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Abstract: In recent years, it has become a common understanding among researchers that one of the
significant agents for forming a variety of submarine geomorphologies is turbidity currents that travel
long distances, so-called long-runout turbidity currents. In this study, we present a mathematical
model of the formation of cyclic steps due to long-runout turbidity currents based on the assumption
that the highly concentrated layer near the bottom of the turbidity currents achieves an equilibrium
state. The model uses the four governing equations: the momentum equation, the continuity equation,
the diffusion/dispersion equation of suspended sediment, and the continuity equation of sediment
on the bed (the Exner equation). We simplify the governing equations by ignoring the entrainment
from ambient water since there is a distinct density interface above the highly concentrated lower
layer of long-runout turbidity currents. We determine the dimensions of cyclic steps based on the
solution. Agreement between the predictions and field observations turns out to be reasonable.

Keywords: bedforms; cyclic steps; sediment transport; suspended sediment; turbidity currents

1. Introduction

Cyclic steps are a series of upstream migrating steps bounded by hydraulic jumps. The
flow is subcritical at the stoss side, where the slope is gentle, and the flow accelerates on the
lee side to become supercritical flow. Taki and Parker [1] performed detailed experiments,
regenerated the cyclic steps in the laboratory, and found the steps migrate upstream while
preserving their form. We observe cyclic steps on the ocean floor [2,3], at river deltas [4],
and on ice [5], classified into three types: transportational [1,6], net-erosional [7], and
net-depositional [8]. In our study, we focus on submarine transportational cyclic steps,
such as cyclic steps within the South Taiwan Shoal and West Penghu submarine canyons of
the South China Sea [9].

The increased research interest in cyclic steps is due to their effect on geomorphology
and a new awareness of the vital role in sediment transport efficiency. There are many
models proposed previously for describing the formation of cyclic steps. Parker and
Izumi [7] presented a model to analyze purely erosional cyclic steps on cohesive soil in
open channel flow. Sun and Parker [6] developed an analytical model for transportational
cyclic steps formed in open channel flow with abundant suspended sediment. Izumi and
Yokokawa [10] performed a theoretical analysis to explain the formation of cyclic steps
in mixed bedrock–alluvial channels. As for cyclic steps formed due to turbidity currents
in submarine environments, Dias et al. [11] have proposed the first analytical model, to
the authors’ knowledge. Their model used variables in the critical regime in the Froude
sense to normalize all the main variables, such as the layer thickness of turbidity currents.
Therefore, it is not easy to interpret their results in reality and compare the dimensions of
cyclic steps predicted by their model with those in the field.
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In many cases, turbidity currents lead to the formation of cyclic steps. Turbidity
currents are sediment gravity flows triggered by slumping, earthquakes, and various other
types of soil disturbances. Many analytical models have been presented in the endeavor
to understand turbidity currents. Parker et al. [12] proposed a three-equation model and
a four-equation model, which includes the turbulent kinetic energy equation to describe
the behavior of turbidity currents. The entrainment from ambient water included in the
two models leads to the thickening of currents. Izumi [13] combined the model of turbidity
currents and the Exner equation to reproduce the formation of submarine gullies due to
turbidity currents.

A remarkable feature of submarine turbidity currents is that they can run over 1000 km
without dissipation. The models proposed by Parker et al. [12] have a limitation: they can-
not explain this feature of long-runout turbidity currents. The physical mechanism of why
turbidity currents can travel long distances had long been left unsolved. Luchi et al. [14] are
the first to suggest a solution to this problem. In the process of deriving the velocity distri-
bution of turbidity currents in the layer thickness direction using the k-ε model, they found
that the turbidity current separates into two layers: a lower layer with high suspended
sediment concentration and an upper layer with low suspended sediment concentration.
This separation creates a density interface between the upper and lower layers where there
are very little friction, momentum exchange, and diffusion. Since there is very little friction
between the two layers, the lower layer has little interaction with the upper layer and can
run long distances. The recent field observations by Paull et al. [15] and Pope et al. [16]
partly support this assumption that a turbidity current is composed of two layers.

