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Abstract: This paper presents the results of a study exploring the potential of magnetic-susceptibility
and phosphate soil analyses to locate and characterize buried Neolithic settlements in Thessaly, Greece.
Using the preliminary results of large-area magnetometer surveys, soil samples were collected at
three well-known sites along exploratory lines and augers targeting the locations of possible features
of interest, including habitational structures and enclosures. The results demonstrated the capability
of these analyses to detect the sites, outline hotspots and better interpret the features identified in the
magnetometer results.
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1. Introduction

In archaeology, geophysical and geochemical methods can be used to define variations
of a range of soil physical properties (e.g., magnetic susceptibility) or soil element concen-
trations (e.g., phosphorus) as proxy indicators for past human occupation. In particular,
these methods have been used to prospect (i.e., locate) subsurface sites or identify past
activity areas and are considered minimally invasive [1–6]. An essential aspect to obtain
meaningful results by using these methods is that there is sufficient variation or contrast
between the physicochemical properties of the subsurface and those of the surrounding
soil environment.

In the early compartmentalized approaches, the geophysical and soil geochemical
methods tended to be used separately in archaeological prospection, whereas the trend
now is their integration [7]. Integrated approaches that combine geophysics and soil physic-
ochemical characterization have proven useful in characterizing traditionally challenging
survey environments and provide complementary information about site features, stratigra-
phy and the surrounding paleoenvironment [8–18]. In other words, such integration has the
potential to develop a better understanding of the identified proxy signatures/responses,
hence improving the overall interpretation [19]. Whilst the number of integrated studies
has been increasing in the last years and encouraged even more since 2018 with the creation
of COST Action SAGA (https://www.saga-cost.eu (accessed on 1 November 2022)), the
cases in Greek archaeology are scarce or nonexistent.
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This paper shows the results of a comparative investigation carried out as part of the
IGEAN project (https://www.ims.forth.gr/en/project/view?id=68 (accessed on 1 Novem-
ber 2022)). The project focused on the geophysical characterization of Neolithic sites in Thes-
saly (Greece), a key region to understand the introduction and expansion of the Neolithic
culture in Europe. Large-area-coverage surveys were carried out by using satellite/aerial
imagery, photogrammetry and magnetometry. These were complemented with targeted sur-
veys, using electromagnetic induction (EMI), electrical resistance and ground-penetrating
radar. The results of the geophysical surveys provided a great deal of information about
the geometry and spatial distribution of previously unknown buried structures at more
than 20 sites [20–22]. The goal of the study reported here was to assess the capability of
minimally invasive soil sampling and ‘low-cost’ analyses (magnetic susceptibility and
phosphate) to locate such sites and provide extra information about specific geophysical
anomalies related to possible habitational structures and enclosures, as revealed with
the magnetometer surveys. The targeted habitational structures and enclosures investi-
gated in this study are common features that have been found in the few sites that have
been excavated in Thessaly. Their makeup, use or function are still not fully understood
by archaeologists.

2. Materials and Methods
2.1. Study Sites

The location of the three sites used in this study (Rizomilos, Almyriotiki and Perdika II)
is shown in Figure 1. These were selected in terms of the general good quality of the
results obtained with the previous magnetometer surveys (including the presence of
structural remains and well-defined ditched-like anomalies) and their typology (includ-
ing tell-type and flat extended sites). Table 1 summarizes some characteristics of the
environmental settings defining each case site. The sites were identified and dated by
surface concentration of diagnostic Neolithic pottery and other finds. Further infor-
mation related to the archaeological investigations carried out about the surface finds
and dating is available at the webGIS platform developed by the IGEAN project (https:
//igean.ims.forth.gr/?q=el/archaeological-sites (accessed on 1 November 2022)).

Table 1. General characteristics of the three study sites.

Site Date Geomorphology/Current
Land Use Geology Soil

Rizomilos
Early Neolithic 6500
B.C.—Early Bronze

Age ~3300 B.C.

Circular low hill/A farm is
located at the top of the hill
surrounded by arable land.

Pleistocene (marine
deposits: marl, clay, sand

and conglomerate,
marine terraces).

Cambisol

Almyriotiki
Early Neolithic ~6500

B.C.—Late Bronze Age
~1100 B.C.

Fairly low elevation with a
circular top/

Covers several
agricultural fields.

Holocene (recent deposits on
valleys, plains and coasts. Cambisol

Perdika II Middle Neolithic
~6000–5500 B.C. Top of a steep high hill/Fallow.

Neogene (lacustrine and
marine deposits:
conglomerates,

sandstone, marl, clay
occasionally with lignite beds).

Close to
Cretaceous flysch.

Luvisol

https://www.ims.forth.gr/en/project/view?id=68
https://igean.ims.forth.gr/?q=el/archaeological-sites
https://igean.ims.forth.gr/?q=el/archaeological-sites
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Figure 1. General location of the three case studies in the Thessalian plain (top). The red pins mark 
the location of (1) Rizomilos, (2) Almyriotiki and (3) Perdika II. The yellow pin marks the location 
of the main city of Thessaly, Volos. Results of the large area magnetometer surveys (middle) carried 
out before the test study reported here. The grayscale image shows positive magnetic anomalies in 
black and negative anomalies in white. Views of the field during the magnetometer surveys at the 
three sites (bottom). The fields surveyed at Rizomilos and Perdika were fallow. Most of the fields 
that were surveyed in Almyriotiki were burnt after the crop’s collection (photos credit: Meropi Man-
ataki). 

2.2. Large-Area Magnetometer Survey Data 
The extensive magnetometer surveys that were undertaken before the soil sampling 

explored the subsurface of several Neolithic sites and surrounding environs to reveal bur-
ied features. This type of geophysical survey measures disturbances of the Earth’s mag-
netic field caused by the presence of other discrete magnetic fields originating from buried 
features. Magnetic anomalies are generated through the measurement of both remanent 
magnetization (often thermoremanent) and induced magnetization that characterize the 
material properties of such buried features or deposits. Whilst thermoremanence magnet-
ization can result after intense burning, the more common induced magnetization 

Figure 1. General location of the three case studies in the Thessalian plain (top). The red pins mark
the location of (1) Rizomilos, (2) Almyriotiki and (3) Perdika II. The yellow pin marks the location of
the main city of Thessaly, Volos. Results of the large area magnetometer surveys (middle) carried out
before the test study reported here. The grayscale image shows positive magnetic anomalies in black
and negative anomalies in white. Views of the field during the magnetometer surveys at the three
sites (bottom). The fields surveyed at Rizomilos and Perdika were fallow. Most of the fields that were
surveyed in Almyriotiki were burnt after the crop’s collection (photos credit: Meropi Manataki).

