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Abstract: The majority of formulae for predicting in-channel mixing by longitudinal dispersion are
based on empirical evidence from medium to large rivers, whereas small creeks and streams are under-
represented despite their hydrological and ecological importance. In this study, twenty-six formulae
for predicting the longitudinal dispersion coefficient (Kx) were evaluated for their applicability to
small channels using field measurements and hydraulic modeling. Predicted values for Kx, following
guidelines recommended in the original publications for the formulae, were compared to measured
dispersion coefficients obtained from sodium-chloride plumes injected into two small channels (a
concrete-lined, trapezoidal channel and a small, natural stream) based on fitting the Hayami solution
to the one-dimensional advection-dispersion equation (ADE) to each plume. The predicted Kx

coefficients from the formulae were also utilized to create model-simulated plumes, which were
compared to those measured well downstream of the point of injection. The findings demonstrate
that the predictive accuracy of the twenty-six formulae was extremely variable; none were able to
predict the dispersion process in the small channels with better than ± 50% accuracy. These results
show that “universal” formulae are plagued with a large degree of uncertainty and should be used
with caution when applied to small channels, although more robust predictions are possible with
some formulae if site-specific data are available for calibration.

Keywords: longitudinal dispersion coefficient; advection-dispersion; contaminant transport; water
quality modeling

1. Introduction

Parameterizing mixing processes in rivers and streams is critical to modeling the
transport and distribution of naturally occurring substances such as suspended sediments
and thermal heat as well as for evaluating the risks associated with unintentional spills of
hazardous materials (e.g., oil, gas, pesticides, paints, fire retardants). Monitoring of plume
evolution in real time is usually not practical, and therefore mitigation strategies often rely
on model simulations, which require proper parameterization in order to produce realistic
and reliable results. Just how reliable are such model simulations and what are the levels
of uncertainty associated with quantifying advection-dispersion processes in channels of
different size?

Small creeks and streams are of particular interest because they serve as important
rearing habitat for juvenile fish and provide essential refugia during floods. They are key
elements of the hydrologic runoff process in watersheds, collecting and feeding water into
larger trunk streams and rivers. The attributes of small channels lead to differences in
the manner by which mixing takes place relative to large channels, specifically: (1) small
depth-to-width ratios; (2) large relative roughness; (3) steep channel gradients; (4) distorted,
non-logarithmic vertical velocity profiles; and (5) bank roughness effects influencing the
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entire flow width, thereby increasing the importance of shear dispersion due to lateral
velocity gradients. Despite these differences from large channels, relatively little is known
about mixing processes in small channels. Indeed, the majority of tracer studies conducted
to date have taken place in medium-sized to large rivers, resulting in a lack of information
regarding the applicability of the predictive formulae to small streams and creeks.

The purpose of this paper is to evaluate the accuracy of 26 predictive formulae for
the longitudinal dispersion coefficient found in the scientific literature and to assess their
applicability to small channels. The evaluation is based on the one-dimensional advection-
dispersion equation (ADE), which is widely used for modeling contaminant transport. The
formulae were evaluated by contrasting measured (field-derived, tracer injection) values
of the longitudinal dispersion coefficient with the predicted values from the 26 formulae.
In addition, modeled concentration time series of the plumes were produced using the
predicted longitudinal dispersion coefficient values, and these were compared to the
observed concentration time series with a focus on four attributes of the curves: start time,
peak time, peak concentration, and duration.

2. Basic Theory of Advection-Dispersion

The one-dimensional advection-dispersion equation (ADE) is the most common ap-
proach to modeling the transport and fate of substances in flowing water [1,2]:

∂C
∂t

+ U
∂C
∂x

= Kx
∂2C
∂x2 (1)

where t is time (T), x is the spatial coordinate in the direction of flow (L), C is the spa-
tially averaged tracer mass concentration (ML−3), U is the spatially averaged streamwise
flow velocity in the x-direction (LT−1), and Kx is the longitudinal dispersion coefficient
(L2T−1) [3–5]. Equation (1) describes advection-dispersion in the longitudinal (streamwise)
direction only, and accordingly, the overbar indicates spatial averaging in the vertical and
transverse directions, with the assumption that concentration variations in those directions
are relatively small in comparison to those occurring in the flow-parallel direction or in
time. The downstream travel rate of the centroid of mass is determined largely by the
advection term, U ∂C

∂x , whereas the spread or relative flatness of the curve is dictated by the

dispersion term, Kx
∂2C
∂x2 , which is based on the theoretical premise embodied by Fick’s Law

of Diffusion and its inherent assumptions [6,7]. For the purposes of this paper, molecular
diffusion, shear dispersion, and turbulent mixing are combined under the term ‘dispersion’
without consideration of their relative importance. The one-dimensional ADE does not
account for the many complexities associated with small, natural channels, such as tran-
sient storage effects, secondary currents due to meandering planforms, the influence of
bedforms and other roughness elements (e.g., pool-riffle sequences, large woody debris),
or hyporheic exchanges through the bed and banks. Nevertheless, Equation (1) is widely
used in engineering practice and commonly integrated into hydraulic models involving
river mixing processes.

The most challenging aspect of utilizing the one-dimensional ADE to model plume
dynamics is a priori selection of realistic values for the longitudinal dispersion coeffi-
cient, Kx, that are appropriate for the channel being modeled. Ideally, tracer experiments
would be conducted in the stream of interest beforehand to reliably model the rate of
spread of the contaminant plume. Such field measurements, however, are costly and
time-consuming. Therefore, a great deal of effort has been devoted to associating the basic
geometry (e.g., width, depth) and flow characteristics (e.g., velocity, turbulence) of streams
with observed values of the longitudinal dispersion coefficient, yielding a large number of
predictive (theoretical and empirical) formulae.

Given the large diversity of natural channels as well as internal heterogeneity within
individual channels, there remains a large degree of uncertainty associated with the quan-
tification of longitudinal dispersion coefficients and, hence, with simulating the rate of
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dispersion of contaminants. Key attributes such as peak concentration, plume duration,
start, and peak and end times can vary considerably depending on the value of the longitu-
dinal dispersion coefficient, which depends on the formula chosen. Thus, there is a pressing
need for field-based assessments of advection-dispersion processes in small waterways.

3. Formulae for Predicting the Longitudinal Dispersion Coefficient—Parameterization
and Uncertainty

A large number of published studies have addressed advection-dispersion processes,
and several of them include predictive formulae for the longitudinal dispersion coefficient.
A total of 26 predictive formulae (Table S1) were found in the literature using an electronic
search that included tag words such as “longitudinal dispersion”, “longitudinal dispersion
coefficient”, “one-dimensional ADE”, and “one-dimensional mixing”. Most studies present
a theoretical framework via dimensional analysis to identify the important variables,
followed by statistical curve fitting or soft computing techniques to optimize the fit of a
proposed relation to empirical data. The data sets utilized during the fitting process differ
from study to study, and this partly explains why there are a large number of equations,
each of which claims superior predictive power for the circumstances pertaining to their
development (i.e., channel size and geometry, flow characteristics). The predicted values
for the longitudinal dispersion coefficient from these formulae vary greatly even for similar
input parameters.