Earlier models designed to generate submarine morphologies failed to describe the
characteristic of long-runout turbidity currents. Hence, in our study, one of the objectives
was to capture the features of these currents. We derive the governing equations for
long-runout turbidity currents in a manner consistent with that used by Parker et al. [12].
However, we establish the governing equations by integrating over the highly concentrated
lower layer of turbidity currents based on the model of Luchi et al. [14] rather than from
the bottom to infinity. We coupled with the governing equations of long-runout turbidity
currents and the Exner equation as in the model by Dias et al. [11] and Izumi [13]. Taki and
Parker [1] have studied the subaqueous equivalent of submarine cyclic steps and found
that cyclic steps migrate upstream without changing their forms. We referred to the method
presented by Sun et al. [6] to solve this problem of cyclic steps formed by long-runout
turbidity currents in submarine environments.

Models proposed so far to describe cyclic steps, e.g., ref. [6] have not explained the
actual scale of cyclic steps. Therefore, we normalize all the variables by the fundamental
quantities in the absence of steps such as the equilibrium thickness of the highly concen-
trated lower layer and then calculate the actual dimensions of cyclic steps using the results
of the analysis performed by Izumi [17]. We then compare these results with observations
in the field to determine the reliability of our model.

2. Materials and Methods
2.1. Formulation
2.1.1. Governing Equations

Turbidity currents continually entrain ambient water. As a result, increased layer
thickness results in the dilution of suspended sediment concentration. Some turbidity
currents can run incredibly long distances without dissipating. As already mentioned,
Luchi et al. [14] found that this feature of turbidity currents results from the fact that the
flow separates into two layers, as shown in Figure 1.

The lower driving layer has the invariant suspended sediment concentration, flow
thickness, and velocity profiles, while the upper driven layer continues to entrain neighbor-
ing water and become diluted.
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Figure 1. Sketch of the model.

There is a distinct density interface between the two layers, where the velocity gradient
and the shear stress are almost zero. The gravity drives the upper layer and balances the
shear stress at the bottom of the lower layer. We can assume that the highly concentrated
lower layer is in the equilibrium state in this configuration.

We adopt the derivation of the layer-averaged equations in the model by Parker et al. [12]
in this study. However, the integration approach of the governing equations is slightly
different: in this study, we integrate the governing equations over the highly concen-
trated lower layer. Even after this manipulation, however, the layer-averaged momentum
equation has the same form as that achieved in the model presented by Parker et al. [12]

Ũ
∂Ũ
∂x̃

= −Rg
2

h̃
∂C̃
∂x̃
− RgC̃

∂h̃
∂x̃
− RgC̃

∂η̃

∂x̃
+ RgC̃S− τ̃b

ρh̃
(1)

where x̃ is the streamwise coordinate, Ũ is the layer-averaged flow velocity in the x̃ direction,
C̃ is the layer-averaged suspended sediment concentration, h̃ is the highly concentrated
layer thickness of turbidity currents, R is the submerged specific gravity, g is the gravity
acceleration, η̃ is the deviation from the bed elevation without steps, S is the average
slope, ρ is the density of water, and τ̃b is the bed shear stress (=ρcDŨ2), and cD is the drag
coefficient. In addition, we denote dimensional variables by the tilde and drop it to denote
non-dimensional or normalized equivalents.

The layer-averaged continuity equation is

∂Ũh̃
∂x̃

= 0 (2)

Note that the right-hand side of Equation (2) vanishes, whereas it does not in the
model proposed by Parker et al. (1986), that is ewŨ, where ew is the entrainment rate of
water. Since we only consider the highly concentrated layer of turbidity currents, the
entrainment from ambient water is assumed to be negligible.