2.2. Large-Area Magnetometer Survey Data

The extensive magnetometer surveys that were undertaken before the soil sampling
explored the subsurface of several Neolithic sites and surrounding environs to reveal
buried features. This type of geophysical survey measures disturbances of the Earth’s
magnetic field caused by the presence of other discrete magnetic fields originating from
buried features. Magnetic anomalies are generated through the measurement of both
remanent magnetization (often thermoremanent) and induced magnetization that charac-
terize the material properties of such buried features or deposits. Whilst thermoremanence
magnetization can result after intense burning, the more common induced magnetization
characterizing archaeological features and deposits derives from the fact that almost all soils
exhibit an enhancement of magnetic susceptibility in the topsoil [23]. Magnetometry can
provide a rapid mapping and a good definition of the shape and orientation of subsurface
archaeological features. However, it cannot quantitatively discriminate between remanent
or induced magnetic anomalies. It measures the strength of the magnetic field (the total
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field or just a component, depending on the type of instrument) in nanoTesta (nT) or nT/m
resulting from the total magnetization generated by the subsurface features and the local
geogenic magnetic background.

Ungridded data collection was carried out during three field campaigns in August
2013 and July/August 2014, using a Sensys Magneto MX-V3 modular large area mag-
netometer with eight fluxgate vertical gradiometers (FGM650) spaced 0.5 m apart and
navigated through real-time kinematic DGPS. Datasets were minimally processed by using
the Magneto software and included coordinates transformation, overlap correction and im-
age gridding. Further processing was carried out by other in-house software, following the
outline described by Sarris [24]. The results provided a wide range of magnetic anomalies
(Figure 1) that were further explored with the soil analyses reported in this paper.

2.3. Soil Sampling Using Explorative Lines and Augering

A total of 712 soil samples were collected at the three sites between the 14 and 22 Octo-
ber 2014 by a team of two people and using an AMS American Falls auger (Table 2). The
weather conditions during the sampling were dry and sunny. The samples were taken
along explorative lines, running from side to side across the targets (Figure 2). Taking
into account the stratigraphy information provided by previous geophysical results (i.e.,
GPR data) and preliminary site observations, the soil was initially collected along the
explorative lines at two depths to assess the variability of the results (0.20–0.25 m and
0.25–0.30 m in Rizomilos/Almyriotiki, and 0.10–0.15 m and 0.15–0.20 m in Perdika II).
These were quite similar, so the final sampling depth was established at 0.25–0.30 m in
Rizomilos/Almyriotiki, and 0.15–0.20 m in Perdika II. The spacing of the sampling points
along each line varied accordingly with the size of the targeted features. Some points along
the exploratory lines were sampled in-depth (hereafter ‘augers’) in order to investigate
specific features (e.g., ditch-enclosures and possible thermo-remanent structures). Control
samples were taken outside the known site area to assess the background readings at each
site. Each sampling point was surveyed by using a differential GPS.
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Table 2. General description of the soil samples collected and archaeological targets at the three sites.
The location of the sampled lines is in Figure 2.

Rizomilos Almyriotiki Perdika II

Lines 3 (122 soil samples) 6 (140 soil samples) 2 (95 soil samples)

Targeted
anomalies

Concentric ditch-like
positive magnetic
anomalies and similar linear
ditch-like anomaly

Strong positive magnetic anomalies
of possible burnt structures,
possible structures of negative
magnetic contrast, and ditch-like
magnetic anomalies

Different positive magnetic
anomalies of possible enclosures
and structures

Augers
8 (87 soil samples, to a
depth of 1 m). Features
augured were not bottomed

22 (117 soil samples)

49 (106 soil samples), some augers
reached the feature’s
bottom/solid
geology (most enclosure targets
were bottomed at 0.32–0.5 m)

Field use Mostly a fallowfield, with some
ploughed areas

Harvested field (wheat, cotton and
corn). Bailing works at the field
containing the nucleus of the site
limited the soil sampling

Fallow

Texture

Grayish brown, silty loam. Soil was
quite moist during sampling
but dried quickly
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After the removal of organic material (e.g., worms and roots), the soil samples were
sealed in air-free plastic bags, with labeling, and stored in a dark environment (cardboard
box). The samples were immediately air-dried at room temperature and stored until analy-
sis to reduce geochemical alteration of the samples. The air-dried soils were homogenized
and sub-sampled for different types of analyses.

2.4. Soil Analyses
2.4.1. Magnetic Susceptibility

Magnetic susceptibility (χ) is a physical property that describes how ‘magnetizable’ a
material is in response to an applied magnetic field. In soils, the magnetic properties are
dominated by the presence, form and abundance of iron oxides. Ferrimagnetic minerals in
soils can be inherited from the parent material and enhanced by burning events and other
biochemical processes (e.g., fermentation, redox and bacterial mechanisms developed in
soils) that are able to transform the magnetic form of such oxides into stronger ones [25].
The relationship between enhanced magnetic susceptibility and buried archaeological
deposits (e.g., ancient burning; and cut-and-backfilled ‘negative’ archaeological features,
such as ditched-enclosures) has been used in archaeology to define sites and characterize
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buried anthropogenic deposits [26]. The objective of this analysis was to identify enhance-
ments in soil magnetic susceptibility that could indicate the presence of the site/features
(exploratory lines) and characterize the backfill deposits of the targeted features (augers)
to provide more information about their makeup and use/function. Unlike the variations
in the intensity of the earth’s magnetic field measured during a magnetometer survey,
where the characteristics of buried remains are instinctively derived from remanent or
induced magnetization (as explained in Section 2.2), magnetic susceptibility focuses on the
induced part.