Several factors can affect the longitudinal dispersion coefficient, including fluid density,
fluid viscosity, channel width, flow depth, flow velocity, shear velocity, bed slope, bed
material, bedforms, and sinuosity [8]. Most formulae include two dimensionless terms: the
aspect ratio (W/H) and the surface roughness ratio (U/u∗), where W is the channel width
(L), H is the flow depth (L), U is the spatially averaged streamwise flow velocity (LT−1), and
u∗ is the cross-sectional averaged shear velocity (LT−1). The aspect ratio is relevant because
in a wide, shallow channel the lateral variation of streamwise velocity is large, thereby
increasing the effect of differential advection [5] and directly affecting the magnitude of the
longitudinal dispersion coefficient. The surface roughness ratio represents the importance
of flow resistance on vertical velocity shear, thereby increasing longitudinal dispersion.
The U/u∗ ratio is proportional to various friction parameters, such as the Darcy-Weisbach
friction factor (f), the Chezy coefficient (C), and the Manning roughness coefficient (n) [4].

McQuivey and Keefer [9] and Parker [10] included the channel slope in their formulae,
which is similar to Devens [11]. Disley et al. [12] proposed the incorporation of the Froude
number (Fr = U/(gH)1/2), as did Sattar and Gharabaghi [13], who developed two models
where the exponents are not constants but a function of the Froude number. According
to Sattar and Gharabaghi [13], this is the key reason why their formulae perform better
than previous ones. Sahay and Dutta [14] performed a sensitivity analysis based on the
dimensionless form of the longitudinal dispersion coefficient (Kx/Hu∗) in order to identify
the importance of the different terms in the formula. The U/u∗ ratio caused the greatest
variation in the output, which was almost ten times larger than the variation caused by
W/H. In contrast, the formulae from Sattar and Gharabaghi [13] are most sensitive to
the W/H ratio, followed by the Froude number, and lastly by U/u∗. Etemad-Shahidi
and Taghipour [15] suggested that different flow regimes might exist for different W/H
ratios and that U/u∗ is most important, with large values of W/H. This is reflected in
the formulae developed by Alizadeh et al. [16] and Etemad-Shahidi and Taghipour [15],
where the exponents of the U/u∗ ratio are larger for large W/H ratios than for small
W/H ratios. Clearly, there is great variation in how the longitudinal dispersion coefficient
is parameterized and accompanying uncertainty in how the various formulae are to be
applied to yield reliable results.

The 26 formulae in Table S1 are ostensibly applicable to all channel types unless
otherwise stated in the original paper. However, for formulae with empirically derived
coefficients, it seems reasonable to expect that they should only apply to channels that are
similar to those represented in the data set to calibrate the formula. Therefore, a formula
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might be accurate when tested against a certain data set but will fail to perform well against
another data set [17]. Camacho Suarez et al. [1], for example, assessed the accuracy of
six recent equations [12,15,17–20] and found that relative errors between observed and
modeled values varied from approximately −50% to 32%.

For the studies that provided detailed information on the calibration data sets, a
cursory analysis of the parameters (e.g., width, depth, velocity, shear velocity) indicates
that most of the data were obtained for channels with widths larger than 10 m (Figure 1).
There are only 32 (14%) reported data points collected in channels with widths less than
10 m, and only six of the 26 formulae [11–13,15,16,21] include at least one of these points.
A similar situation occurs with respect to the average flow area, with a bias toward larger
channels. Overall, there were only 17 (7%) longitudinal dispersion coefficients from flows
with A < 1 m2. Three of the formulae included at least one of these points [11,12,21].
Although most of the formulae include at least one longitudinal dispersion coefficient
obtained in channels with small discharge volumes (Q ~ 1 m3 s−1), overall, there are only
28 data points (12%) collected in such channels.
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formulae of the longitudinal dispersion coefficient (Table S1).

Thus, despite their hydrologic and geomorphic importance, small channels are gen-
erally under-represented in data sets used to calibrate formulae for quantifying the longi-
tudinal dispersion coefficient. As a consequence, most available formulae perform better
on medium to large channels (e.g., [11,21]). Sahay and Dutta [14], for example, tested
six formulae and showed that the predictive accuracy of the longitudinal dispersion co-
efficients improves as the channel width increases. Of the very few studies focused on
small channels specifically, most use data from flumes to parameterize and calibrate the
formula [22,23]. Unfortunately, the long downstream distance required for complete mixing
to take place makes it unlikely that such flume results are reliable. Therefore, there is still
a compelling and practical need to field-test the accuracy of these 26 predictive formulae
against observed concentration time series for application to small channels.

4. Methods
4.1. Field Experiments

Testing the accuracy and applicability of the 26 formulae involved a series of field
experiments to collect empirical data on mixing processes in small channels followed by a
suite of analytical procedures, including hydraulic modeling and curve fitting. Controlled
tracer experiments with instantaneous mass injections of sodium chloride (NaCl) were
conducted in two freshwater channels spanning a range of conditions: (i) a concrete-
lined, trapezoidal channel that was geometrically and hydraulically simple (Figure 2);
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and (ii) a small, natural stream (Creighton Creek near Lumby, British Columbia), which
was geometrically and hydraulically complex (Figure 3). Sodium chloride (NaCl) was
used as an introduced foreign substance, with the expectation that there would be no
transient storage and 100% mass recovery. NaCl solutions (approximately 100–200 g/L,
well below saturation concentrations) were injected using a 2 m wide trough to ensure
channel-wide distribution of the tracer and to facilitate complete lateral mixing within
a short distance downstream. The trough was only slightly shorter than the width of
the channels, conveniently avoiding any influence from the side walls at the injection
locations. Vertical mixing was very rapid because the flow was shallow and turbulent,
and density stratification was unlikely. The volume of water in the troughs was less than
3 litres and therefore had a negligible effect on the flow discharge. Salt concentration was
measured indirectly using conductivity probes at a sampling frequency of 1 Hz over spans
of 10–15 min.
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Overall, 55 NaCl concentration curves were measured within the two channels: 25 in
the concrete channel and 30 in the natural channel. The measurements were taken at several
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fixed locations downstream of the injection point, ranging anywhere from 80 m to 370.15 m
for the concrete channel and from 12.5 m to 127.9 m for the natural channel. Over the
course of the experiments, which also included turbidity monitoring (not discussed here),
a variety of instrument deployment configurations were used (Figures 4 and 5). At some
locations, multiple sensors were deployed across the channel to verify that lateral mixing
was uniform, which was the case at downstream locations far away from the injection site.
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The concrete channel experiments were conducted on a single day, whereas the natural
channel experiments were conducted over two subsequent days. Several different injections
of salt and sediment were made throughout the course of the experiments, with sufficient
time between injections to allow for complete flushing of the tracer out of the reach,
as indicated by the return to background conditions. Hydraulic parameters for each
channel were obtained from field measurements of channel geometry and flow discharge,
complemented with HEC-RAS hydraulic modeling, from which cross-sectional averages of
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various parameters, such as mean flow velocity and mean flow depth, were obtained at
different transects along the reach.