The layer-averaged dispersion/diffusion equation of suspended sediment is de-
scribed by

∂ŨC̃h̃
∂x̃

= ṽs(Ẽ− D̃) (3)

where ṽs is the falling velocity of suspended sediment, D̃ is the deposition rate of suspended
sediment (D̃ = r0C̃, r0 is the ratio of the deposition rate to the layer-integrated suspended
sediment concentration C̃). The parameter r0 is close to unity, assuming it is unity for
simplicity in this study. The entrainment rate of sediment from the bottom Ẽ is assumed in
the form

Ẽ =

{
α(τ̃b − τ̃th)

γ τ̃b ≥ τ̃th
0 τ̃b < τ̃th

(4)
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where τ̃th is the threshold bed shear stress below which erosion does not occur, and the
parameters α and γ are empirical constants determined by experiments. The Exner equation
describing the mass balance between sediment transported and sediment on the bed takes
the form (

1− λp
)∂η̃

∂t̃
= ṽs

(
D̃− Ẽ

)
(5)

where λp is the porosity of the ocean floor, and t̃ is time.
In the above formulation, we apply the quasi-steady approximation and drop the

temporal terms in Equations (1)–(3). The time change of the flow is much swifter than the
bed elevation due to sediment transport. Therefore, we can assume that the flow adjusts
immediately compared to the bed morphology. Thus, we can assume that the flow is steady
and consider the time derivative only in the Exner Equation (5). This approximation is
justified in the case of cyclic steps formed by turbidity currents considered in this study.

2.1.2. Normalization

We introduce the normalizations of the form

Ũ = ŨnU, C̃ = C̃nC, Ẽ = ẼnE, D̃ = D̃nC, (6a)

(
h̃, η
)
= H̃n(h, η), x̃ =

H̃n

cD
x, t̃ =

(1− λp)H̃n

ṽsD̃n
t (6b)

where the subscript n denotes variables in the equilibrium normal flow condition in the
absence of steps. With the aid of Equations (6a) and (6b), the governing Equations (1)–(3)
and (5) are rewritten, respectively, in the form

U
∂U
∂x

= Rin

(
−1

2
h

∂C
∂x
− C

∂h
∂x
− C

∂η

∂x
+ σC

)
− U2

h
(7)

∂Uh
∂x

= 0 (8)

β
∂UCh

∂x
= E− C (9)

∂η

∂t
= C− E (10)

where β is a non-dimensional parameter representing the suspendability of sediment, σ is
the normalized slope, and Rin is the Richardson number in the normal flow condition in
the absence of steps, which read, respectively

β =
cDŨnC̃n

ṽsD̃n
, σ =

S
cD

, Rin =
RgH̃nC̃n

Ũ2
n

(11)

In the equilibrium normal flow condition, since the gravity force is in balance with the
bed shear stress (τb = ρRgSH̃n), there is a relationship between the Richardson number Rin
and σ, where Rin = 1/σ.

The normalized erosion rate of suspended sediment is

E =


(

U2 −U2
th

1−U2
th

)γ

U ≥ Uth

0 U < Uth

(12)

where Uth is the non-dimensional threshold velocity for entrainment (=Ũth/Ũn), and Ũth is
the dimensional threshold velocity for entrainment (=

√
τ̃th/(ρcD)).



Geosciences 2022, 12, 263 5 of 11

As reported by Taki and Parker et al. [1], the cyclic steps can reach an equilibrium state
at which a periodic wave train migrates upstream without changing its form. We introduce
the moving coordinates of the form

x̂ = x + f t, t̂ = t (13)

where f is the migration speed. Once the cyclic steps reach equilibrium, the average bed
slope, wavelength, wave height, and wave migration speed attain constant values. When
viewed in the moving coordinates, the deviation of the bed elevation becomes a function
of x̃ alone. We apply the coordinate transformation described by the above equations to
the governing Equations (7)–(10) and drop the hat for simplicity. The Exner Equation (10)
reduces to

f
dη

dx
= C− E (14)

With the aid of Equations (8)–(10), Equation (7) reduces to

dU
dx

=

(
C
f
− 1

2Uβ

)
(E− C) + σC− U3

Rin
U
Rin
− C

U2

(15)