Routine measurements were carried out by using a Bartington Susceptibility MS3 m
attached to a MS2B dual frequency sensor and connected to a USB port of a laptop. The
samples were put into pre-weight 10 cm3 plastic cups provided by Bartington. The pots
were completely full to minimize movement of the grains inside the cup and avoid errors in
volume calculations. The samples were then weighed to calculate mass-specific magnetic
susceptibility (χ 10−6 m3 kg−1), which considers differences in sample density and makes
measurements more comparable. The samples were also measured at low (χlf) and at high
(χhf) frequencies (0.46 and 4.6 kHz, respectively) to calculate the frequency-dependent
susceptibility (χfd), which is expressed as a percentage of the low-frequency measurement
(χfd% = 100 ((χlf χhf)/χlf)). This is a standard semi-quantitative way to establish the
presence of ultrafine (<0.03 µm) superparamagnetic (SP) ferrimagnetic minerals. These
grains, developed by biochemical processes, can be present in samples as crystals and be
indicative of anthropogenic activity [27]. If ultrafine minerals are present in samples, the
measurement will produce slightly lower values at a high frequency than at a low frequency
due to a delay between the application of the magnetic field and the magnetization of the
sample. Samples without SP minerals will show identical values at the two frequencies. An
increase in χfd suggests an increase in SP grains, and a high χlf and high χfd are potentially
indicative of burnt soil or other developed deposits related to intense human activity [28–31].

2.4.2. Phosphate Analysis

Anomalous concentrations of certain elements can be derived from past human activity
(e.g., manuring and metalworking) and be fixed to the mineral surfaces of soil grains.
Phosphorus is one of these markers [32]. Phosphorus quickly bonds with soil calcium, iron
and aluminum ions to form relatively stable phosphate compounds. It exists in soil in both
organic and inorganic forms (e.g., as inorganic phosphate minerals or organic phosphate
esters). General sources of anthropogenic phosphorus include human waste, intentional
soil enrichment for agriculture, or burials. The objective of this analysis was to identify
enhancements in phosphate that could define the presence of the site/feature (exploratory
lines). This analysis was carried out only in one auger point (Almyriotiki, Line 2) to obtain
complementary information about the use/function of the targeted features.

The molybdovanadate method was used for the phosphate analysis in this study.
This is a method that looks at the ‘total’ phosphate content of a sample by extracting both
anthropogenic and geological phosphate derived from organic and inorganic phosphate
forms. The basic idea of this method is to reduce vanadomolybdophosphoric compounds
in an acidic environment. Phosphate reacts with molybdate in an acid medium and
produces a mixed phosphate/molybdate complex. In the presence of vanadium, yellow
molybdovanadophosphoric acid is formed. The intensity of the yellow color is proportional
to the phosphate concentration. A spectrophotometer measures the capacity of each sample
solution to absorb a specific wavelength of light. Initially, five grams of air-dried, less than
0.250 mm soil was burnt at 5500 ◦C and then dissolved in 21 mL of hydrochloric acid (1 M)
at 1200 ◦C for 20 min. The solution was filtered through Whatman No. 2 filter paper, and
the filtrate made up a volume of 250 mL by using deionized water. Samples were analyzed
by using a Milton Spectronic 20d spectrophotometer at 460 nm. The phosphate content
of each sample solution was calculated by using a standard curve, and the results were
expressed as parts per million (ppm). A standard curve for each trial was calculated. The
points of the curve were determined by spectrophotometer readings on samples of a known
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phosphate concentration. The parameters of the line equation were then used to plot the
archaeological samples on the standard curve.

2.4.3. Data Integration

The results of the magnetic-susceptibility and phosphate analyses were initially edited
in Excel, and some basic stats were calculated. Text files were imported in ArcMap, and maps
were created by using graduated symbols and Natural Breaks (Jerks) classification. These
results were analyzed overlying the different geophysical datasets in ArcMap environment.

To compare the results of the magnetometer results with those from the soil analyses,
the data collected was imported into Geosoft, using Oasis Montaj software. The overlapped
data were suppressed, and the format of the obtained files was corrected to be readable
with Geosoft software. The obtained maps consist of the interpolation of the magnetometer
data that were corrected by using the minimum curvature interpolation. We superposed
the soil sampling lines on the magnetic maps to extract the magnetic-gradient profiles (Gr)
located on the sampled lines. The visualization of the magnetic-gradient variation with
the soil analyses enabled us to understand if there is or is not a correlation between the
different physical and chemical parameters.

3. Results

Supplementary Tables S1–S3 (ST1_Rizomilos, ST2_Almyriotiki and ST3_Perdika II)
containing the χlf, χhf, χfd and phosphate data are available at https://doi.org/10.5281/
zenodo.7133280 (accessed on 1 November 2022).

3.1. Rizomilos
3.1.1. Lateral Results (Exploratory Lines 1, 2 and 3)

The samples collected over the same targeted positive magnetic anomalies enclosing
the center of the site (outermost, A; and innermost, B) along exploratory Lines 1 and 2
produce similar results. The most significant observation of the lateral distribution of
magnetic susceptibility of these lines was the unexpected decreased values at the center
of the site (Figure 3). The phosphate results showed general increased values towards the
center of the site in both lines, as well as an enhancement to the northeast of the innermost
ditch-like positive magnetic anomaly (B in Line 1, Figure 3). In Line 1, a distinctive
phosphate-concentration peak towards the end of Line 1 (center of the site) correlated with
the peak in the intensity of the magnetic gradient, as well as with a trough in χlf.