4.2. Analytical Procedures

HEC-RAS hydraulic models of the concrete channel and the natural channel were
developed using multiple surveyed cross-sections along the study reach. After the model
geometry was established, the flow conditions were calibrated to water surface elevations
surveyed at each of the cross-sections for the discharge conditions encountered during
the injection experiments. All hydraulic parameters used in subsequent calculations were
reach-averaged values from the model simulations in order to avoid local influences due
to varying cross-sectional geometry and roughness. The concrete channel had uniform
geometry along its entire 370.15 m extent (Figure 2), whereas the natural channel had
only a slight variation in width and depth (Figure 3), thereby justifying the use of reach-
averaged values.

Reach-averaged values of the cross-sectional area and mean flow velocity from the
HEC-RAS simulations were used in combination with the NaCl plume time series to
estimate reach-averaged values for Kx. The Hayami analytical solution [7,24] to the one-
dimensional ADE (Equation (2)) was used for this purpose:

C(x, t) =
Mx

2AUt
√
πKxt

exp

(
−
(
x−Ut

)2

4Kxt

)
(2)

where M = tracer mass injected (M), A = cross-sectional area (L2), and other terms are
as previously defined. The curve fitting process to the measured time series involved
adjusting the longitudinal dispersion coefficient incrementally until perfect agreement
(i.e., 0% deviation) was reached for the peak concentration between the measured and
modelled plumes. The peak concentration fitting method was chosen rather than an
overall best-fitting method (e.g., maximizing the coefficient of determination [R2] between
observed and modeled curves) due to the long tails normally observed in plumes from
real streams in comparison to the normal distribution shape predicted by Equation (2).
Time to peak concentration and total plume duration were also evaluated as a means of
checking the reliability of the solutions, and deviations between the modeled and measured
plumes averaged around 4% and 30%, respectively (Table S2). However, there are no free
parameters in Equation (2) to adjust these plume attributes once a value for Kx has been
fixed to reproduce the peak concentration. Adjustments for tracer loss were made in a small
number of instances when 100% recovery was not achieved downstream or to compensate
for the uncertainty associated with the measured or estimated discharge.

Even though Kx values were calculated for all of the 55 measured plumes, only a
small subset was used to test the empirical formulae. The reason is that the theory for
one-dimensional advection-dispersion assumes that complete channel-wide mixing and
equilibrium has been attained. In practice, this is difficult to achieve with slug injections
of tracer in natural systems, and there is a distance downstream of the injection site
where advection dominates over dispersion (referred to as the ‘convective’ or ‘advective’
zone) [5,25]. The predicted length of the advective zone and its implications for the
longitudinal dispersion coefficient calculation are addressed in more detail in Appendix A,
where we also discuss the uncertainty associated with field measurements of dispersion in
small channels.

The accuracy of the predictive formulae for the longitudinal dispersion coefficient was
assessed by calculating the relative percent error, as follows:

Relative % error =
Predicted value− observed value

Observed value
× 100 (3)

The relative percent error indicates whether the predicted values overestimate or underesti-
mate the observed (true) values, which is a crucial concern when dealing with drinking
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water safety. It is important to highlight that this statistic is asymmetric in its range because
a value of zero for the longitudinal dispersion coefficient is the minimum possible; therefore,
the lower limit of the relative percent error is −100%, while the upper limit is + infinity.

To evaluate how well the predicted values of the longitudinal dispersion coefficient
based on the 26 formulae performed in simulating the temporal evolution of the concen-
tration curves, the predicted Kx values were used to model each of the NaCl injection
experiments in turn. The modeled curves from the one-dimensional ADE solution were
compared to the observed plume data acquired only in the equilibrium zone, and four
attributes of the curves were selected to assess accuracy: start time of initial rise in concen-
tration above background levels, peak concentration level, peak time (time from initial rise
to peak concentration), and total duration of the plume. The accuracy of each modeled
parameter was assessed according to the relative percent error (Equation (3)). The relative
errors for individual runs were averaged across all runs for each of the two channels, and
the level of agreement for each modeled parameter was classified according to the visual
color scale shown in Figure 6. Finally, the overall level of agreement for each formula was
defined according to the parameter that had the worst level of agreement.
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5. Results
5.1. General Hydraulic Conditions

Table 1 shows the reach-averaged characteristics of the channels obtained from HEC-
RAS simulations. These values conform well with actual measurements at a number of
cross-sections of flow velocity and depth, which were constant along the 370 m length of
the concrete channel and varied only slightly from cross-section to cross-section along the
130 m study reach of the natural channel. The advection velocities of the plume peaks were
identical across all runs for each channel regardless of measurement location, indicating
that discharge was steady and uniform during the experiments.

Table 1. Reach-averaged hydraulic characteristics of the study channels.

Channel Velocity (m s−1) Flow Depth (m) Top Width (m) Shear
Velocity (m s−1) Froude Number

Concrete 1.29 0.05 2.24 0.11 1.86
Natural

(runs NC 1.1–1.3) 0.18 0.11 4.90 0.09 0.17

Natural
(runs NC 2.1–2.6) 0.15 0.08 3.71 0.08 0.17

5.2. Quantification of Kx Values Based on Field Measurements

Based on the analysis presented on Appendix A, only the runs with measurements
downstream of the advection zone were selected, reducing the number of viable cases to
eight (of 25) plumes in the concrete channel and only two (of 30) plumes in the natural
channel. All of the viable cases were from the most downstream measurement location; this
demonstrates that significant downstream lengths are needed to obtain complete mixing.
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Indeed, a set of parallel experiments conducted in a 2 m wide, semi-natural drainage
ditch yielded no viable measurements in the equilibrium zone, despite measurement
locations as far as 90 m downstream of the injection point. Figure 7 shows several measured
concentration curves alongside modeled concentration curves based on the calculated
values of Kx, indicating that the fit is excellent (R2 = 0.91 for the concrete channel and
R2 = 0.96 for the natural channel) at the downstream locations but not ideal for those
locations deemed to be in the advective zone.
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Figure 7. Modeled concentration curves based on the equilibrium longitudinal dispersion coefficient
versus measured concentration curves. (a) Concrete channel; sampling locations x = 80.75 m and
x = 139.95 m were located in the advective zone, and x = 370.15 m was located in the equilibrium
zone. (b) Natural stream; sampling locations x = 36 m and x = 92 m were located in the advective
zone, and x = 127.9 m was located in the equilibrium zone.