The dispersion/diffusion equation of suspended sediment takes the form

dC
dx

=
E− C

β
(16)

2.1.3. Boundary Conditions

The Richardson number is the key to the emergence of cyclic steps. The Richardson
critical point stands for a location where the Richardson number is unity. This point divided
the flow into the supercritical and subcritical regimes. A hydraulic jump occurs when the
currents transit from the supercritical flow to the subcritical one, as shown in Figure 2. If
the flow velocity does not reduce to the threshold value for bed erosion, bed erosion will
continue, and the periodic cyclic steps will not form. We thus have the additional boundary
condition written in the form

U+ = Uth (17)

The momentum conserves between the upstream and downstream of a hydraulic
jump, such that

ρŨ2
− h̃− +

1
2

ρgRC̃− h̃2
− = ρŨ2

+ h̃+ +
1
2

ρgRC̃+ h̃2
+ (18)

where the subscripts − and + denote variables, respectively, at the upstream and down-
stream of a hydraulic jump. The suspended sediment concentration is continuous between
the upstream and downstream of a hydraulic jump, such that.

C− = C+ (19)

After further manipulation with the use of Equation (19), Equation (18) reduces to

U− = Uth
Rin +

√
Ri2n + 8RinU3

th/C+

4U3
th/C+

(20)

Since the average bed slope does not change even after the formation of steps, we
obtain one additional condition of the form

η+ = η− = 0 (21)
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By the use of Equations (14) and (16), the bed elevation η can also be expressed in the form

η =
β

f
(C+ − C) =

β

f
(C− − C) (22)

Figure 2. Conceptual sketch of cyclic steps.

2.2. Solution
Solution Method

The governing Equations (15) and (16) with the boundary conditions (19) and (20)
form a two-point boundary value problem, which we solve by the shooting method with
the Newton–Raphson scheme. Since the problem is similar to that solved by Sun and
Parker [6], we follow their solution method to some extent.

The denominator of Equation (15) vanishes at the Richardson critical point. In order
to avoid this singularity, the numerator should also vanish at the Richardson critical point.
Applying this additional condition, we find the relationship among the critical velocity, the
critical suspended sediment concentration, and the migration speed in the form

Cc =
U3

c
Rin

(23)

f =
2CcUcRinβ(Ec − Cc)

2Ucβ(U3
c − σCcRin + Rin(Ec − Cc))

(24)

where the subscript c denotes variables at the Richardson critical point.
Moreover, L’Hopital’s rule is applied to Equation (15) to calculate dU/dx at the

Richardson critical point. Since the flow is accelerating from the subcritical to supercritical
regimes via the Richardson critical point, dU/dx should always be positive in order to
achieve a physically realistic flow. This condition and some other restrictions allow us to
find the solution domain, but since our concern is to find the actual scales of cyclic steps
in this paper, we will not go further into this problem. Sun and Parker [6] have further
discussed the solution domain. Readers can refer to their study for further information.

Using the Runge–Kutta method, we integrate Equations (15) and (16) in the upstream
and downstream directions from the Richardson critical point. Since it is impossible to
start a calculation from exactly the Richardson critical point, we use dU/dx and dC/dx to
calculate from the vicinity of the Richardson critical point. We guess Uc as the initial value
at the Richardson critical point in the integration. Then Cc is determined from Equation (23).
While, in the downstream direction, we calculate up to the point where Equation (17) is
satisfied, in the upstream direction, we calculate up to the point where Equation (20) is
satisfied. These points are where the hydraulic jump takes place, and Equation (19) must
be satisfied. We adjust the guessed value of Uc using the Newton–Raphson scheme for
Equation (19) to be satisfied and obtain the correct Uc.

