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Abstract: Known as the “lung of the planet”, the Amazon rainforest produces more than 20% of the
Earth’s oxygen. Once a carbon pool for mitigating climate change, the Brazilian Amazônia Biome
recently has become a significant carbon emitter due to increasingly frequent wildfires. Therefore, it
is of crucial importance for authorities to understand wildfire dynamics to manage them safely and
effectively. This study incorporated remote sensing and spatial statistics to study both the spatial
distribution of wildfires during 2019 and their relationships to 15 environmental and anthropogenic
factors. First, broad-scale spatial patterns of wildfire occurrence were explored using kernel den-
sity estimation, Moran’s I, Getis-Ord Gi*, and optimized hot spot analysis (OHSA). Second, the
relationships between wildfire occurrence and the environmental and anthropogenic factors were
explored using several regression models, including Ordinary Least Squares (OLS), global (quasi)
Poisson, Geographically-weighted Gaussian Regression (GWGR), and Geographically-weighted
Poisson Regression (GWPR). The spatial analysis results indicate that wildfires exhibited pronounced
regional differences in spatial patterns in the vast and heterogeneous territory of the Amazônia
Biome. The GWPR model outperformed the other regression models and explained the distribu-
tion and frequency of wildfires in the Amazônia Biome as a function of topographic, meteorologic,
and environmental variables. Environmental factors like elevation, slope, relative humidity, and
temperature were significant factors in explaining fire frequency in localized hotspots, while factors
related to deforestation (forest loss, forest fragmentation measures, agriculture) explained wildfire
activity over much of the region. Therefore, this study could improve a comprehensive study on, and
understanding of, wildfire patterns and spatial variation in the target areas to support agencies as
they prepare and plan for wildfire and land management activities in the Amazônia Biome.

Keywords: wildfire occurrence; spatial pattern; geographically weighted regression; Amazon
rainforest

1. Introduction

Fire occupies a unique position in environmental history. It can have both beneficial
and harmful effects on the environment. The Amazon rainforest is the world’s largest
tropical rainforest, with an area of more than 5 million square kilometers [1]. It serves as
one of Earth’s largest reservoirs of carbon dioxide, which plays a critical role in global
and regional carbon and water cycles, and it provides important ecological services to our
planet [2]. However, it is observed that year 2019 was the worst fire to hit the Amazon
Rainforest for over a decade [3]. There were more than 80,000 fires in 2019 in Amazon,
which was a nearly 80 percent jump compared to that in 2018, according to Brazil’s National
Institute for Space Research [4]. The growing problem of wildfires threatens the ecological
balance of nature in the Amazon rainforest and affects forest biodiversity. Meanwhile,
combusted vegetation emits large quantities of trace gases (e.g., CO, CO2, and CH4),
particulates, and smoke into the atmosphere, which causes air pollution. Moreover, forest
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structure and species composition probably require more than decades or centuries to
recover. To sum up, wildfires can cause severe, long-term environmental, socioeconomic,
and public health impacts worldwide. The Amazon may not belong to all of us, but what
happens there affects all of us. Therefore, understanding and projecting the spatial patterns
of wildfire and its significant driving factors are critical for government and relevant
departments to prepare for changes in environmental threats, develop wildfire supervision
and risk reduction strategies, and make sustainable fire management decisions.

The spatial distribution of wildfire is influenced by various factors and has certain
regularity, and it often displays a continuous periodic law in time and aggregation law in
space [5]. Wittenberg and Malkinson [6] analyzed the spatial distribution characteristics of
wildfires in mixed pine forests in the Mediterranean region by analyzing spatial data and
establishing logistic regression models. They pointed out that the spatial distribution of
wildfires in Carmel Mountain in Israel was not random, and the locations of the observed
fires in this area were closer to the roadside. Liu et al. [7] studied the spatio-temporal
distribution of wildfires in Sichuan province, China, from 2001 to 2012. They found
that peak periods of wildfires were from January to May, and the number of forest fires
continued to rise every year. In terms of spatial pattern, forest fires were clustered at smaller
spatial scales.

Meanwhile, exploring wildfire drivers is crucial to developing wildfire prediction
models. Genton et al. [8] used point pattern analysis to study the spatial pattern of wildfire
occurrences in north-eastern Florida. The results revealed that occurrences of lightning,
arson, and railroad are spatially more clustered than occurrences of other accidental causes.
Román-Cuesta and Martínez-Vilalta [9] used spatial buffer zone and Spearman’s correla-
tions to investigate relationships between road density, agricultural land expansion, and
wildfire within Biosphere Reserves in Mexico.

In order to reduce wildfire risk, and minimize damages to the ecosystem and human
beings, statistical modeling has played a crucial role in the quantitative analysis of wildfire
occurrences and their driving factors. With the deepening of research, many scholars recog-
nize that spatial heterogeneity is necessary to be considered. Using a single equation with a
set of parameters for describing the entire study area often has limitations in explaining
a nonlinear relationship. Therefore, Fotheringham et al. [10] proposed geographically
weighted regression (GWR) as a method of modeling spatially non-stationary fires across
locations. Koutsias et al. [11] applied the OLS (Ordinary Least Squares) regression model,
GWR model, classical logistic regression model, and GWR logistic model to analyze the oc-
currence of wildfire in southern Europe. Their results indicate that GWR models were more
appropriate than the classical global ones. Avila-Flores et al. [12] used the GWR method
to determine contributing factors that are spatially associated with wildfire occurrence
in the State of Durango, Mexico. Their results showed that land-use change is one of the
main explanatory variables for the spatial pattern of wildfires throughout the study area.
Furthermore, vegetation type and precipitation play important roles, as well.

Though contributing factors and spatial distributions of wildfires have been considered
in relevant studies in many regions over the world, it has been challenging to identify a set
of key wildfire drivers under a specific environment, and an interaction between bottom-up
and top-down forces is often complex and unpredictable [13]. Such knowledge is not yet
sufficiently developed for application in the real world. For instance, Brazil’s National
System for Forest Fire Prevention and Control has tried to allocate fire control resources
by evaluating the municipalities that experienced the most fires in previous years, but the
result is not satisfied with only a 30% accuracy rate [14]. In summary, the relationship
between wildfire and its drivers varies not only by scale but also by region. So, all of these
make the site-specific case studies necessary.