The samples with the highest magnetic-susceptibility values were those collected on
and immediately close to the targeted ditch-like positive magnetic anomalies. The lateral
variation of the magnetic-gradient intensity and magnetic susceptibility had a similar
pattern. Across these features, the phosphate concentrations were varied, and whilst some
areas such as B1 have strongly enhanced phosphate concentrations, others such as those
across B2 show little or no enhancement of phosphate compared to the off-site controls.
In general, the magnetic-susceptibility values showed a more consistent enhancement
associated with the anomalies identified in the magnetic-gradient data than those from
the phosphate analysis. The samples collected within the outermost ditch-like anomaly
resulted in depleted and enhanced values in (respectively, A1 and A2 in Figure 3) and in
reverse for the innermost one (B1 and B2 in Figure 3).

https://doi.org/10.5281/zenodo.7133280
https://doi.org/10.5281/zenodo.7133280
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Figure 3. Bubble plots (overlying the magnetometer survey results) showing the lateral low frequency
magnetic susceptibility (χlf, in blue) and phosphate (P, in orange) distribution along the exploratory
lines at Rizomilos, overlying the magnetometer survey results. The grayscale image shows positive
magnetic anomalies in black and negative anomalies in white. The grayscale image is shown at
70% opacity of Figures 1 and 2 to facilitate visualization of the bubble plots. The x–y graphs also
show the lateral variation of the χlf (blue line) and P (orange line), including the magnetic-gradient
intensity (Gr, purple line). In the graphs, the location of the two targeted ditch-like positive magnetic
anomalies is indicated in green (A = outer and B = inner). The location of the in-depth augered points
is indicated as reference for Figure 4, where the in-depth results are shown. The location of the lines
is shown in Figure 2.
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Figure 4. In-depth results of the low-frequency magnetic susceptibility (χlf) and frequency-dependent
susceptibility of the ‘auger’ samples and off-site controls at Rizomilos. The location of the auger
points in each exploratory line is shown in Figure 3.

Line 3 targeted a different area but a similar ditch-like positive magnetic anomaly.
Different from what was observed in Lines 1 and 2, the magnetic-susceptibility results
showed a general increase towards the center of the site (Figure 3). The results of the
phosphate analysis also showed a general increase towards the center of the site. Whilst
the distance from site center is the dominant trend in both the magnetic-susceptibility
and phosphate results, there is a relative enhancement in both across the anomaly in the
magnetometer data associated with Auger Points C1 and C2 (Line 3 in Figure 3). At this
point, the extracted magnetic gradiometry data show two peaks and a trough, which seems
to reflect the nature of magnetic anomaly signatures, at least at this part of the hemisphere,
with a negative and a positive part/s [33]. Although Line 3 is further from the site center
than Lines 1 and 2, the range of phosphate concentrations is not significantly different from
those found along the more centrally located lines. Meanwhile, magnetic-susceptibility
measures are higher on average, largely driven by the lower values closest to the center
of the site along Lines 1 and 2. The samples collected within the target resulted in very
variable phosphate values.

3.1.2. In-Depth Results (Auger Points)

If compared with the off-site samples, the magnetic-susceptibility results of the ‘auger’
samples targeting the two concentric positive magnetic anomalies (outermost (A) and inner-
most (B) in Lines 1 and 2, Figure 4) showed enhanced values. In Line 1 (Auger A1, Figure 4), a
peak value (~1.75 × 10−6 m3/kg) was measured at 0.63 m depth. Then similar high averaged
values followed at least up to 0.99 m. Enhanced values of ~1.77 × 10−6 m3/kg were observed
through the whole Auger A2 (Line 2, Figure 4) up to 1.05 m, without significant variation.
Auger B1 (Line 1, Figure 4) showed enhanced χlf values (1.70 × 10−6 m3/kg) up to 0.96 m
in depth, with an averaged peak of 1.79 × 10−6 m3/kg from 0.52 to 0.62 m in depth. Auger
B2 (Line 2, Figure 4) showed a relevant drop in values from 0.40 m in depth. Whilst the idea
was to target again the inner ditch-like anomaly in Line 2, it seems that the continuation of
the feature in this area is not as clear as in Line 1. The frequency-dependent susceptibility
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(χfd%) showed similar behavior in both lines, with moderate mean values (~7%) following,
in general, the trend of magnetic-susceptibility variation.

The samples taken inside the targeted ditch-like magnetic anomaly in Line 3 (Auger C1
was taken within the positive part of the magnetic anomaly) showed enhanced χlf values,
~1.53 × 10−6 m3/kg up to 0.47 m (Figure 4). Auger C2 (located in the area of the negative
magnetic halo of the targeted feature) also showed averaged values of 1.51 × 10−6 m3/kg
up to 0.52 m depth. The enhanced values obtained from the backfills of this specific feature
were ~15% lower than the ditch-like features targeted in Lines 1 and 2. χfd% values are in
the same range as in Lines 1 and 2, indicating a mean value of 6.8%.

3.1.3. Correlation of the Proxies at Rizomilos

Along Rizomilos’ Lines 1 and 2, the expected positive correlation between χlf and
phosphate concentrations was not observed (Figure 5A). However, both were positively
correlated along Line 3 (Figure 5B), with both enhanced on-site relative to the off-site
controls. The magnetic-susceptibility measurements of the soil samples collected across the
concentric ditch-like positive magnetic anomalies enclosing the nucleus of the site (Line
1 and 2 in Figure 3) showed an unexpected depletion towards the center of the site. This
reverse pattern to that seen at the other sites in this study could be a consequence of the
truncation of putative archaeological layers or structures by agricultural practices at the
nucleus (higher area) of the site. Given the presence of the farmstead close to the center of
the site (blank area in Figure 2), it is possible that modern levelling and other infrastructure
works related to the farm have heavily disturbed this area. An alternative interpretation of
this depletion in magnetic susceptibility may be also indicative of a non-built area at the
center of the nucleus of the settlement defining an open space or central courtyard. This is
a feature that has been seen in the few excavated sites in Thessaly [34] or other surveyed
sites though the course of the IGEAN project, such as Visviki and Almyros II [20,35].
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On the other hand, the phosphate results of all the line samples showed the expected
enhancement from the outside towards the center of the site. Considering the typical
makeup of Thessalian tell sites, a buildup of successive layers of occupational debris, in-
cluding organic matter; the phosphate enhancement; and lack of correlation with magnetic
susceptibility could be related to modern inputs of phosphate-rich organic matter from
the farm or to thicker enhanced archaeological deposits that have not been as truncated by
modern agricultural practices as the structural remains we should expect at this area.