For the calculation, it is necessary to specify the parameters β and Rin. The parameter
β represents the suspendability of sediment in the absence of steps (=ũ∗n

√
cD/ṽs), where ũ∗n
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is the friction velocity in the absence of steps (=
√

τ̃bn/ρ). Akiyama and Stefan [18] reported
that ũ∗n/ṽs is larger than unity when suspension starts to occur and takes a value between
50 and 100 when the suspension is saturated. The drag coefficient cD ranges from 0.002 to
0.02 according to Parker et al. [19]. It follows that the parameter β ranges from 0.04 to 17.32.
According to Sun and Parker [6], the flatbed becomes unstable only when the flow is in the
supercritical regime. Therefore, the Richardson number has to be smaller than unity. Thus,
the possible range of the Richardson number is from zero to unity.

3. Results
The Wavelength as a Function of Rin and β

Figure 3 shows the wavelength of cyclic steps as a function of the Richardson number
Rin and the suspendability β. The wavelength of cyclic steps defines as the distance between
two adjacent hydraulic jumps. In the analysis in this study, we obtain the wavelength as the
sum of the distances from the Richardson critical point to the downstream and upstream
hydraulic jumps, respectively.

0.0 0.3 0.6 0.9
0

1

2

3

 

 

w
av

el
en

gt
h

Rin

 
 
 
 
 
 
 
 

Figure 3. The relationships among typical parameters.

In the calculation, if Rin is greater than a specific value or β is smaller than a particular
value, the numerator of the equation vanishes at another point other than the Richardson
critical point. It is impossible to avoid the two singularities simultaneously. In this sense,
we can see that the model proposed here has no solution when β is smaller than 0.12. It
means that if β is smaller than a certain threshold, a cyclic step will not form regardless of
the value of β, since the large suspendability and the generation of abundant suspended
sediment are essential for the formation of cyclic steps.

In addition, we find that, as the suspendability decreases, steps will not form unless
the slope is considerably steep, and if the suspendability is sufficiently large, cyclic steps
can appear even on mild slopes. The analysis also shows that cyclic steps with relatively
long wavelengths appear on mild slopes, while those with short wavelengths form on steep
slopes. This tendency may be because, on steep slopes, the flow variation is generally rapid,
and the intervals between hydraulic jumps decrease. We also find that large suspendability
leads to short wavelengths. The reason may be that when the suspendability is more
prominent, fewer suspended particles settle out of the fluid to form cyclic steps.

4. Discussion
Application

The non-dimensional step wavelength and wave height are obtained as functions of
Rin and β. These two parameters can be calculated by the drag coefficient cD, bed slope S,
and the value of ũ∗n/ṽs. The wave height is the distance between the highest point of a crest
and the bed. Since the wave height is normalized by the dimensional layer thickness of
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turbidity currents in the absence of steps H̃n and the wavelength is normalized by H̃n/cD,
H̃n is estimated to obtain the actual scales of cyclic steps.

Typical values for parameters were taken from cyclic steps within the South Taiwan
Shoal canyon [9] to reproduce the submarine cyclic steps (Figure 4). We assume cD is 0.003.
Rin can be calculated with the aid of an average slope of 0.27 in the upper segment and 0.66
in the lower segment (Rin = cD/S). The value of ũ∗n/ṽs is assumed to be 10, and thus β is
0.55 (β = ũ∗n

√
cD/ṽs).

Figure 4. Cyclic steps within the South Taiwan Shoal canyon. Redrafted from Zhong et al. [9].
1–10 cyclic steps are in the upper segment and 11–19 cyclic steps are in the lower segment; L indicates
the lee sides and S indicates the stoss sides.

To achieve the estimation of the layer thickness of long-runout turbidity currents in
the absence of steps, we employ the following relation proposed by Izumi [17]:

H̃n

D̃s
=

R2
f · Cb(vs)

vs2 · S · En
(25)

Here R f is the falling velocity normalized by the sediment diameter (=ṽs/
√

RgD̃s),
D̃s is the sediment diameter, Cb is the suspended sediment concentration near the bottom
normalized by the layer averaged suspended sediment concentration, and vs is the falling
velocity normalized by the friction velocity (= ṽs/ũ∗n). Assuming that D̃s is 0.4 mm herein,
we find R f 0.4. As for the entrainment rate of sediment from the bottom in the equilibrium
condition in the absence of steps Ẽn, Izumi and Fujii [20] proposed a formula of the form

Ẽn = K

[(
ũ∗n
ṽs

)2
− 1

]m

(26)

where K and m are constants that need to be determined empirically, and assumed to be
2× 10−5 and 2, respectively. Assuming ũ∗n/ṽs to be 10 as already mentioned, we find Ẽn
to be 0.2. With the use of the above assumptions, we find that the thickness of the highly
concentrated layer is 20.05 m and 49.36 m in the upper and lower segment, respectively.