This study attempts to establish large-scale wildfire occurrence models in the Amazônia
Biome. To overcome the constraints of traditional regression modeling which assumes
stationary processes [10], Geographically Weighted Gaussian Regression (GWGR) and Geo-
graphically Weighted Poisson Regression (GWPR) models are applied for the first time for
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wildfire studies in Amazônia Biomes. In addition to topographic and meteorologic factors,
this study considers several habitat configuration metrics, aiming finding relationships
between forest fragmentation and wildfire. These issues have rarely been systematically
studied in the Amazônia Biome. Therefore, we compared two different wildfire prediction
models in spatial statistic methods and analyze the spatial pattern of wildfire distribution
in the Amazon Biome. The two specific objectives include (1) revealing the spatial variation
of broad-scale wildfire occurrence patterns in the Amazônia Biome in 2019 using spatial
analysis approaches; (2) assessing performances of the modeling approaches which is
more suitable for characterizing wildfire spatial patterns and addressing driving factors.
This research aims at improving a comprehensive study on, and understanding, of fire
regime and risk factors. The results are expected to offer valuable insights into land and
fire management practices and predictions. The developed modeling framework could be
tailored to investigate the spatial pattern of wildfire occurrence in other rainforest regions
facing similar issues. The knowledge gained from Amazônia Biome could also be used to
inform other vulnerable rainforest regions globally to reduce threats and potential damages
from wildfires.

2. Study Area

The area chosen for this study (Figure 1) is the Brazilian Amazônia Biome, which
covers nine states and an area of 4.2 million km2 mostly composed of evergreen forests, but
also including grasslands, wetlands, and areas converted by farming and cattle ranching.
The climate is characterized by warm temperature (ranging from 24 to 27 ◦C across a year),
high rainfall (around 3200 mm/year), and high relative humidity (from 80% to 94%, across
a year) [15].
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3. Data Sets and Methodology
3.1. The Workflow of the Study

Figure 2 shows the overall workflow of this study. The first step was to prepare and
process the wildfire data. We moderated the inaccurate GPS coordinate positioning and
transformed wildfire incidents into weighted points data. Second, spatial analysis methods
of kernel density, spatial autocorrelation (Global Moran’s I), and hot spot analysis were
adopted to reveal spatial patterns of wildfire. Then, the wildfire data and 15 explanatory
variables data were sampled for model building. During the model building process, the
skewed dependent variable and explanatory variables are unsuitable for conducting regres-
sion analysis and can reduce the model accuracy when building linear regression models,
e.g., OLS and classic GWR models. Therefore, we adopted the logarithm transformation for
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the dependent variable and the unconditional Box-Cox transformation for the explanatory
variables. Then, all explanatory variables were standardized for eliminating the dimensions
and balancing the contribution of each factor. We calculated the Variance Inflation Factor
(VIF) value by OLS to assess and eliminate multicollinearity.
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3.2. Data Preparation and Processing
3.2.1. Wildfire Data (Dependent Variable)

In this study, wildfire occurrences are the dependent variable. The wildfire data were
accessed from the MODIS’s MCD14ML global monthly fire location product provided by
LANCE FIRMS operated by NASA ESDIS (https://firms.modaps.eosdis.nasa.gov, accessed
on 16 April 2021), which provides monthly geospatial information, including location, date,
confidence, and additional information for each 1 km fire pixel detected by Terra and Aqua
MODIS sensors. As a result of the high sensitivity and quantization accuracy provided by
the MODIS sensor and two times a day temporal resolution, this product has been widely
utilized in wildfire studies. We chose the MCD14ML because it has been demonstrated as a
reliable source to monitor and analyze wildfires at local, regional, and global scales [16,17].
In many previous studies, the exact location of the wildfire ignition points (x, y coordinates)
was used as a dependent variable in statistical models [6,8,11], but the accuracy of the spatial
location of wildfires significantly varies depending on the data source. The MCD14ML
resolution is 1 km, and the fire point is interpreted as one or more fires that have been
detected within 1 km of each fire source location. Therefore, the interpretation results
may deviate from the actual ignition location. To alleviate the deviation, we used a grid
pattern analysis in this study to provide a comprehensive and uniform method to reflect
the spatial properties of variables. Given the fact that the area of Amazônia Biome is about
4.2 million km2, we created a fishnet-like grid to set the study areas into 20 km × 20 km
(a total of 7158 grids) and calculated the total number of wildfire points in each grid. In
addition, we filled in missing values for several layers to conduct an effective spatial
analysis of the entire study area. The frequency of wildfire occurrences is a positive skew,
which means pixels with zero fire counts are much higher frequency.

3.2.2. Driving Factors (Explanatory Variables)

Based on an extensive literature review [18,19] and available data, the explanatory vari-
ables in this study include four broad categories: (1) topographic, (2) vegetation cover and
land use, (3) anthropogenic, and (4) meteorological, with a total of 15 explanatory variables

https://firms.modaps.eosdis.nasa.gov
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(Table 1). The topographic variables include elevation, slope, and aspect. Previous work
suggested that wildfires are prone to burn on flat, ridges, and steep north-facing slopes,
while valleys and steep south-facing slopes are the least likely to burn [20]. Aspect is a
circular variable that cannot be used in linear statistics, so the layer was cosine-transformed
to obtain a linear index that can better distinguish the degree of exposure [21]:

Aspect index = cos(θ × π/180) (1)

where θ is the degree of aspect and the range is 0–360◦. The values of the aspect index
ranged from −1 (southward) to 1 (northward).

Table 1. Sources and descriptions for variables.

Variable Source Unit Description of Original Data

Dependent variable

Wildfire occurrence NASA fire count

Total wildfire count in 2019. Each fire
count represents one or more

wildfires within a 1 × 1 km pixel.
Derived from MODIS MCD14ML

Explanatory variables

Topographic

Elevation GTOPO30 m 1 km resolution

Slope GTOPO30 degree Derived from elevation grid

Aspect GTOPO30 ratio Derived from elevation grid

Land Use

Pastureland Area MapBiomas
%

The sum of (Pasture/Crop) areas
within a cell, divided by total cell

area, and multiplied by 100Cropland Area MapBiomas

Vegetation Cover

Fractional Vegetation Cover NASA ratio

The corresponding fuel amount
within the grid.