The only clear increasing magnetic-susceptibility pattern towards the center of the site
was obtained from Line 3 (Figure 3). The results of the phosphate analysis followed the
same pattern. This line crossed the outermost curvilinear anomaly, instead of the concentric
ditches mentioned above. The line did not reach the actual center of the main site but
reached other positive magnetic anomalies that have been interpreted as possible structures
(C16 and C15 in Figure 6). The magnetic-susceptibility and phosphate enhancement
here could be related to another potential area of habitation to the south of the targeted
longitudinal ditch-like anomaly. Actually, the interpretation of the magnetometer results
suggested an earlier site (or satellite settlement) to the east (B5, B6 and C11 in Figure 6).
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Figure 6. Annotation of the anomalies of interest detected by the geophysical survey at Rizomilos
(modified from [19]). The inset at the top shows the related magnetometer results. The grayscale
range is the same as that plotted in Figures 1 and 2.

Whilst the ditch targeted with Line 3 was also characterized by enhanced magnetic
susceptibility, the values were lower than those obtained from the concentric ditches
(χlf mean = 1.28 × 10−6 m3/kg, ST1). The χfd results were also significantly lower
(mean = 6.90%). These lower values suggested a different type of ditch-like feature and fill
material in comparison with the concentric ditches.
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3.2. Almyriotiki
3.2.1. Lateral Results (Exploratory Lines 1, 2, 3, 4, 5 and 6)

In Line 1, the lateral results did not show the expected increase in magnetic susceptibility
from the outermost of the line towards the center of the site or over Area A or B (Figure 7). This
line was collected over the area of the known site and did not extend beyond the surrounding
ditch-like enclosure. The only distinctive enhanced χlf value (4.91 × 10−6 m3 kg−1) with
a moderate χfd of 8% was from a sample taken over a positive magnetic anomaly located
at the center of the site that correlates with the highest value of the magnetic gradient and a
phosphate-concentration peak. Lateral phosphate values were moderately enhanced in the
area containing the negative magnetic anomalies (Area B, Figure 7). Line 2 was even shorter
and targeted only Area A (possible burnt structures), but the lateral results clearly showed
a strong peak in magnetic susceptibility (5.1 × 10−6 m3 kg−1) with a high χfd of 10% from
samples taken at the location of the strong positive magnetic anomalies (Figure 7). This was
not the case in Line 1 (Figure 7).
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Figure 7. Bubble plots (overlying the magnetometer survey results) showing the lateral low-frequency
magnetic susceptibility (χlf, in blue) and phosphate (P, in orange) distribution along the exploratory
lines at Almyriotiki. The grayscale image shows positive magnetic anomalies in black and negative
anomalies in white. The grayscale image is shown at 70% opacity in Figures 1 and 2 to facilitate
visualization of the bubble plots. The x–y graphs also show the lateral variation of the χlf (blue line)
and P (orange line), including the magnetic-gradient intensity (Gr, purple line). In the graphs, the
location of the targeted features is indicated in green (the labels A and B indicate the two areas in
Lines 1 and 2). The location of the in-depth augered points is indicated as a reference for Figure 8,
where the in-depth results are shown. The location of the lines is shown in Figure 2.
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Figure 8. In-depth results of the low-frequency magnetic susceptibility (χlf) and frequency-dependent
susceptibility (and phosphate only for A3) of the ‘auger’ samples and off-site controls at Almyriotiki.
The location of the auger points in each exploratory line is shown in Figure 7.

Four lines sampled the net of ditch-like positive magnetic anomalies at different areas:
Line 3 at the south across double and parallel ditch-like anomalies; Lines 4 and 5 at the west
of the center of the site across a single ditch-like anomaly; and Line 6, the outermost, across
two ditch-like anomalies. The results from Line 3 showed a clear magnetic-susceptibility
and magnetic-gradient enhancement in the samples located at the center of the targeted
anomaly (Figure 7). On the other hand, depleted phosphate values were measured within
the targeted feature. Sampling the easternmost of Lines 4 and 5 was difficult. This area,
partially located at an olive tree groove, was quite stony, and only shallower samples were
collected. Therefore, two parallel lines were sampled here. Whilst the results from this area
should be considered with care, the signatures from both lines were coherent with each
other. Enhanced magnetic-susceptibility, magnetic-gradient and phosphate-concentration
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values were measured within the targeted feature in Lines 4 and 5 (Figure 7). Line 6 was
the longest line targeting a ditch-like anomaly and the farthest from the center of the site.
The lateral results showed a general increase in magnetic susceptibility and phosphate
variables, from the farthest sampling point to the closest one of the site center (Figure 7).
The results of the samples collected within the targeted (outermost) ditch-like feature
produced a slight magnetic-susceptibility and magnetic-gradient peak in Line 6 but not in
phosphate concentration.

3.2.2. In-Depth Results (Auger Points)

Auger A1 had averaged χlf values of 2.1 × 10−6 m3/kg up to ~0.33 m in depth,
followed by a general decrease of values (Figure 8). Auger A2, targeting the area with
strong magnetic responses, resulted in averaged lower χlf values (2.4 × 10−6 m3/kg up to
~0.33 m depth), followed by a general decrease (Figure 8). Auger A3 also targeted Area
A at a different location. This auger was the only one where the phosphate concentration
was also measured. The results revealed very high χlf values (7.6–8.2 × 10−6 m3/kg), χfd
(11–12%) and phosphate concentrations (4500–5746 ppm) from 0.32 m to 0.72 m in depth,
followed by a steady decrease up to 1 m in depth (Figure 8).

The samples taken within the positive magnetic response in Line 3 had a maximum
χlf value of 2.57 × 10−6 m3/kg (Auger C1) at 0.41–049 m and 2.62 × 10−6 m3/kg (Auger
C2) at 0.64 m in depth (Figure 8). The highest magnetic-susceptibility values were those
from C4 in Line 4. These results showed significantly enhanced χlf values, between 3.3 and
4.0 × 10−6 m3/kg, from 0.40 down to ~0.60 m, with a maximum value at 0.45–0.50 m
(Figure 8). Similarly, the samples augured in the ditch-like feature in Line 6 (Auger C5)
showed a clear χlf enhancement between 0.38 and 0.60 m, with a maximum value of
2.5 × 10−6 m3/kg at 0.38–0.47 m in depth (Figure 8). In this case, the values progressively
decrease with depth from the range of 0.60 to 0.66 m down to ~0.80 m in depth. The χfd
results also showed the highest values (8.68–8.82%) between 0.38 and 0.51 m in depth.