Table 2 shows the observed longitudinal dispersion coefficients and Peclet numbers
for the most downstream measurement locations, deemed to be in the equilibrium zone. All
other instrument positions farther upstream were not viable because they were estimated
to be in the advective zone, where lateral mixing was predicted to be incomplete, despite
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using trough injection. These measurements in the advective zone produced longitudinal
dispersion coefficients that were much smaller than those measured farther downstream
(Appendix A). Confirmation of the (in)completeness of horizontal mixing, and hence the
extent of the advection zone, came from instruments positioned across the channel at strate-
gic transects (Figures 4 and 5), which reaffirmed that the most downstream measurement
locations were likely within the equilibrium zone.

Table 2. Observed longitudinal dispersion coefficients and Peclet numbers for the concentration
curves located in the equilibrium zone.

Concrete Channel (Measurement Mocation 370.15 m)

Run Kx (m2 s−1) Peclet Number R2

CC-1 1.00 2.95 0.89
CC-2 - - -
CC-3 1.12 2.63 0.79
CC-4 1.10 2.61 0.71
CC-5 1.30 2.22 0.84
CC-6 1.15 2.59 0.87
CC-7 1.65 1.77 0.95
CC-8 1.20 2.46 0.92
CC-9 1.23 2.40 0.91
AVG 1.23 2.45
SD 0.20 0.35
CV 16% 14

Natural Channel (Measurement Location 127.9 m)

Run Kx (m2 s−1) Peclet Number R2

NC-5 0.33 1.50 0.96
NC-6 0.31 1.60 0.86

AVG is the average; SD is the standard deviation; CV is the coefficient of variation; R2 is the coefficient
of determination.

5.3. Comparison of Kx Values from Formulae and from Field Measurements

Table 3 shows the reach-averaged hydraulic parameters from the HEC-RAS modelling
for the sampling locations in the equilibrium zone, which are only slightly different from
those reported in Table 1 for all runs and all locations. These hydraulic parameters were
used to estimate the longitudinal dispersion coefficient from the 26 predictive formulae
presented in Table S1, and the results are shown in Table 4.

Table 3. Reach-averaged hydraulic characteristics for locations in the equilibrium zone of the two
experimental channels.

Variable Concrete Channel Natural Channel

Location (m) 370.15 127.9
W (m) 2.27 3.58
H (m) 0.05 0.09

U (m s−1) 1.30 0.14
A (m2) 0.11 0.31

Q (m3 s−1) 0.143 0.042
u∗ (m s−1) 0.11 0.08

W/H 45 39.78
U/u∗ 12 1.75

S 0.025 0.012
Fr 1.87 0.16
Si 1.00 1.54

W = top width, H = flow depth, U = cross-sectional average flow velocity, A = flow area (m2), Q = discharge
(m3s−1), u∗ = shear velocity, W/H = aspect ratio, U/u∗ = surface roughness ratio, S = frictional slope, Fr = Froude
number, Si = sinuosity factor.



Geosciences 2022, 12, 281 11 of 27

Table 4. Longitudinal dispersion coefficients for the concrete channel and natural stream estimated
from the 26 predictive formulae (presented here in chronological order) in comparison to the observed
value (top line, italics). The largest and smallest values are underlined and in bold type.

Reference
Concrete Channel Natural Stream

Kx (m2 s−1) Kx (m2 s−1)

Observed value (Hayami solution best-fit) 1.23 0.32
Taylor (1954) [26] 0.06 0.07
Elder (1959) [27] 0.03 0.04

Parker (1961) [10] 0.11 0.19
McQuivey and Keefer (1974) [9] 0.15 0.06

Fischer (1975) [28] 17.42 0.38
Liu (1977) [29] 7.01 2.71

Iwasa and Aya (1991) [23] 3.36 3.61
Koussis and Mirassol (1998) [30] 6.80 6.84

Seo and Cheong (1998) [31] 9.05 0.02
Deng et al. (2001) [18] 6.62 0.04

Kashefipour and Falconer (2002) [32] (Formula (1)) 8.15 0.23
Kashefipour and Falconer (2002) [32] (Formula (2)) 9.10 0.44

Devens (2006) [11] 0.08 0.25
Sahay and Dutta (2009) [14] 9.39 0.99

Ribeiro et al. (2010) [33] 0.15 0.01
Etemad-Shahidi and Taghipour (2012) [15] 6.50 1.55

Li et al. (2013) [34] 8.67 0.62
Sahay (2013) [35] 5.06 0.84

Zeng and Huai (2014) [20] 6.99 0.96
Disley et al. (2015) [12] 3.56 0.07

Sattar and Gharabaghi (2015) [13] (Formula (1)) 1.13 0.10
Sattar and Gharabaghi (2015) [13] (Formula (2)) 1.23 1.90

Wang and Huai (2016) [19] 6.77 0.92
Alizadeh et al. (2017) [16] 9.55 0.39
Oliveira et al. (2017) [21] 79.26 3.51

Wang et al. (2017) [17] 5.23 0.96

There are order-of-magnitude differences among the models. For the concrete chan-
nel, the maximum value of the longitudinal dispersion coefficient was estimated by the
formula from Oliveira et al. [21], Kx = 79.26 m2 s−1, whereas the smallest value was pre-
dicted by the formula of Elder [27], where Kx = 0.03 m2 s−1. For the natural channel, the
maximum value was estimated by the formula from Koussis and Rodríguez-Mirasol [30],
Kx = 6.84 m2 s−1, while the smallest value was predicted by the Ribeiro et al. [33] formula,
where Kx = 0.01 m2 s−1. None of the formulae was able to yield accurate predictions of
the longitudinal dispersion coefficient in both the concrete and natural channels, although
some formulae performed well in one channel but not the other channel.

5.3.1. Concrete Channel Results

The majority (19 out of 26) of the formulae overestimated the value of the longitudinal
dispersion coefficient in the concrete channel (Figure 8). The relative errors ranged from
−100% (underestimation) to greater than 1000% (overestimation).

Relative errors between the modeled and observed curves were estimated for each of
the curve attributes (i.e., peak concentration, time to peak, time to start, plume duration)
and for each run. The averaged results for the concrete channel are presented in Table 5. The
two formulae by Sattar and Gharabaghi [13] showed excellent agreement with the observed
data. They predicted the peak concentration, peak time, start time, and duration of the curve
with less than 10% absolute error. The formulae by Iwasa and Aya [23], Disley et al. [12],
Sahay [35], and Wang et al. [17] provided fair agreement with the observed data. All the
other formulae were classified as providing poor agreement with the observed data, mostly
because of errors in the duration parameter.
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Table 5. Relative error according to predictive formulas in the concrete channel.