Derived from MOD13Q1 NDVI, 500
m resolution

Number of Forest Patches TerraBrasilis patch count The number of forest patches within
a cell

Edges Proportion TerraBrasilis km/km2
The sum of the lengths of all forest

edge segments within a cell, divided
by cell area, 1:25,0000

Anthropogenic data

Population Density WorldPop people per km2 The average population for each grid

Road Density DNIT km/km2
The sum of the length of all roads
(federal, state, and other) within a

cell, divided by total cell area

Habitat Loss PRODES/INPE %
The sum of all deforested areas

within a cell, divided by total cell
area, and multiplied by 100

Meteorological

Temperature TerraClimate Celsius °C Annual mean temperature,
~4 meters resolution

Relative Humidity POWER % The ratio of the vapor pressure of air
to its saturation vapor pressure

Wind Speed TerraClimate m/s meters per second

Maximum Cumulative
Water Deficit CHIRPS mm

Minimum value of the monthly
accumulated water deficit

in 2019

Variables in vegetation cover and land use include: (1) Fractional Vegetation Cover
(FVC), (2) Number of Forest Patches (NFP), (3) Edges Proportion (EP), (4) Pastureland
Areas, and (5) Cropland Areas). FVC is calculated based on the NDVI, it is used to represent
the corresponding fuel amount within the grid. In addition, based on previous research,
the interaction between deforestation, forest fragmentation, and wildfires is clear in the
Amazon rainforest [22,23]. Pieces of large, contiguous, forested areas are deforested and
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separated for purpose of human development [24], which activities directly caused forest
fragmentation, resulting in increased light intensity, higher daytime temperature, higher
wind speed, and lower humidity. Wildfire has a higher tendency to spread in fragmented
landscapes with smaller patches of forest and more edges. Therefore, the NFP and EP were
used in this study. NEP calculated the number of forest patches within a cell. EP is the
sum of the lengths of all forest edge segments within a cell, divided by cell area. Wildfires
in the Amazon are largely caused by the extensive conversion of forests and agricultural
practices [16]. The land use variables in pastureland area and cropland area were also
considered in this study. It is the sum of (Pasture/Crop-) areas within a cell, divided by the
total cell area, and multiplied by 100.

Many previous studies indicate that the majority of wildfires are anthropogenic or
accident-caused, indicating a connection between human-caused factors and wildfire oc-
currence [25,26]. In this study, the anthropogenic factors included socioeconomic variables
(population density), infrastructural variables (road density), and forest loss (percentage
of deforestation).

The weather or climate factors are top-down controls on wildfires that have been
emphasized in several regional and continental studies [27–32]. In this study, ambient
weather elements include average annual temperature (◦C), relative humidity, wind speed
(m/s), and maximum cumulative water deficit (MCWD) (mm). Temperature determines
the combustibility of fuels. Humidity and precipitation affect the moisture level of fuel [33].
Wind speed is also one of the most important factors because it can produce a fresh supply of
oxygen as well as push the wildfire toward a new source of fuel [34]. Water stress in tropical
forests is often measured by the MCWD. This metric was proposed by Aragão et al. [35],
and, in different parts of the Amazon Rainforest, the amount of evapotranspiration (E) is
usually about 100 mm per month on average. Thus, monthly precipitation below 100 mm
means that more water will be lost and evaporation will be greater than precipitation, thus
generating a water deficit state. We performed Map algebra operations on the basis of
the global annual precipitation data to obtain the average monthly precipitation data and
subtract 100 mm from monthly precipitation values. Then, the most negative (minimum)
monthly MCWD value for each pixel was used. Figure 3a illustrates the spatial distribution
of wildfire points and Figure 3b–p presents the spatial distribution of explanatory variables.
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3.3. Spatial Pattern Analyses
3.3.1. Spatial Density

Kernel Density Estimation (KDE) is one of the useful tools for determining the spatial
intensity of a point process, and understanding and predicting potentially event pat-
terns [36]. It describes the global trend of a parameter, and the KDE method uses kernel
density interpolation to reveal the distribution of event points in the study area [37]. The
created continuous surface can minimize the effect of fire location uncertainty [38]. The
expression of the density f(x) at point x where the wildfire occurs is:

f̂h (x) =
1
n

n

∑
i=1

Kh (x− xi)=
1

nh

n

∑
i=1

K
(

X− Xi

h

)
(2)

where, K is the kernel function; h > 0 is a smoothing parameter called the bandwidth.
x is the dataset of wildfire incidents (X1, X2, . . . Xn); X − Xi is the distance between the
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estimated point to the sample point i. We applied KDE to map the distribution of wildfires
in the Amazônia Biome. The implementation of this function is based on Quadratic Kernel
developed by Silverman [37]. The bandwidth calculated was 9512.5 m and it was used for
the kernel density estimation.

3.3.2. Hotspot Analysis

First, we used the Moran’s I index to investigate whether a spatial pattern is clustered,
dispersed, or random [39]. Then, we used the hot spot analysis of wildfire events to
determine where statistically significant clustering occurred. Statistical cluster analysis
can help minimize the subjectivity in maps. The most commonly used tools are Getis-
Ord Gi* and Optimized Hot Spot Analysis (OHSA). Getis-Ord Gi* computes a z-statistic
by comparing the proximity-weighted sum of total fires at a particular parish to the
sum across the entire sample to identify areas of more intense clustering of high (low)
wildfire occurrence. OHSA is a new tool, which is a combination of the Incremental Spatial
Autocorrelation tool and the Getis-Ord Gi*. It can calculate threshold distances directly, to
create a map of statistically significant hot and cold spots.