3.2.3. Correlation of the Proxies at Almyriotiki

In general, there was an increase in phosphate and, to a lesser extent, magnetic-
susceptibility measures within the proximity to the center of the site between the survey
lines (Figure 7).

Line 1 was the longest one sampled in the field containing the nucleus of the site
but did not cover the area beyond the enclosing ditch-like magnetic anomalies because
of the baling works being carried out at this field. Since the outside of the enclosed site
was not sampled, this may be the reason why there was not a significant lateral trend in
magnetic-susceptibility enhancement denoting the location of the site. Overall, phosphate
concentrations showed a greater enhancement across Line 1 than might have been expected
from the site-wide trends between magnetic susceptibility and phosphate concentrations.
The phosphate results showed particular enhancement from the easternmost area across
the zone with the B structural anomalies, suggesting a clear accumulation of organic matter
associated with this area of occupation. Whilst magnetic susceptibility was enhanced
relative to the off-site control along the length of Line 1, there was no further enhancement
of magnetic susceptibility or the gradient in Area B, which may support the interpretation
that the negative magnetic anomalies detected during the magnetometer survey may be
derived from the remains of subsurface stone foundations instead of the more organic daub
material that characterize the center of the site (Area A).

There was a clear lateral magnetic-susceptibility increase over the ditch-like feature
targeted with Line 3 (Figure 7). The magnetic-susceptibility enhancement at Augers C2
and C3 was less significant (Figure 8). There was no lateral phosphate enhancement
at Auger C3, and lateral values were depleted at Auger C1 and enhanced at Auger C2.
Indeed, phosphate concentrations associated with Augers C1, C2, C3 and C5 show only
moderate or no enhancement in phosphate compared to the off-site control sample (control,
429 ppm phosphate concentration; Auger C5, 219–898 ppm phosphate concentration; and
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Augers C1–C3, 1449–1950 ppm phosphate concentration), and this was largely in line
with being in proximity to the site center rather than a specific enhancement associated
with the magnetometry anomalies. The samples augured inside all the enclosures showed
enhanced χlf values, varying from 2.51 × 10−6 to 3.99 × 10−6 m3/kg, with matching high
χfd percentages (8.70 and 10%). The highest magnetic-susceptibility values were measured
inside Auger C2 (3.80 × 10−6 m3/kg, from 0.40 up to 0.61 m in depth, with a maximum
value of 3.99 × 10−6 m3/kg at 0.45–0.50 m), followed by Auger C1 (maximum χlf value of
2.57 × 10−6 m3/kg at 0.41–049 m) and Auger C3 (between 2.45 × 10−6 m3/kg at 0.38–0.60 m
and the maximum values of 2.51 × 10−6 m3/kg at 0.38–0.47 m). The uppermost deposits of
the enclosures seem to be at ∼0.40 m in depth, and none of them were bottomed at least up
to ∼1 m.

3.3. Perdika II
3.3.1. Lateral Results (Exploratory Lines 1 and 2)

Line 1 crossed the center of a magnetically noisy central area (A) surrounded by
several linear and curvilinear positive ditch-like magnetic anomalies (B) on its longest axis
and an outer area (C) with very strong magnetic signatures. If compared to what may
be the outermost area of the site (southeast area), the lateral magnetic-susceptibility and
phosphate results were highly variable, but there were generally higher values at the center
of the site (Figure 9). It was not possible to collect samples beyond the northeastern area
of the site (beyond the limits of the area surveyed with the magnetometer). There were
relatively enhanced values of all three variables at the locations of the curvilinear positive
ditch-like anomalies (B) and the magnetically noisy area (A).
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A3 and A4, the soil extracted at Point 4 (ST3) was very clayey and moistened between 0.18 
and 0.28 m in depth, and clay was bottomed at 0.44 m in depth with very low χlf (1.9 × 10−7 
m3/kg) but relatively high χfd (10.6%) values. 

A more coherent trend was seen in the augers from Area B. All presented enhanced 
magnetic susceptibility and reached stone at a shallower depth (0.40−0.50 m) than those 
in Area A (Figure 10). Auger B2 was the profile showing less enhancement with higher 
magnetic-susceptibility values (~1.26 × 10−6 m3/kg) at shallower depths (0.22–0.26 m). 

The auger located in the area containing the strong magnetic signature (Auger C1) 
showed general enhanced magnetic susceptibility from 0.24 m in depth until stone was 
reached at 0.56 m in depth (Figure 10). Whilst χfd values varied between 9 and 10% in 
most of the samples analyzed from other augers, the Auger C1 samples ranged from 11 to 
13%. 

Figure 9. Bubble plots (overlying the magnetometer survey results) showing the lateral low-frequency
magnetic susceptibility (χlf, in blue) and phosphate (P, in orange) distribution along the exploratory
lines at Perdika II. The grayscale image shows positive magnetic anomalies in black and negative
anomalies in white. The grayscale image is shown at 70% opacity in Figures 1 and 2 to facilitate
visualization of the bubble plots. The x–y graphs also show the lateral variation of the χlf (blue line)
and P (orange line), including the magnetic-gradient intensity (Gr, purple line). In the graphs, the
location of the targeted features is indicated in green (the labels A, B and C indicate the different
areas). The location of the in-depth augered points is indicated as reference for Figure 10, where the
in-depth results are shown. The location of the lines is shown in Figure 2.
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Figure 10. In-depth results of the low-frequency magnetic susceptibility (χlf) and frequency-
dependent susceptibility of the ‘auger’ samples and off-site controls at Perdika II. The location
of the auger points in each exploratory line is shown in Figure 9. The squares indicate the solid
materials reached with the augers.

The lateral results of Line 2 showed weak magnetic-susceptibility and phosphate-
concentration enhancement towards the easternmost sampling points (Figure 9). The
westernmost sample of Line 2 resulted in high χlf and χfd values despite being outside of
the outermost enclosure. This sample was taken in a degraded area of the site with very
thin soils and a lot of vegetation, some of them burnt, which may be the reason for the
relatively high values.