Reference Kx

Relative % Error
Modeled Value−Observed Value

Observed Value
Level of

Agreement
Cpeak tpeak tstart Duration

Elder (1959) [27] 0.03 506 4 15 −83 P
Taylor (1954) [26] 0.06 365 4 13 −77 P
Devens (2006) [11] 0.08 299 4 12 −74 P
Parker (1961) [10] 0.11 228 4 11 −68 P

McQuivey and Keefer (1974) [9] 0.15 183 4 9 −64 P
Ribeiro et al. (2010) [33] 0.15 180 4 9 −63 P

Sattar and Gharabaghi (2015) [13] (Formula (1)) 1.13 4 3 −7 −5 E
Sattar and Gharabaghi (2015) [13] (Formula (2)) 1.23 0 3 −7 −2 E

Iwasa and Aya (1991) [23] 3.36 −39 2 −21 56 F
Disley et al. (2015) [12] 3.56 −41 1 −22 60 F

Sahay (2013) [35] 5.06 −50 1 −28 88 F
Wang et al. (2017) [17] 5.23 −51 1 −29 92 F

Etemad-Shahidi and Taghipour (2012) [15] 6.50 −56 0 −33 111 P
Deng et al. (2001) [18] 6.62 −56 0 −33 113 P

Wang and Huai (2016) [19] 6.77 −56 0 −34 115 P
Koussis and Mirassol (1998) [30] 6.80 −56 0 −34 116 P

Zeng and Huai (2014) [20] 6.99 −57 0 −34 118 P
Liu (1977) [29] 7.01 −57 0 −34 119 P

Kashefipour and Falconer (2002) [32] (Formula (1)) 8.15 −60 −1 −37 134 P
Li et al. (2013) [34] 8.67 −61 −2 −39 141 P

Seo and Cheong (1998) [31] 9.05 −62 −2 −39 146 P
Kashefipour and Falconer (2002) [32] (Formula (2)) 9.10 −62 −2 −39 146 P

Sahay and Dutta (2009) [14] 9.39 −62 −2 −40 149 P
Alizadeh et al. (2017) [16] 9.55 −63 −2 −40 151 P

Fischer (1975) [28] 17.42 −71 −7 −53 229 P
Oliveira et al. (2017) [21] 79.26 −82 −35 −82 520 P
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5.3.2. Natural Channel Results

Similar to the concrete channel, most formulae (15 out of 26) overestimated the value
of the longitudinal dispersion coefficient in the natural channel (Figure 9). The relative
errors ranged from −100% (underestimation) to greater than 1000% (overestimation).
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The formulae by Devens [11] and Kashefipour and Falconer (F1) [32] had the best
performance (excellent agreement), with all four parameters predicted within 25% absolute
error (Table 6). The formulae from Parker [10], Fischer [28], Alizadeh et al. [16], Kashefipour
and Falconer (F2) [32], Li et al. [34], Sahay [35], Wang and Huai [19], and Wang et al. [17]
were classified as having good agreement with the observed data. All the remaining
formulae (16) were classified as having fair or poor agreement with the observed data,
including the two formulae by Sattar and Gharabaghi [13], which performed best in the
concrete channel.

Table 6. Relative error according to predictive formulae in the natural channel.

Reference Kx

Relative % Error
Modeled Value−Observed Value

Observed Value
Level of

Agreement
Cpeak tpeak tstart Duration

Ribeiro et al. (2010) [33] 0.01 338 18 33 −78 P
Seo and Cheong (1998) [31] 0.02 267 18 30 −75 P

Elder (1959) [27] 0.04 155 18 20 −64 P
Deng et al. (2001) [18] 0.04 154 18 20 −64 P

McQuivey and Keefer (1974) [9] 0.06 116 17 15 −58 P
Taylor (1954) [26] 0.07 96 17 12 −54 F

Disley et al. (2015) [12] 0.07 94 17 11 −53 F
Sattar and Gharabaghi (2015) [13] (Formula (1)) 0.10 66 17 5 −46 F

Parker (1961) [10] 0.19 24 15 −8 −29 G
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Table 6. Cont.

Reference Kx

Relative % Error
Modeled Value−Observed Value

Observed Value
Level of

Agreement
Cpeak tpeak tstart Duration

Kashefipour and Falconer (2002) [32] (Formula (1)) 0.23 12 14 −13 −21 E
Devens (2006) [11] 0.25 8 14 −15 −19 E
Fischer (1975) [28] 0.38 −11 11 −26 −2 G

Alizadeh et al. (2017) [16] 0.39 −12 11 −26 −1 G
Kashefipour and Falconer (2002) [32] (Formula (2)) 0.44 −16 10 −29 4 G

Li et al. (2013) [34] 0.62 −28 7 −38 22 G
Sahay (2013) [35] 0.84 −37 3 −47 40 G

Wang and Huai (2016) [19] 0.92 −39 2 −49 45 G
Wang et al. (2017) [17] 0.96 −40 1 −50 48 G

Zeng and Huai (2014) [20] 0.96 −40 1 −51 48 F
Sahay and Dutta (2009) [14] 0.99 −40 0 −51 50 F

Etemad-Shahidi and Taghipour (2012) [15] 1.55 −49 −8 −63 81 F
Sattar and Gharabaghi (2015) [13] (Formula (2)) 1.90 −52 −13 −68 98 F

Liu (1977) [29] 2.71 −55 −24 −75 129 P
Oliveira et al. (2017) [21] 3.51 −57 −32 −80 153 P

Iwasa and Aya (1991) [23] 3.61 −57 −33 −80 156 P
Koussis and Mirassol (1998) [30] 6.84 −56 −55 −89 221 P

5.3.3. Comparison of Measured and Modeled Plumes

Figures 10 and 11 show a series of simulated tracer curves (solid lines) for the concrete
channel and natural channel, respectively, using a sample of formulae-derived Kx values
that span the range from smallest to largest. Also shown on each of the panels is the
measured concentration time series (open circles) that was collected for the hydraulic
parameters and instrument locations used to create the simulated curves. The upper
panels (Figures 10a and 11a) show the simulated curve that most closely aligns with the
measured curve based on a value of Kx produced by one of the 26 formulae as well as
several other simulated curves with Kx values from other formulae that yield overestimates
of the measured longitudinal dispersion coefficient. The lower panels (Figures 10b and 11b)
show simulated curves based on underestimates of Kx.