3.4. Spatial Statistical Analyses
3.4.1. Geographically Weighted Gaussian Regression (GWGR)

In practice, with the change of geographical location, a relationship among variables
will change, that is, “Spatial Nonstationarity”. Fotheringham et al. [10] compared classic
GWR to a “spatial microscope” because of its ability to measure and visualize variations in
relationships that are unobservable in spatial and global models. This modeling approach
focuses on spatial differences and a search for exceptions or local “hot spots”. GWGR
constructs a separate Ordinary Least Squares (OLS) equation for every location in the
dataset, which includes the dependent and explanatory variables of locations falling within
the bandwidth of each target location. Fotheringham et al. [10] gave a general form of a
basic GWGR model as:

yi= βi0+Σm
k=1 βik xik + εi (3)

where, yi is the dependent variable at location i; xik is the kth explanatory variable at
location i; m is the number of explanatory variables; βi0 is the intercept parameter at
location i; βik is the local regression coefficient for the kth explanatory variable at location i,
and εi is the random error at location i.

In a GWGR model, the estimation of parameters is related to the bandwidth used by
the kernel function. In this study, the corrected Akaike Information Criteria (AICc) was
used to select the optimum bandwidth.

3.4.2. Geographically Weighted Poisson Regression (GWPR)

Although the GWGR model can effectively resolve the spatial non-stationarity prob-
lem, this technique is only used when the distribution of the data is Gaussian. The problem
of overdispersion in spatial count data is one of the most common problems encountered
in reality [40], and most explanatory variables have skewness, which makes classic GWGR
inappropriate to model. Since the 1970s, the Poisson regression has been regarded as a reli-
able method for modeling count data [41]. Therefore, in addition to transforming discrete
count data to a continuous scale as described above, we can use the Poisson regression
model and extend it to the classic GWGR model by adding geographical location, then the
Geographically Weighted Poisson Regression (GWPR) was developed. The GWPR model
is written as [42]:

ln (µi) = β0
(
vxi,vyi

)
+

p

∑
k=1

βk
(
vxi,vyi

)
Xki (4)

where β0 and βk are the GWPR model parameters that describe the location i in terms
of x and y coordinates. Thus, the expected value of µi can be predicted by the inverse
link function µ̂i = eβ̂0+β̂χi . For modeling wildfire occurrence, we added a constant to the
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average observed number of wildfire occurrences to mitigate problems related to counts
of zero.

The GWPR has been considered a reliable model for predicting wildfire occurrence,
however, the model often faces the challenge of strict requirement of Poisson distribution,
i.e., the mean is equal to the variance (equidispersion) or is expressed µ = E(Y) = Var(Y),
where µ is the mean of the count data Y. In most cases, the observed variance is larger
than the assumed variance, which is called overdispersion [43]. The number of wildfires
also has the problem of overdispersion, because the zero counts tend to occur more often
than higher numbers of wildfire events. If overdispersion is ignored, the model fitting
will underestimate the standard errors for Poisson regression model coefficients and lead
to biased hypothesis testing. The quasi-Poisson model is an effective way to adjust for
dispersion, which introduces a dispersion parameter into the Poisson variance so that the
Poisson model is scaled [44]. The dispersion parameter (σ2) is estimated by deviance or
Pearson’s χ2 test statistic divided by its degrees of freedom from the Goodness-of-Fit test.
If the estimated dispersion is >1, the data may be over-dispersed, while a dispersion <1
indicates that the data may be under-dispersed. The quasi-likelihood requires the standard
errors generated from the Poisson model to be multiplied by the factor ω, which is the
square root of the dispersion parameter:

ω=
2√
σ2 (5)

This scaled the “quasi-Poisson” regression model, which has the same mean function
as the Poisson regression model but with a variance that is ω times the mean as represented
by [44]:

Var(Y) = ωµ (6)

The model is fit in a usual way, and the resulting parameter coefficients would be the
same as the estimated regression coefficients from the Poisson model, but only the standard
errors of the coefficients would be larger. The t statistic is the coefficient divided by its
standard error. Once we find this t-test statistic, we typically find the p-value associated
with it.

The best bandwidth size was determined automatically using the golden section search
method, based on the lowest AICc. The kernel type and function for geographic weighting
to estimate local coefficients for each fishnet grid and bandwidth size was a Gaussian
kernel with adaptive bandwidth, which was appropriate because the regression points
were irregularly positioned in the study area. The deviance/df ratio (367,909.652/7142)
of the global Poisson model was 51.514 from Goodness of fit, showing the existence of an
overdispersion problem. To adjust for overdispersion, the association between wildfire
incidence and several explanatory variables was modeled using the multivariate quasi-
Poisson regression model.

Since GWGR and GWPR are local moving window regression, the multicollinearity
issue exists regarding redundant values within a local fit and not only between variables.
Though the global redundancy can be explored by using OLS, the local multicollinearity is
sometimes not easy to detect. If there is a high level of spatial homogeneity in data, it can
have multicollinearity within a single variable. Through investigation, the local redundancy
explanatory variables were road density and crop area. Therefore, in the GWGR and GWPR
models, the two variables were excluded for further analysis.

3.5. Model Evaluation and Comparison

The model fitting was evaluated using AICc, adjusted R2, and Moran’s I. The measures
of AICc and adjusted R2 values may be used to evaluate the performance of all global and
local models. Adjusted R2 values indicate how well a regression line is fitted, while the AICc
is an information criterion used to measure the goodness-of-fit between models. According
to the evaluation criteria proposed by Fotheringham et al. [10], a model with a high adjusted
R2 value has greater explanatory power. In contrast, smaller AICc implies better model



Geosciences 2022, 12, 237 10 of 21

fitting performance. The spatial autocorrelation tool is also used to evaluate the spatial
autocorrelation of the global and local model residuals. Moran’s index is calculated at the
significance level of 0.05. The closer the index value is to −1 or +1, the higher the degree
of spatial autocorrelation, thereby indicating that the model cannot adequately explain
the change in the dependent variable; the closer the index value is to 0, the lower the
spatial dependence of the residual will be, and the model can account for more spatial
heterogeneous problems of wildfires.