3.3.2. In-Depth Results (Auger Points)

In general, all augers showed enhanced magnetic-susceptibility values compared with
the off-site control samples (Figure 10). However, those targeting Area A (magnetically
noisy central area) did not show any clear pattern (e.g., a common enhancement at a partic-
ular depth). While in Auger A1 there was a general magnetic-susceptibility enhancement
with depth, with a huge peak at 0.60 m depth, the trend in Auger A2 was a general decrease
of magnetic susceptibility with depth. Other samples from augers extracted near Auger A2
also resulted in enhanced magnetic-susceptibility values with depth, whilst others were
decreasing. In the case of Auger A3, the bottomed soil (0.8 m depth) was chalky with light
beige/reddish mottling (usually associated with periodic wetting). Auger A4 bottomed flat
stone at 0.70 m in depth and Auger A1 at 0.6 m. Near the location of Augers A3 and A4,
the soil extracted at Point 4 (ST3) was very clayey and moistened between 0.18 and 0.28 m
in depth, and clay was bottomed at 0.44 m in depth with very low χlf (1.9 × 10−7 m3/kg)
but relatively high χfd (10.6%) values.

A more coherent trend was seen in the augers from Area B. All presented enhanced
magnetic susceptibility and reached stone at a shallower depth (0.40−0.50 m) than those
in Area A (Figure 10). Auger B2 was the profile showing less enhancement with higher
magnetic-susceptibility values (~1.26 × 10−6 m3/kg) at shallower depths (0.22–0.26 m).

The auger located in the area containing the strong magnetic signature (Auger C1)
showed general enhanced magnetic susceptibility from 0.24 m in depth until stone was
reached at 0.56 m in depth (Figure 10). Whilst χfd values varied between 9 and 10% in most
of the samples analyzed from other augers, the Auger C1 samples ranged from 11 to 13%.
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3.3.3. Correlation of the Proxies at Perdika II

High- and low-frequency magnetic susceptibility correlated positively with the phos-
phate concentration, but there was no significant correlation with frequency-dependent
magnetic susceptibility.

There was clear phosphate enhancement at the center of the area enclosed by the
innermost curvilinear ditch-like magnetic anomaly (Line 1) and easternmost of Line 2
(Figure 9). To a lesser degree, the magnetic-susceptibility analysis also shows a similar
enhancement. The magnetic-gradient results did not show a consistent correlation with the
magnetic susceptibility, only a discrete peak, which also coincides with a similar phosphate-
concentration peak.

The phosphate lateral variations observed in Perdika II suggest that the core of an-
thropogenic activity was carried out inside the innermost enclosure. Compared with the
phosphate results, the magnetic-susceptibility analysis did not show such a clear area of
enhancement. The very clear cluster of enhanced phosphate values may be related to the
accumulation of organic matter. Typical sources of anomalous phosphorus concentrations
in soil include domestic refuse but can also be derived as the product of animal dung and
husbandry activities [36–38]. These enhancements were correlated with the location of an
isolated cluster of structural remains revealed by the GPR survey (Figure 11).
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geophysical data (e.g., A1, A2 and A4 refer to the enclosures and A21–A22 notes the structures). The
inset at the top shows the related magnetometer results and grid location. The grayscale range is the
same as that plotted in Figures 1 and 2.
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The enclosures targeted with the auger generally reached fairly flat stone between
0.32 and 0.5 m in depth (Figure 10) and resulted in high χlf (e.g., 1.2 × 10−6 m3/kg in
Auger B2) and high χfd values (10% in Auger B2). Taking into consideration the magnetic-
susceptibility results and the potential presence of sandstone in the area, the enclosures
detected with the magnetometer survey may be the foundations of wall enclosures that
were built using the local stone resource. The soil collected at the location of the structures
detected with the GPR survey (Figure 11) resulted in slightly higher χlf and χfd values,
i.e., >10%. These results suggest that the structures detected may be foundations built by
using the same type of local rock, containing also higher quantities of mixed enhanced
anthropogenic deposits. The results of Augers A3 and A4, targeting a positive magnetic
anomaly, were more difficult to interpret. This feature was significantly deeper and char-
acterized by a sequence of clay–chalk–red-sand deposits. Whilst the main anthropogenic
activity seemed to focus within the innermost enclosure, the results of Auger C1 with
moderate–high χlf and high χfd suggested another hotspot of activity towards the area
immediately outside of the main enclosures.

4. Discussion
4.1. Could Soil Analyses Act as Alternatives for Locating Such Targets If Geophysical Surveys
Were Not Possible?

According to the results at these sites, the answer is yes.
In the case of Almyriotiki, the main problem in regard to assessing these variables as

proxies for the presence and extension of subsurface archaeology was the impossibility to
collect samples across the entire site given the agricultural work being developed during
the fieldwork. In the case of Perdika II, it was not possible to sample well beyond the
outermost area of the site given the terrain.

However, looking at the general values, significantly higher magnetic-susceptibility
and phosphate-concentration values were obtained from the in-site samples than those
collected off-site (Table 3). Magnetic-susceptibility values of the in-site samples were
increased by 53% in Rizomilos, 122% in Almyriotiki and 159% in Perdika II. The percentage
increase value, in terms of the phosphate concentration, was very high in Almyritoki and
Perdika (unfortunately control samples from Rizomilos were not measured). Whilst each
site has a different geological setting, the magnitude of the enhancements in both phosphate
and magnetic susceptibility on-site is much greater than the differences in concentration
between the off-site samples. This gives confidence that the enhancements identified along
the exploratory lines are anthropogenic, rather than geological, in origin. At Rizomilos,
enhancements of phosphate were the general signatures measured on the samples collected
over the location of most of the targeted features. This suggests that, in the case of extensive
soil prospections using magnetic-susceptibility and phosphate-content soil analysis, the
locations of these three sites would have been successfully detected as enhanced areas. The
differences of both quantities at the various sites needs to be taken into consideration, as the
soil parent material and the agricultural activities within and around the sites may influence
the enhancement of them in tandem to the specific characteristics of the sites (e.g., intensity
of past habitation, past land usage, etc.). In this sense, while the order of average off-
site/in-site values correlates in the case of the magnetic-susceptibility measurements (with
Almyriotiki with the highest mean values for in/off-site samples, followed by Rizomilos
and Perdika), this is not the case with the phosphate results (Table 3). The samples from
Almyriotiki resulted in very high averaged phosphate-concentration values. These values
contrast with those from Rizomilos, a similar type of (tell) site and settings (e.g., same soil
type and current land use). In this case, the large differences in phosphate enhancements,
rather than being determined by the geological input, may be more related to other aspects,
such as the intensity of past occupation at the different sites. This is further developed
in Section 4.2.3.
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Table 3. Mean (average) values and % increase of magnetic susceptibility (χ 10−6 m3kg−1) and
phosphate (P, ppm) at the three sites at the sampling depth of the exploratory lines.