We can calculate the real scales of wavelength and wave height with the aid of
Equation (6b). It should note that the wavelength and wave height of cyclic steps ob-
tained in the analysis are in good agreement with the field observations. According to
Zhong et al. [9], the range of wave heights is 15 m to 81 m within the South Taiwan Shoal
canyon. The wavelengths of cyclic steps range from 1800 m to 8414 m in the upper segment
and 4078 m to 10,452 m in the lower segment. Our model results show that the wavelength
is 2135.17 m, and the wave height is 25.57 m in the upper segment. In the lower segment,
the wavelength is 5686.29 m, and the wave height is 26.30 m.

The steps in the lower segment are relatively longer than those in the upper segment,
and it also concurs with observations within the South Taiwan Shoal canyon. Additionally,
the wavelength of cyclic steps is some orders of magnitude larger than the layer thickness,
so the long wave assumption is satisfied.

Using the present model, we obtain the bed profiles over a one-step wavelength in
both the upper and lower segments within the South Taiwan Shoal canyon. Figures 5 and 6
show the bed and water surface profiles of one step with the aid of Equation (22), where
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ξ̃ = η̃ + h̃ and the Richardson critical point is at x̃ = 0. Observed appearances bear a good
agreement with the steps reproduced by the model.
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20
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(m
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Figure 5. The distributions of non-normalized bed elevation and water surface over one step wave-
length, in the upper segment.
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Figure 6. The distributions of non-normalized bed elevation and water surface over one step wave-
length, in the lower segment.

5. Conclusions

We present an analytical model to reproduce the cyclic steps of long-runout turbidity
currents. Since the lower layer is the focus of this analysis, the entrainment from ambient
seawater is considered negligible. Using the model proposed in this study, we can predict
the dimensions of cyclic steps observed in the field. The analytical results show that
cyclic steps cannot form when β (suspendability) or the average slope divided by the
drag coefficient is smaller than some threshold. Furthermore, the wavelengths of cyclic
steps on mild slopes were relatively long, while the larger slope angle facilitates the
formation of relatively short wavelengths. The results of the analysis are consistent with
field observations.
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Notation

B empirical constant (=1.3× 10−7)
C suspended sediment concentration (–)
Cb suspended sediment concentration near bed (–)
D deposition rate of suspended sediment (–)
D̃s sediment size (mm)
E entrainment rate of suspended sediment (–)
K empirical constant (=2× 10−5)
R submerged specific gravity (–)
S average slope (–)
U mean velocity in x direction (–)
Uth threshold velocity below which erosion does not occur (–)
α empirical constant determined by experiments (–)
ew entrainment of water (–)
f migration speed (–)
g gravity acceleration (m s−2)
h highly concentrated layer thickness of turbidity currents (–)
m empirical constant (=2)
t time (–)
u∗n friction velocity (–)
vs falling velocity (–)
x streamwise coordinate (–)
z upward coordinate (–)
R f normalized fall velocity (–)
Ri Richardson number (–)
Rp particle Reynolds number (–)
β a nondimensional parameter representing the suspendability of the turbidity currents (–)
η the bed elevation referenced to the average bed slope (–)
λp porosity of sediment (–)
γ empirical constant determined by experiments (–)
r0 the ratio between the suspended sediment concentrations and C̃ (–)
ρ density of water (kg m−3)
τb bed shear stress (–)
ξ water surface elevation (–)
()n for the case of normal flow in the absence of steps
(̃) dimensional variables
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