4. Results
4.1. Spatial Distribution

The density surface can provide a way to visualize the concentration of wildfire
occurrences. As seen in Figure 4, wildfires were mainly concentrated in the northern
part of Rondônia, the southern part of Amazonas, eastern Acre, and most of the central
part of Roraima. In addition, there were certain degrees of aggregation in the northeast
and southwest parts of Pará and the southeast part of Mato Grosso. The critical value
(z-score = 159.64) in Moran’s I was greater than 2.58; there was less than a 1% likelihood
that the clustered pattern is a result of a random chance, and the p-value was statistically
significant. This result suggested that the pattern of wildfires at each feature location
is clustered.
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The visualized results of the OHSA and Getis-Ord Gi* for wildfires are shown in
Figure 5. Figure 5A shows six hotspots with different levels of significance; one was the
central part of Romania; one hotspot was related to the four states in the southwest part of
the Amazônia Biome region, which comprise the states of Acre, Amazonas, Rondônia, and
Mato Grosso; one was in the southeastern part of Mato Grosso; remaining three hotspots
filled in the central part of Pará state. However, no cold spots had been identified, and
the rest of the states were classified as “Not Significant,” which means the wildfires that
occurred in those areas were distributed randomly and there were no significant patterns.
By comparing the two results, the Optimized Hot Spot result (Figure 5A) indicates large hot
spots that occurred over all or nearly all states. The Getis-Ord Gi* result (Figure 5B) indicates
smaller, more refined hot spots that are typically distributed over sections of states.
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4.2. Spatial Statistical Regression Analyses
4.2.1. Benchmark Regression Analysis

Before performing the GWR regression analysis, we first applied global OLS regression,
in an attempt to explain the global relations between dependent and explanatory variables.
The diagnoses of an OLS model indicated that all fifteen variables passed the test for
multicollinearity. It explained about percent (adjusted R2 = 0.516) of the variation in
wildfire occurrence with AICc = 20929.89. These explanatory variables were significant
at a 95% confidence level (α = 0.05). The OLS model showed that elevation, slope, aspect,
number of forest patches, edge proportion, population density, road density, forest loss,
cropland area, pastureland area, and wind speed were significantly correlated with the
wildfire counts (Table 2). In addition, the chi-squared value (1419.04) of the Koenker
statistic was statistically significant. Therefore, the null hypothesis was rejected and there
was a nonstationary condition in the model. The Jarque-Bera statistic returned a significant
chi-squared value (p-values < 0.01), showing that the residuals were spatially clustered at a
99% confidence level and that a biased model was obtained. These results revealed that
in the OLS model, the relationship between the dependent variable and the explanatory
variables had spatial heterogeneity, and the GWR (GWGR and GWPR) models would be a
more desirable choice.

Table 2. OLS diagnostics statistics.

Variable Coefficients Value Std. Error Robust
Std. Error t-Statistic Probability

(p-value)
Robust

t-Statistic
Robust

Probability VIF

Intercept 1.072 0.012 0.012 87.353 <0.001 87.253 <0.001 ——–

Elevation −0.411 0.175 0.190 −2.353 0.019 −2.159 0.031 4.2

Slope −0.048 0.020 0.019 −2.350 0.019 −2.502 0.012 2.8

Aspect 0.060 0.013 0.012 4.689 <0.001 4.779 <0.001 1.1

FVC −0.005 0.013 0.013 −0.342 0.733 −0.348 0.728 1.2

Number of Forest Patches 0.196 0.027 0.026 7.270 <0.001 7.566 <0.001 4.8

Edge Proportion 0.112 0.022 0.020 5.074 <0.001 5.542 <0.001 3.2

Population Density −0.195 0.018 0.018 −10.693 <0.001 −10.911 <0.001 2.2

Road Density 0.086 0.019 0.022 4.442 <0.001 3.875 <0.001 2.5

Habitat Loss 0.654 0.018 0.021 36.244 <0.001 31.882 <0.001 2.2

Crop Area −0.143 0.018 0.020 −8.007 <0.001 −7.197 <0.001 2.1

Pastureland 0.363 0.026 0.022 14.058 <0.001 16.215 <0.001 4.4

Temperature −0.017 0.019 0.020 −0.899 0.369 −0.852 0.394 2.3

MCWD 0.028 0.020 0.019 1.404 0.160 1.530 0.126 2.7

Wind −0.056 0.016 0.017 −3.396 0.001 −3.284 0.001 1.8

Relative Humidity −0.005 0.018 0.019 −0.294 0.769 −0.285 0.776 2.2

Joint Wald Statistic = 6096.61; AIC = 20929.89; Adjusted R-Squared = 0.516; Significant parameter at 0.05
level; Koenker Statistic = 1419.04*; Jarque-Bera Statistic is significant. Numbers in bold indicate statistically
significant results.
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4.2.2. Geographically Weighted Gaussian Regression

The Global Moran’s I analysis was used to determine the spatial autocorrelation of
OLS and GWGR regression. By comparison, the result of Global Moran’s indicated that
the residuals of OLS exhibited significant spatial autocorrelation, while the pattern of the
residual from the GWGR model was random. Based on a 95% confidence level used in this
study, a simple mapping technique that combines the local parameter estimates with local
t-values on one map was used, in which the local t-values ranging from −1.96 to +1.96
(nonsignificant parameters) are shown in gray, whereas the significant parameters were set
to 100% transparency (Figure 6).
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Figure 6. Spatial distribution of significant model coefficients of GWGR. (a) Elevation, (b) Slope,
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(h) Forest Loss, (i) Pasture Area, (j) Temperature, (k) Maximum Cumulative Water Deficit, (l) Wind
Speed, (m) Relative Humidity.
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For the GWGR models, the elevation is negatively correlated with wildfire occur-
rence in the south of Amazonas, southwest of Pará, west of Rondônia, and most areas of
Roraima; the number of patches, edge proportion, forest loss, and the pastureland area
were important driving factors in central Rondônia, southeastern Amazonas, central Pará,
and northwestern Mato Grosso; the population density negatively impacted on wildfire
occurrences in the most areas of Rondônia and northeast of Pará. Though other driving
factors had a local important relationship with the wildfire occurrences, they were scattered
across the study area without a recognizable pattern or clear trends.

4.2.3. Geographically Weighted Poisson Regression

Table 3 summarizes coefficient estimates and standard errors for Poisson and quasi-
Poisson. Overdispersion was evident by analyzing the reported standard errors. While
the Poisson and quasi-Poisson models had the same estimated regression coefficients,
quasi-Poisson’s coefficient standard errors were larger. This is evidence of overdispersion
and is indicated as an underestimation of standard errors by the Poisson model. Compared
to the naive Poisson model, the elevation, aspect, FVC, road density, and temperature were
not significant in the quasi-Poisson.