The modelled curves in Figures 10 and 11 demonstrate that when the predicted Kx
from a formula is greater than the observed Kx, the peak concentration is underestimated;
conversely, when the predicted Kx is less than the observed Kx, the peak concentration is
overestimated. In addition, the time to peak concentration advances ahead of the measured
peak when the predicted Kx is greater than the measured Kx, and vice versa. The degree of
deviation of the simulated curves from the measured curves increases as the predicted Kx
deviates further from the measured Kx. Large values of Kx produce simulated curves that
are flatter, broader, and asymmetric, whereas small values of Kx produce simulated curves
that are peaked, short in duration, and almost symmetric.
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Figure 10. Modeled concentration curves utilizing the longitudinal dispersion coefficients obtained
from a sample of predictive formulae in the concrete channel, 370.15 m downstream of the injection.
Curve with round symbols shows the observed plume, which is a common reference for both graphs
(note the scale change on both axes). (a) Formulae that underestimated the peak concentration.
(b) Formulae that overestimated the peak concentration.
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Figure 11. Modeled concentration curves utilizing the longitudinal dispersion coefficients obtained
from a sample of predictive formulae in the natural channel, 127.9 m downstream of the injection
location. Curve with round symbols shows the observed plume, which is a common reference
for both graphs (note the scale change on both axes). (a) Formulae that underestimated the peak
concentration. (b) Formulae that overestimated the peak concentration.
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6. Discussion
6.1. General Performance of Kx Formulae

A key finding of this study is that peak contaminant concentrations are generally
poorly predicted when relying on most of the 26 formulae proposed in the literature to
model mixing in small streams. Yet, peak concentration is of extreme importance for water
quality management. In the case of turbidity plumes, mainly caused by suspended sediment
events, if the concentration is above certain regulatory limits, a ‘boil water’ advisory alert is
triggered, with adjustments required for drinking water treatment processes. The majority
of the formulae yielded overestimations of the longitudinal dispersion coefficient and,
hence, underestimations of the peak concentration, thereby potentially affecting health
outcomes (i.e., failing to trigger alerts). Several studies in the literature have reached similar
conclusions about the overestimation of Kx using a range of formulae (e.g., [1,11,36,37]).
This is of relevance to regulatory compliance because it suggests that the probability of a
modeler choosing, at random, a formula published in the literature that will underestimate
the peak concentration is greater than selecting a formula that will predict a concentration
that is equal to or greater than the expected concentration. Human health may be placed at
risk because predicted concentrations of pollutants will be smaller than what is actually in
the water during an event such as a hazardous waste spill.

The curve attribute that was predicted with the best accuracy was time to peak
concentration, and it was consistently so for both channel types. For the concrete channel,
25 of 26 formulae yielded excellent agreement (within ±25%) between predicted and
observed peak times, while in the natural channel, 22 of 26 provided excellent agreement.
El Kadi Abderrezzak et al. [22] similarly noted small percentage errors (average of 5%) for
the prediction of peak times using data from a laboratory flume. However, this is not a
particularly stringent test for model performance because the peak time is governed mainly
by the advection speed, which dictates how quickly the mass centroid is conveyed along
the channel. The dispersion process, in contrast, affects the spread of the plume but not
the conveyance of the mass centroid. The range of relative error for the peak time in the
concrete channel (−35% to 4%) was smaller than the range of error in the natural channel
(−83% to 18%), suggesting that the non-uniform character of natural channels increases
the uncertainty around predicted plume travel times, likely because of flow unsteadiness
through riffles and pools and around meander bends or because of transient storage effects.

For both channel types, the errors for the predicted interval between the time of
injection to the initial rise in concentration (i.e., start time of the plume) were slightly
greater than the errors for peak time. The reason for this is that the peak time is dependent
mainly on the advection speed, whereas the start of the plume (as well as the total duration)
is also dependent on dispersion at the leading edge of the plume (and tail of the plume
for duration). The formulae that were able to predict the peak concentration with less
than 25% absolute error all had the smallest error for the plume duration, but they also
tended to underestimate the start times of the curves. The likely reason for this is that
the one-dimensional ADE produces less skewed curves (i.e., more symmetric) than the
observed curves. As the spread of the plume increases, the peak decreases; therefore, these
two variables are closely related through mass conservation.

The total plume duration was associated with the largest errors among the four
parameters considered. However, Rutherford [5] noted that the plume time series in real
channels tends to display asymmetry, with long tails that are not well predicted by the
one-dimensional ADE model. Part of the error in the duration parameter can be attributed
to the inability of the one-dimensional model to provide accurate simulations of three-
dimensional mixing. In other words, the lack of agreement between predicted and observed
values is not solely linked to errors in the longitudinal dispersion coefficient but also to
the basic model (Equation (1)) that was used in this study (and the majority of others) to
analyze the measured curves and simulate the artificial curves. Arguably, the total duration
of the plume is of lesser concern to water quality management than peak concentration,
so the errors associated with plume duration may not be a significant regulatory concern.
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Nevertheless, cumulative impacts on aquatic organisms and ecosystems depend on both
concentration and duration if plumes are long-lasting.

6.2. Comparative Performance of Kx Formulae

A simple comparison of the percent error in the values of the longitudinal dispersion
coefficient (Table 7) demonstrates that: (1) eight of the formulae underestimated the longi-
tudinal dispersion coefficient in both channels; (2) fourteen formulae overestimated the
longitudinal dispersion coefficient in both channels; and (3) four formulae overestimated
the coefficient in the concrete channel but underestimated it in the natural channel. No
similarities were found between the formulae that overestimated the coefficient in the
concrete channel but underestimated it in the natural channel, except that all four had a
coefficient >1 for the U/u∗ ratio and that their calibrating data sets included the data set
from Seo and Cheong [31]. However, this was also true for other formulae, so it seems
unlikely that there is a consistent bias that can be identified as regards the parameterization
of the formulae.

Table 7. Comparison of the longitudinal dispersion coefficients obtained from the 26 evaluated
formulae in relation to observed values.

Reference Consistent
Overestimate

Consistent
Underestimate

CC Overestimate, NC
Underestimate

Taylor (1954) [26] •
Elder (1959) [27] •

Parker (1961) [10] •
McQuivey and Keefer (1974) [9] •

Fischer (1975) [28] •
Liu (1977) [29] •

Iwasa and Aya (1991) [23] •
Koussis and Mirassol (1998) [30] •

Seo and Cheong (1998) [31] •
Deng et al. (2001) [18] •

Kashefipour and Falconer (2002) [32] (Formula (1)) •
Kashefipour and Falconer (2002) [32] (Formula (2)) •

Devens (2006) [11] •
Sahay and Dutta (2009) [14] •

Ribeiro et al. (2010) [33] •
Etemad-Shahidi and Taghipour (2012) [15] •

Li et al. (2013) [34] •
Sahay (2013) [35] •

Zeng and Huai (2014) [20] •
Disley et al. (2015) [12] •

Sattar and Gharabaghi (2015) [13] (Formula (1)) •
Sattar and Gharabaghi (2015) [13] (Formula (2)) •

Wang and Huai (2016) [19] •
Alizadeh et al. (2017) [16] •
Oliveira et al. (2017) [21] •

Wang et al. (2017) [17] •
CC = concrete channel, NC = natural channel.

None of the formulae was able to predict the dispersion process with excellent or good
agreement in both channels. However, the two formulae from Sattar and Gharabaghi [13]
had the smallest combined relative errors in peak concentration when considering both
channel types, as shown in Figure 12, despite performing more poorly in the natural
channel than the Devens [11] formula.

