods for assessing the com-
bined impact of rainfall and storm tide on coastal cities under selected future climate
scenarios. As an example application of the methodology, a coupled flood model consisting
of a 1D stormwater pipe/2D overland flood model and a 2D storm surge model was built
for a large portion of Norfolk, VA. The coupled flood model can simulate the hydrody-
namic and wave processes of a storm tide in the ocean and its progression on land, as well
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as pluvial flooding due to excess rainfall and resulting runoff. Simulating the complex
stormwater drainage infrastructure system in the model makes the coupled flood model
especially suited to analyzing flooding in an urban environment. This detailed numerical
model can generate simulations with high spatial-temporal resolution to support flood
hazard assessment and management. We made use of available point observations and
imagery data to evaluate the model performance and created an approach to extract flood
extent from drone imagery to evaluate the model. The model was compared to the more
commonly used bathtub method for flood hazard assessment and the utility of the model
is demonstrated by quantifying flooding impacts on the transportation network within
the region.

Both the storm surge model and the overland flood model were built using hydrody-
namic models, which are known to have significant computational demands [50]. Given
the practical limitations imposed by simulation runtime, the number of climate change and
RSLR scenarios analyzed in the case study were limited. The scope of the current study
is, therefore, to demonstrate the capability of dynamic modeling of combined flooding in
coastal cities under selected future scenarios. In future studies, with sufficient computa-
tional resources or methods for speeding up the runtime of the current modeling system,
the proposed methodology can be further applied to estimate current and future flood risk
by simulating a large number of combined storms and climate change scenarios.

Comparison of the detailed flood model with the simpler bathtub method show that
the bathtub method overestimated the flooding extent near shorelines by 9.5% and 3.1% for
a 10-year storm tide event in 2020 and 2070, respectively. It, however, underestimated the
flooding extent for inland areas by 9.0% and 4.0%, respectively, for the same events. As
described in previous work, the error in the bathtub method can be attributed to neglecting
several important physical processes of coastal flooding: (1) the effect of landscape rough-
ness; (2) short-term dynamics of flows; (3) conservation of mass for flows; and (4) existing
drainage infrastructure [20,26]. The bathtub method uses high water levels at tidal gauges,
which are generally located in deeper water and their measurements can differ in both am-
plitude and phase from the water level at shorelines or overland. Additionally, the bathtub
method assumes that maximum tide levels are maintained for an indefinite duration. As
a result, this study adds to the literature suggesting that the bathtub method consistently
overestimates flood extent near the shoreline [20,26]. This work further contributes to
existing literature showing how urban stormwater drainage networks function within
coastal flooding and that simpler hazard assessments, such as the bathtub method, can
underestimate flooding within inland areas by not including this infrastructure. Seawa-
ter can backflow through drainage pipes and cause ‘sunny day’ flooding in inland areas.
Furthermore, rainfall-driven flooding can flood inland areas and, because of drainage
infrastructure backflow, cause increased flooding.

This work also demonstrates the value of time-dependent flood information possible
from a dynamic coupled flood model as opposed to static, time-independent approaches.
By capturing the temporal dynamics of flooding, this work shows how pluvial flooding can
result in a longer flood duration than tidal flooding for storms with the same recurrence
interval due to the time required to drain rainfall from the system. Therefore, pluvial
flooding can cause a larger interruption to the transportation network than tidal flooding
under current conditions when the time duration for flooding is taken into account. This
illustrates how dynamic flood models can be insightful for understanding flood hazards to
critical urban infrastructure systems. As another example, we used a metric called total
link close time (TLCT) to assess the impact on the transportation network within the study
region. Based on this analysis and based on model projections, we found that sunny day
or nuisance flooding in 2070 will cause a 4.6% TLCT. For context, this is more than two
times the impact a 50-year storm tide would cause under current conditions (1.8% TLCT).
Comparing the magnitude of flood extent and duration, we found that while rainfall and
tidal flooding have similar impacts today, by 2070, storm tide will be the more dominant
mechanism for causing flood impacts due to SLR impacts, outpacing increased rainfall
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impacts. By 2070, the model projects that a 50-year storm surge event on top of the high
SLR scenario is projected to flood 62% of the study domain.

The coupled flood model used in this study was built with many assumptions that
could be tested and advanced in future work. These assumptions are mentioned in the
Section 2, but a few are highlighted here as those we consider to be the highest priority. First,
the model assumed saturated soil conditions due to the large portion of impervious surfaces,
a high groundwater table, and a focus on more significant storm events (e.g., 10-year
and great return periods). Including the infiltration and groundwater components in
the coupled model could help to test this assumption and would make the model more
applicable to less intense, more frequently reoccurring storm events. Second, the model has
a relatively simple technique for coupling the ocean and overland models where, essentially,
the ocean model provides a tide water level boundary condition for the overland model. In
future work, tide and velocity could be transferred between these two models to improve
the physics of the coupling or, more ambitiously, a full two-way coupling between these
models could be explored. The model runtimes and spatiotemporal mismatch between
these two models, however, will make a full coupling extremely challenging. Lastly, the
model assessment made use of limited data including a tide gauge and imagery data
collected for one storm event using a drone. While this is a fairly standard approach for
model evaluation, ideally much more data including both point observations and imagery
would be available and used to more fully evaluate and calibrate the model across a variety
of storm events.

Author Contributions: Conceptualization, Y.S. and J.L.G.; methodology, Y.S., J.L.G., M.M.M., N.T.
and C.H.; validation, J.L.G.; data curation, Y.S.; writing, Y.S.; review-editing, J.L.G., M.M.M., N.T. and
T.D.C.; supervision, J.L.G.; project administration, J.L.G.; funding acquisition, J.L.G. and T.D.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation under the award number
1735587 and 1951745.

Acknowledgments: The authors wish to acknowledge the BMT for the TUFLOW HPC license and
kind help on model building and problem solving. We also would like to thank Marlene McGraw for
her help and advice on editing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Designed combined storm scenario consists of a 10-year rainfall and a 10-year storm surge
events. Note that the tide level is at the Sewells Point tide gauge in Norfolk, VA.
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