Table 3. Poisson and quasi-Poisson diagnostics statistics.

Variable Poisson
Coeff

Quasi-
Poisson

Coeff

SE
Poisson

Coeff

SE
Quasi-

Poisson
Coeff

t-Statistic
Poisson

p-Value
Poisson

t-Statistic
Quasi-

Poisson

p-Value
Quasi-

Poisson
VIF

Intercept 1.005 1.005 0.010 0.084 103.8 <0.001 12.0 <0.001 ——–

Elevation −0.068 −0.068 0.008 0.072 −8.2 <0.001 −0.9 0.342 3.7

Slope −0.123 −0.123 0.007 0.057 −18.5 <0.001 −2.1 0.033 * 2.0

Aspect 0.026 0.026 0.004 0.032 7.2 <0.001 0.8 0.408 1.2

FVC 0.043 0.043 0.004 0.037 9.9 <0.001 1.1 0.251 1.8

Number of
Forest

Patches
0.347 0.347 0.009 0.076 39.7 <0.001 4.6 <0.001 1.1

Edge
Proportion 0.171 0.171 0.009 0.074 19.8 <0.001 2.3 0.022 * 1.2

Population
Density −0.930 −0.930 0.006 0.054 −148.1 <0.001 −17.1 <0.001 1.8

Road
Density −0.063 −0.063 0.005 0.042 −13.2 <0.001 −1.5 0.127 1.4

Habitat Loss 1.280 1.280 0.009 0.079 139.5 <0.001 16.1 <0.001 1.5

Crop Area −0.073 −0.073 0.004 0.037 −17.1 <0.001 −2.0 0.048 * 2.7

Pastureland 0.965 0.965 0.012 0.108 77.5 <0.001 9.0 <0.001 3.1

Temperature −0.045 −0.045 0.006 0.054 −7.2 <0.001 −0.8 0.406 2.7

MCWD 0.134 0.134 0.007 0.060 19.2 <0.001 2.2 0.027 * 1.9

Wind −0.230 −0.230 0.005 0.041 −48.5 <0.001 −5.6 <0.001 1.2

Relative
Humidity −0.278 −0.278 0.006 0.048 −49.6 <0.001 −5.7 <0.001 2.0

Joint Wald Statistic = 166309.922; AIC = 15594.000; Deviance Explained = 0.550; Correct predictions: 81.07%;
* Significant parameter at 0.05 level. The dispersion parameter (σˆ2) = 51.514. Numbers in bold indicate statistically
significant results.

For GWGR and GWPR models, coefficients for all explanatory variables have spa-
tial heterogeneity, because their interquartile range (IQR) was larger two times than the
standard of the global models (Table 4), which indicates certain spatial variability in the
GWGR and GWPR models. In addition, we constructed the spatial maps of the local model
coefficients for each explanatory variable of the GWPR models. Our results suggest that the
spatial distributions of the significant model coefficients of explanatory variables between
GWGR and GWPR had a certain similarity (Figures 6 and 7) in the influencing direction
and power.
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Table 4. Summary statistics for estimated local coefficients from the OLS and Poisson model and
relative spatial variation status.

GWGR Spatial Variation Status. GWPR Spatial Variation Status

Coefficient IQR SE 2SE Status IQR SE (Poisson)
SE

(Quasi-
Poisson)

2SE
(Quasi-

Poisson)
Status

Intercept 0.948 0.012 0.024 Non-
stationary 1.925 0.010 0.084 0.167 Non-

stationary

Elevation 0.603 0.025 0.050 Non-
stationary 1.335 0.008 0.072 0.143 Non-

stationary

Slope 0.206 0.020 0.040 Non-
stationary 0.450 0.007 0.057 0.115 Non-

stationary

Aspect 0.084 0.013 0.026 Non-
stationary 0.196 0.004 0.032 0.064 Non-

stationary

FVC 0.142 0.013 0.026 Non-
stationary 0.301 0.004 0.037 0.074 Non-

stationary

Number of
Forest

Patches
0.239 0.027 0.054 Non-

stationary 0.488 0.009 0.076 0.151 Non-
stationary

Edges
Proportion 0.188 0.022 0.044 Non-

stationary 0.662 0.009 0.074 0.149 Non-
stationary

Population
Density 0.224 0.012 0.024 Non-

stationary 0.464 0.006 0.054 0.109 Non-
stationary

Habitat Loss 0.229 0.018 0.036 Non-
stationary 0.926 0.009 0.079 0.159 Non-

stationary

Pastureland
Area 0.287 0.024 0.048 Non-

stationary 1.790 0.012 0.108 0.215 Non-
stationary

Temperature 0.340 0.018 0.036 Non-
stationary 1.116 0.006 0.054 0.108 Non-

stationary

MCWD 0.321 0.020 0.040 Non-
stationary 0.748 0.007 0.060 0.121 Non-

stationary

Wind Speed 0.486 0.016 0.032 Non-
stationary 1.079 0.005 0.041 0.082 Non-

stationary

Relative
Humidity 0.437 0.018 0.036 Non-

stationary 1.016 0.006 0.048 0.097 Non-
stationary

For the GWPR models, the wildfire occurrences were significantly negatively related
to the elevation in the west of Rondônia and central of Mato Grosso, whereas the elevation
is positively correlated with wildfire occurrence in most of the Amazonas. The slope is
positively related to the wildfire occurrence in the southeast of Roraima, central Amazonas,
west of Rondônia, and the eastern part of the study area, including Maranhão and Tocantins.
The wildfire occurrences were significantly positively related to the aspect index in most
areas of Amazonas and Maranhão, south of Mato Grosso, and north of Rondônia.

For the vegetation cover and land use factors, the FVC index was mainly positively
related to the wildfire occurrences in the north of Roraima, and south of Mato Grosso.
The number of forest patches was positively associated with wildfire occurrences in the
northwest of Amazonas and Acre, most areas of Rondônia, central Mato Grosso, and south
of Pará. The edge proportion was positively related to the wildfire occurrences in the
southwest of Amazonas, east of Rondônia, west of Mato Grosso, and southeast and the
northeast corner of Pará, but negatively in the central and southeast of Roraima.