The formula from Devens [11] had excellent agreement for the natural channel but
not the concrete channel. This result is unsurprising because the formula was calibrated
using data solely from small channels that had similar characteristics to the natural channel
in this study. The two formulae from Kashefipour and Falconer [32] also performed
well for the natural channel, especially for predicting peak concentration. None of these
formulae performed well in the concrete channel, likely because they were not calibrated
to supercritical flow conditions. It is interesting to note that these three formulae have very
different structural forms, and yet they all performed well on the natural channel, which
is, perhaps, an indication of how important it is to calibrate the model against data that
characterize the channel type of interest (i.e., small versus large).
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A primary factor to consider when interpreting the results from this study is the
substantial difference in relative roughness of the concrete channel versus the natural
channel. The effects of surface roughness tend to be most important for channels that
have large W/H ratios, in contrast to narrow, deep channels; however, the length scales
of the frictional elements on the bottom boundary relative to the flow depth are also
important. Relative roughness is parameterized indirectly in most of the formulae through
the U/u∗ ratio. Five of the seven formulae that had good agreement with observed data in
the natural channel had an exponent on U/u∗ larger than 1 [16,17,28,34,35], but none of
these formulae had good agreement with the concrete channel, which could be due to the
hydraulic smoothness of the concrete surface. Thus, it would appear that relative roughness
is an important consideration for natural channels that have complex bed configurations,
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especially when flow depth is shallow, but perhaps not for channels that are hydraulically
smooth, either because the beds are physically smooth or because flow is deep.

Another important consideration for this study is the fact that the flow in the natural
channel was subcritical, whereas the flow in the concrete channel was supercritical. As
far as we are aware, none of the 26 formulae were calibrated with data sets that included
supercritical flows, but a few of the formulae [12,13] include the Froude number as a key
parameter. Fischer et al. [38] suggested that flows with larger Froude numbers have lateral
velocity distributions that are more uniform, which implies that lateral shear-induced
dispersion is less important for mixing, and as a consequence, the longitudinal dispersion
coefficient will be smaller. In general, the longitudinal dispersion coefficient should be
inversely related to the Froude number, which explains the negative exponent in the
Disley et al. [12] formula. The relationship is less clear in the Sattar and Gharabaghi [13]
formulae, in which the Froude number is incorporated into several of the exponents. Once
the Froude number is larger than 0.5 for Formula (1) (and the value 0.514Fr0.516 is larger
than 0.5 + U

u∗ 0.42U/u∗ for Formula (2)), the exponent on W/H becomes negative. This
means that with Fr < 1, W is more important than H, whereas with Fr > 1, H is more
important than W. Therefore, the relative width is positively related to Kx in subcritical
flows and negatively related to Kx in supercritical flows.

6.3. Contextual Considerations and Caveats

Overall, the error ranges reported in this research dealing explicitly with small chan-
nels are much larger than those reported in previous publications, which are often within
±100% (e.g., [1,22,32]). Some of the formulae performed better than others, and it is worth
speculating on why this might be. In the case of formulae with empirical parameters, it
seems reasonable to anticipate that they will perform best when applied to channels that
are similar to those represented in the data set used to calibrate the formula, and more
poorly when applied to dissimilar channels. A cursory analysis of the parameters utilized
to derive each of the 26 formulae (Figure 1) pointed to the general absence of data on small
channels in comparison to medium and large channels. The hydraulic characteristics of the
channels used in this study (Tables 1 and 3) were at the very small end of the data sets used
by others, which leads to a more stringent test of many of the formulae. It is important to
highlight that none of the calibration data sets used in previous studies included supercriti-
cal flow conditions (Fr > 1), despite the Froude number being incorporated into some of
the formulae. In this study, the concrete channel experiments had values of Fr > 1.

Nevertheless, there are some similarities between the calibration data sets used in
previous studies and the data used in this study, particularly with respect to the W/H
and U/u∗ ratios. Figure 13 shows that the W/H ratio for the study channels is in a modal
position with respect to all other studies, whereas the U/u∗ is very similar to all other
studies despite being at the small end of the range, with large relative roughness. This
suggests that relying on these two non-dimensional scaling parameters to predict the
longitudinal dispersion coefficient for a specific channel may not produce accurate results
without also considering the absolute size of the channel. In other words, a small channel
may display different mixing dynamics than a large channel, even if these non-dimensional
ratios suggest some degree of similarity.
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7. Conclusions

Longitudinal dispersion coefficients from twenty-six formulae were compared to
values obtained from field experiments on two small channels, and the relative performance
of the formulae were evaluated based on the relative error. This is the most comprehensive
test of these predictive formulae reported in the literature to date, and it included a cursory
analysis of the calibrating data sets used by previous authors as well as a modeling exercise
to simulate concentration curves and compare them to the field measurements. Given the
general absence of small channels in the calibration data sets, it is unsurprising that most of
the formulae were not capable of predicting the dispersion process in the two experimental
channels in this study with better than ±50% accuracy. None of the formulae was capable
of replicating the observed data trends in both the concrete channel and the natural channel
with excellent or good agreement.

The majority of the formulae yielded overestimations of the longitudinal dispersion
coefficient and, hence, underestimations of the peak concentration. This is of relevance in
regulatory compliance because it suggests that the probability of a modeler choosing, at
random, a formula from the literature that will underestimate the peak concentration is
greater than choosing a formula that will predict the exact or larger concentrations.

The findings demonstrate that the predictive accuracy of the formulae is extremely
variable, depending on the characteristics of the stream of interest (i.e., large versus small).



Geosciences 2022, 12, 281 22 of 27

It is challenging for any single formula to capture the large heterogeneity in dispersive
mixing processes in natural channels using a single predictor variable such as relative
width or relative roughness. Thus, many recent models incorporate several variables
with complex functions in an attempt to span a range of stream conditions. However, the
general absence of calibration data on small channels remains problematic. In the context
of water quality assessments in small streams, it is advisable to use a formula that was
calibrated with data from streams with similar characteristics to the channel of interest.
This approach increases the likelihood of more accurate results, as was demonstrated in
this study for the case of the natural channel and the better performance of the formulae
proposed by Devens [11]. The two formulae from Sattar and Gharabaghi [13] had the best
overall performance, being able to predict the concentrations with the best accuracy for
both channel types. The results from this research indicate that it might be beneficial to
develop formulae for the longitudinal dispersion coefficients that are more case-specific
and can assure high levels of accuracy in a specific type of channel, instead of the more
traditional approach of developing universally-applicable formulae with large degrees of
uncertainty. The question of whether one-dimensional theory is applicable to small streams
and creeks, given that many of the basic assumptions and limiting conditions are weakly
violated, is a larger issue requiring further study.
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Appendix A. Advective Zone Length Calculations and Their Inherent Uncertainties