The population density was negatively correlated with the wildfire occurrences in
most areas of Rondônia and northeast of Pará. The forest loss has significant influences on
most areas of the study area; it was more predominant in the east of Acre, central Rondônia,
and central and north of Pará. The pastureland area showed the different relationships
with the wildfire occurrences between the northwest and southeast.
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Figure 7. Spatial distribution of significant model coefficients of GWPR. (a) Elevation, (b) Slope,
(c) Aspect, (d) FVC, (e) Number of Forest Patches, (f) Edge Proportion, (g) Population Density,
(h) Forest Loss, (i) Pasture Area, (j) Temperature, (k) Maximum Cumulative Water Deficit, (l) Wind
Speed, (m) Relative Humidity.

All four meteorological explanatory variables have certain degrees of correlation with
wildfire occurrence across the majority of the Amazônia Biome. In general, the temperature
was negatively correlated with wildfire occurrences in the northern, east-central, and
south-central parts of the study area. The MCWD index positively affected the wildfire
occurrences in most areas of Roraima, Rondônia, Tocantins, and south of Pará. The wind
speed played a positive role in most areas of Roraima. The relative humidity negatively
correlated with wildfire occurrences in most areas of Roraima and east of Mato Gross, but
positive in most of the eastern part of the whole study area.

4.3. Model Evaluation and Comparison

The calibrated local model results indicate that it is a significant improvement on the
global model. The adjusted R2 values of the OLS and global Poisson regression model were
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0.516 and 0.550, respectively, while the corresponding Percent Deviance Explained value
for the GWGR model and GWPR model was 0.746 and 0.784, respectively. By comparing
the AICc values, the AICc values were 20,929 for the OLS model and 17,069 for the Poisson
model, which was greater than those of both the GWGR model (15,594) and GWPR (5183)
models. GWGR model was 23% better than that of the OLS model, and the GWPR model
was 23.4% better than that of the Poisson model (Table 5).

Table 5. Comparison of the performance of the four models.

Models Family AICc

Adjusted
R2 /

Deviance
explained

Moran’s I Z-Score p-Value

OLS Gaussian 20061.057 0.516 0.406 65.244 <0.001

GWGR Gaussian 15594.000 0.746 0.006 1.001 0.317

Poisson Poisson 17069.801 0.550 0.331 53.759 <0.001

GWPR Poisson 5183.925 0.784 0.088 14.167 <0.001
Numbers in bold indicate statistically significant results.

To assess the potential spatial autocorrelation, we apply Moran’s I of the residuals
for all models and the results show that the Moran’s I for all models were significantly
positive (Z- values > 1.96), and the model residuals of the OLS regression had a slightly
higher Moran’s I, while the model residuals of local Gaussian (OLS) and Poisson models
had a relatively lower Moran’s I. In general, the GWR (i.e., both GWGR and GWPR)
models greatly improved the model fitting and performance over the corresponding global
models and produced more desirable model residuals. Figure 8 shows the map of spatial
autocorrelation of the standardized residuals calculated by the four models, respectively.

Figure 8. The standardized residuals from (a) OLS, (b) Poisson, (c) GWGR, and (d) GWPR.

5. Discussion

In humid rainforests, spontaneous fires are rare because the intact old-growth forests
can maintain a microclimate moist enough [45]. However, over the past few decades, due
to a growing population and an introduction of mechanized agriculture, people have often
used a method called slash-and-burn to blaze forests to expand the area of land available
for ranching and agriculture in exchange for economic growth (i.e., agribusiness). It has
been estimated that 5665 km2 of forest have been burned and cleared since the 1970s [46].
Moreover, the deforestation activities have also increased forest fragmentation [47], which
leads the microclimate along forest edges to become drier, and then the tree mortality
rate has also increased, which in turn increases fuel loads, finally turning the forest into
a fire-prone system. Global models support the phenomena. The results of the global
model indicate that the explanatory variables of the forest loss, number of forest patches,
edge proportion, cropland area, pastureland area, population density, and wind speed
were statistically significantly associated with wildfire counts. Especially, the coefficients
of forest loss, pastureland area, and the number of forest patches were strongly positively
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associated with an increased number of wildfire occurrences. These results have also
corroborated that the wildfires in the Amazon Rainforest are predominant of anthropogenic
origin, and deforestation and agricultural activities are the two major factors that determine
the occurrence of wildfires [16].

In contrast to global models, GWGR and GWPR models were preferred to detect
local relationships, which would help us identify the geographic locations where a given
dependent variable may have different influences on an explanatory variable. For example,
the number of forest patches was positively associated with the wildfire occurrences in the
east of Acre and Amazona, west of Pará, and central Mato Grosso, but negatively associated
with the wildfire occurrences in the west of Maranhão. Similarly, the pastureland area
was correlated positively with the wildfire occurrences in most parts of south Amazonas,
southwest of Pará, and the central Rondônia, but to be a negative relationship in the
southwest of Mato Grosso. Besides, the forest loss was positively correlated with the
wildfire occurrences in the central of Pará, south of the Amazonas, southeast of the Acre,
northwest and central of Mato Grosso, and most of the Rondônia. In addition, our results
also indicated that wildfire occurrences for 2019 were abnormally high in Acre, Amazonas,
Pará, Mato Grosso, and Rondônia, and a higher level of agricultural activity was also noted
in these states than in others.

In practice, wildfire occurrence is often not directly related to topographic drivers
but is indirectly affected by other drivers. Wildfires in the Amazon have been proven to
have significant relations with human activities, and exhibit close spatial relations with
deforestation. This is because, land with a flat slope and low elevation, it is likely to be
converted to agriculture. In other words, the slope and elevation drivers strongly affect the
suitability of wildfire in a given location for different land uses. The results of the global
model suggest that the number of wildfire occurrences increased with lower elevations
and flatter terrain. This might be because human activities (e.g., agriculture) are more
likely to occur in relatively low elevations and flatter terrain, which may lead to higher
wildfire risk. The findings are generally supported by GWR models. The elevation is
negatively correlated with wildfire occurrence in the south of Amazonas, southwest of
Pará, west of Rondônia, and most areas of Roraima. Additionally, the slope was negatively
associated with the wildfire occurrence in the populated southern regions of the Rondônia,
whereas the slope was positively correlated with wildfire occurrence in the eastern of the
Roraima because more grassland was distributed in these areas, and when the slope is
steep, the grass becomes drier and are likely to cause more fires. In addition, the global
model indicates that the aspect index was positively associated with wildfire occurrence.
The larger the aspect index was, the closer the region was to the north and northeast,
with a larger amount of sunlight and higher temperatures, which characteristics also lead
to dryer fuel and thus make it also have a higher potential for wildfire occurrence. As
the FVC values of the entire Amazon Rainforest are high, this driver is not significant in
global models. However, it can be seen in the GWR model that FVC values are positively
correlated with central Roraima and southwestern Mato Grosso.

Moreover, this study found that wildfires tended to occur in areas with low population
density. The main reason is that densely populated areas are settlement areas, and human
activities are relatively concentrated and far from the forest, where human activities may
reduce forest cover. On the contrary, sparsely populated areas are mostly distributed at
the intersection of farmland and forest, where human activities have a greater impact on
forests and are more likely to generate wildfires, which is consistent with Sturtevant’s
research conclusion [48]. The finding was consistent with two GWR models that show
that wildfire occurrence was negatively correlated with the densely populated southern
part of the Rondônia. Many studies have also confirmed that there is a positive correlation
between road networks and wildfire occurrence. However, due to the multicollinearity of
road density, this study did not prove them quantitatively.

This study found that the meteorological conditions were a poor discriminant of the
2019 grid fishnet wildfire occurrence, which is consistent with Kelley et al.’s [49] research
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conclusion. They found that during August 2019, a correlation between an area burned by
wildfires and the weather conditions in Acre and the southern Amazonas was less than
0.1, and in northern Mato Grosso was even less than 0.01. In our study, although most
meteorological variables were not statistically significant to the wildfire occurrences based
on the global model, they were statistically significant in some regions. For example, the
GWPR models found that the MCWD and relative humidity have the same influence on
wildfire occurrences in the south of Amazonas, central of Rondônia, north, and south of
Mato Grosso, and most of Roraima, where dry weather conditions will result in more
wildfires. A large portion of these areas is covered with pastures and grasslands, where the
ground vegetation is relatively sparse to contribute substantial surface fuel loads. Therefore,
a relatively moist environment may reduce the risk of wildfires. However, the situation
was different in the middle and south of Pará, where the predominant vegetation cover is
forest, so higher relative humidity and more precipitation would increase the surface fuel
loads and exacerbate the probability of wildfires. However, the results produced by the
GWGR model are scattered and have no clear pattern, making interpretation difficult.

In conclusion, human activities are the main factors determining the occurrence
of wildfires, followed by topographic and meteorological, which should be considered
fundamental elements in the design of wildfire prevention programs. In addition, the
enforcement of mandatory regulations and the monitoring of fire activity are also important
techniques for preventing wildfires, particularly in areas where a fire is a significant factor
in the productive cycle.

While this study has revealed the spatial pattern and driving factors of wildfire in
the Amazônia Biome, there are several limitations that require further investigation. First,
the spatial scale of the study area could be a limitation, and the large study area could
mask subtle nuances in local regions compared to smaller scales, but broadscale spatial
analysis and statistical evaluations of wildfire occurrences serve to isolate knowledge gaps
and so provide a basis for subsequent analyses at a finer scale. This methodology can
be applied to other Brazilian or global regions. Second, the different scales used in this
analysis could lead to different results, and this could introduce reliability, potential bias,
and validity concerns, as results are modifiable. In addition, this study only analyzed the
phenomena of wildfire occurrences in 2019, in our future work, we can consider more
about the relationship between time series and the occurrence of wildfires, to achieve
multi-scale research on wildfires. Moreover, for normalizing residual distributions, the
variables with nonlinear relationships were transformed by using Natural Logarithm or
BOX-COX transformation [50,51]. Typically, this kind of transformation enables an analysis
to fall within its legitimate application domain and to perform reliable statistical analysis.
However, when the regression residual is highly non-normally distributed, it is important to
know what problems may be caused by the misspecification, which can be fully discussed
in future work. As Fotheringham et al. [10] pointed out, GWR may act as a microscope by
magnifying the relationship’s details, while it may also amplify any existing issues.

6. Conclusions

The analysis results indicate that there were strong regional differences in the spatial
patterns of wildfires. Wildfires were found to be more frequent in six states, which include
the states of Acre, Amazonas, Rondônia, Roraima, Pará, and Mato Grosso. The results
of spatial relationship analyses also indicate that spatial clustering was primarily caused
by anthropogenic factors (i.e., deforestation and agricultural activities), and the forest
loss, pastureland area, edge proportion, and the number of forest patches were strongly
positively associated with an increased number of wildfire occurrences. Therefore, the areas
with intense deforestation and agricultural activities and a wildland-farmland interface are
those that will require a greater need for attention from fire brigades.

The assessment of model fitting and predictions shows that the GWR models had
better performance than the global models. Our results were consistent with previous
studies, in non-stationarity or missing variables situations, and the local models can provide
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a helpful complement to the global models. Additionally, other explanatory variables (e.g.,
the El Niño-Southern Oscillation) could be taken into account in future studies. For instance,
according to Aragão et al. [35], the Multivariate El Niño Index is a powerful indicator in
evaluating the severity of seasonal drought in Amazon rainforest regions.

Overall, this study can provide a wiser and better insight into wildfire mapping,
understanding, prevention, and management, and intend to contribute to the field of
GIS, wildfire modeling, and spatial statistics. Our results present the spatial patterns
of wildfire occurrence in the Amazônia Biome in 2019 and statistically demonstrate that
spatial heterogeneity existed in wildfire occurrences. In addition, GWR models have
exhibited superior fitness and proven to be more predictive than global models when
modeling spatial data. Finally, this study expects to enrich research contents and methods
of disciplines such as remote sensing and GIS geospatial technologies, as well as to promote
the mutual advancement and development of multiple disciplines.
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