An issue that looms large in the background of all studies dealing with one-dimensional
advection-dispersion in rivers or streams is the uncertainty of knowing whether the mea-
surements were taken in the advective zone, where the basic 1D theory does not apply, or
in the equilibrium zone, where Fickian constructs are believed to be reasonably applicable.
Strictly speaking, plume measurements in the advective zone should not be used to test
longitudinal dispersion coefficient formulae [5,25]. Values of Kx in the advective zone are
expected to change non-linearly with downstream distance, along with other attributes of
the concentration distribution (e.g., variance, skewness). In the equilibrium zone, Kx should
be constant, while variance should increase linearly, as required by Fickian theory [5,7].

https://www.mdpi.com/article/10.3390/geosciences12070281/s1
https://www.mdpi.com/article/10.3390/geosciences12070281/s1
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Equilibrium mixing conditions are anticipated to occur at a downstream location far away
from the injection point, where shear action and turbulent diffusion reach equilibrium,
i.e., the tracer particles have experienced the entire extent of the vertical and lateral velocity
fields and are uniformly distributed over the cross-sectional area of the channel [5]. How-
ever, there remains considerable ambiguity in the literature about how to parameterize this
critical distance (i.e., the length of the advective zone).

A number of approaches have been proposed to predict the downstream distance
from the point of injection needed to achieve complete mixing. Fischer [38], for example,
proposed a Lagrangian time scale for equilibrium mixing, from which can be derived the
following theoretical expression for the length of the advective zone [25]:

LA =
αUL2

t
εy

=
αUL2

t
βHu∗

(A1)

where LA = advective zone length (L), U = average flow velocity (LT−1), Lt = transverse
length scale (L), εy = depth-averaged lateral dispersion coefficient (L2T−1), H = flow depth,
u∗ = shear velocity (LT−1), and α, β are coefficients that depend on the type of source
(point or line), the location of injection (mid-channel or near the banks), channel roughness,
presence of dead zones, and sinuosity, among others [5,7,25,39,40]. The transverse length
scale is the distance between the thread of maximum velocity and the farthest bank, and
by convention, it is taken as Lt = 0.5 W in symmetrical channels and Lt = 0.7 W in natural
channels [38], where W = channel width. Values of reach-averaged shear velocity were
obtained based on the HEC-RAS hydraulic model results.

Estimates of the advective zone length (LA) for this study were calculated on the
basis of Equation (A1) using the broad range of empirical coefficients commonly reported
in the literature. As reported by Rutherford [5] and Shucksmith et al. [25], the value of
α varies from 0.2 [41]), to 0.5 [42], to 1 [43]. The value β was estimated to be 0.6 for
natural streams [35,44], although 0.15 was suggested for a straight, rectangular flume [32].
Substituting representative values of α/β in Equation (A1), the estimates of advective
zone length, LA, ranged from 101 m to 507 m for the concrete channel and 41 m to 204
m for the natural channel, as shown graphically in Figure A1. This suggests that the
most downstream measurement locations in this study were either within the equilibrium
zone or at least close to the transition from advective to equilibrium conditions. In an
extensive study of available data on dispersion in large rivers, Nordin and Sabol ([7], p. 54)
concluded that

“ . . . there is no convincing evidence in the empirical data that the mixing length of
Equation (20) [i.e., Equation (A1) in this paper with α/β = 1.8 as recommended by
Fisher [45]] or the time scale of Equation (36) is a sufficient criterion to classify the
dispersion process . . . Actually, the mixing length criterion is somewhat arbitrary, and
there are possibilities for wide deviations from Equation (20).”

In practice, if sufficient data were available (which is rarely the case), the start of
the equilibrium zone could be identified as the downstream location where the spatial
variance of the concentration curves begins to increase linearly with time [5,7,25]. Plots of
variance and skewness based on our measured plumes were inconclusive in this regard
because there were too few measurement locations in the downstream direction to discern
trends with any degree of confidence. Moreover, concentration time series observed in
real channels, including ours, often have long tails that affect the rate of increase of the
variance [7], thereby confounding a graphical approach to determining the distance to the
equilibrium zone.
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In this study, the Peclet Number (Pe) was calculated as a potential indicator of the
degree to which the measurements taken in the downstream direction were likely to
have been made in the advective zone or the equilibrium zone. The Peclet Number is a
dimensionless number that defines the relative importance of advective and dispersive
fluxes, defined as follows [36,45–47]:

Pe =
UL
Kx

(A2)

where L = characteristic length (L), and the other terms are as defined previously. In the
one-dimensional case considered here, the characteristic length (L) is the width of the
channel (W), and the reach-averaged velocity was used for U. The values of Kx were
based on the curve-fitting procedures described above (i.e., identical peak concentration
in measured and modelled plumes), thereby yielding a unique estimate of Kx for every
measurement location for every injection run. In general, flow is considered to be advection-
dominated if Pe & 5 and dispersion-dominated if Pe . 1 [48]. Although the Peclet Number
is not a direct indicator of whether equilibrium mixing has been achieved, it does provide
a means of assessing whether flow conditions are likely to be dominated by dispersive
processes that are central to equilibrium mixing. As shown in Figure A2, the Peclet Number
decreased rapidly from Pe > 10 near the injection line to values of Pe . 3 at the farthest
downstream measurement point in both channels. The trajectory of the trend curve flattens
with downstream distance, which indicates that Kx is declining asymptotically to a stable
value, as required by the Fickian theory for equilibrium mixing. This suggests that the
measurements taken at the most downstream locations were likely within the equilibrium
zone. Accordingly, for this study, only concentration curves measured at the farthest
downstream locations for both channels were used for testing of the 26 formulae, which
reduced significantly the number of viable plumes used in the testing process (from 55 to
10), as noted in Section 5.2.
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In dispersion experiments on natural systems, there will always be some degree of
uncertainty as to whether measurement locations are positioned far enough downstream
to be considered in the equilibrium zone or at the transitional margin from the advective
zone to the equilibrium zone. Nevertheless, the use of a lateral injection trough in our
experiments ensured that channel-wide mixing was facilitated a short distance downstream
of the injection site. This was verified by multiple sensors located in the spanwise direction
at select cross-sections (Figures 4 and 5). In addition, the use of the Peclet Number provides
some confidence that the downstream measurements were far enough away from the
injection point to enable complete mixing by dispersion. Nordin and Sabol ([7], pg. 54)
noted that

“from a practical point of view, if the convective influence extends downstream much far-
ther than the length given by Equation (20) (Equation (A1) in this paper with α/β = 1.8),
the one-dimensional model is not likely to be of much value because the dispersant would
be completely out of the reach of interest before the theory applies.”

This is likely the reality for most small streams and creeks where channel characteristics
can change rapidly over short distances, thereby leading to non-uniform flow conditions
that pose serious challenges to a simple 1D model of dispersive processes.
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