Rizomilos
(0.25–0.30 m Depth)

Almyriotiki
(0.25–0.30 m Depth)

Perdika II
(0.15–0.20 m Depth)

χlf P χlf P χlf P

Mean
(Lines) 1.55 × 10−6 1804 2.30 × 10 −6 4230 1.28 × 10−6 1795

Mean
(Controls) 1.01 × 10−6 - 1.04 × 10−6 429 4.93 × 10−7 453

% Increase 53% - 122% 886% 159% 296%

The long exploratory lines used to detect the core of the site or mound in this investi-
gation did not provide progressive enhanced magnetic-susceptibility and phosphate values
from the outskirts of the mound to its top in the case of Rizomilos. Actually, the samples
taken on the top of this site had lower magnetic-susceptibility values. This reversed pattern
seems to be a consequence of the truncation of putative and shallow archaeological struc-
tures by modern construction/agricultural practices at the top of the site. An alternative
interpretation is that this absence of enhancement could reflect the lack of dwellings at the
nucleus of the center of the site, as it is observed in most of the settlements prospected by
the IGEAN project [19].

In the case of the phosphate analysis, there was a general progressive enhancement
towards the mounds. This implies that the clearest anthropogenic footprint detectable
at these three sites seems to be related to the thicker organic deposits related to site ac-
tivities, mound formation and related phosphate concentration and fixation in soils. The
same observation applies to Perdika II, even taking into consideration the different site
morphology/emplacement in comparison with Rizomilos and Almyriotiki. Whilst the
phosphate lateral variations showed a clear enhancement inside the innermost enclosure
and northeast area, the magnetic-susceptibility results did not show such a clear pattern.

4.2. Can We Say Anything Else beyond the Information about the Geometry and Spatial
Distribution of the Possible Buried Features Provided by the Magnetometer Data?

Yes.

4.2.1. About Enclosures

The soil sampled over and inside the ditch-like anomalies at the three sites was
generally characterized by enhanced magnetic-susceptibility mean values and matching
high χfd percentages (ST1-2-3). The phosphate results of the explorative lines at the
location of these targets produced more inconclusive responses. Unfortunately, none of
the augers targeting these anomalies were analyzed for phosphate concentration in this
study. Therefore, the assessment of the depth distribution of organic matter could not be
performed, and only the results provided by the exploratory lines (at depth 0.25–0.30 m for
Almyriotiki and Rizomilos and 0.15–0.20 m for Perdika II) are considered in this section.

Magnetic-susceptibility peaks of 3.99 × 10−6 m3/kg (at 0.45–0.50 m depth) and
1.82 × 10−6 m3/kg (at 0.33–0.36 m depth) of enhanced backfill were measured in Almyri-
otiki and Rizomilos, respectively (Auger A4 in ST 1 and Auger A2 in ST2). Other auger
peaks and relatively enhanced magnetic-susceptibility values, in comparison with the depth
profile of the control samples, suggest that the targeted enclosures were not bottomed at
the maximum depth reached by the auger (~1 m). The enhanced backfill sampled from
these targets support their interpretation as ditch-cut features surrounding the mound and
remaining deeper than 0.50 m.

Focusing on Almyriotiki, only a few soil samples collected from the interior of the
ditched-like enclosure closer to the nucleus of the site provide peak phosphate values (Lines
4 and 5 in Figure 7). The results from the more distant enclosures did not produce high
phosphate signatures. The enhanced phosphate values, at least at a depth of 0.25–0.30 m, in
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Lines 4 and 5 could reflect a higher concentration of organic material, suggesting a different
use or function of this enclosure in proximity to the nucleus of the site if we compare it to
the more distant enclosures. The mean χlf and χfd% values from the auger (C4) collected
here were the highest if compared to the rest (Table 4). Hypothesizing that the core of
the site may be related to the earliest period of occupation (considering a later expansion
due to population sprawl, as seen by the surrounding structures detected as negative
magnetic anomalies), we can suggest that inner and more elevated enclosures were used for
disposal of organic material, whereas the outermost ditches were used as counter-flooding
earthworks. Evidence of possible past flooding events have been found in Amiriotyki and
Rizomilos and have been modeled accordingly based on flooding simulation models [20].

Table 4. Mean values of the low-frequency magnetic susceptibility (10−6 m3 kg−1) and frequency
dependence (%) at Rizomilos and Almyriotiki.

Rizomilos Almyriotiki

Augers A1 A2 B1 C1 C2 Controls C1 C2 C3 C4 C5 Controls

Mean χlf 1.7 1.8 1.7 1.4 1.2 9.0 × 10−7 2.3 2.3 2.1 3.3 2.5 7.6 × 10−7

Mean χfd 7.5 8.1 7.3 6.9 6.7 6.63 8.67 8.91 8.49 9.14 7.95 6.63

In Rizomilos, the two targeted concentric ditch-like anomalies were also characterized
by enhanced magnetic susceptibility but showed lower mean values than in Almyriotiki.
The highest value (1.82 × 10−6 m3/kg) was measured in the outermost of the targets
at the north of the survey area (A2 in Figure 3). The mean χfd percentage from these
samples was also fairly high (8.07%), with the highest value (8.37%) at 0.58–0.74 m depth.
The magnetic-susceptibility enhancement correlated with high gradients in the magnetic
datasets (Figure 3). The phosphate results obtained from the explorative lines did not reveal
particular enhancements in the samples collected at the locations of the concentric ditches.
This could suggest that these ditches were not a focus of heavy accumulation of organic
matter, at least at the depth of sampling of the exploratory lines.

The values obtained inside the targeted feature in Line 3 in Rizomilos were ~15%
lower χlf and χfd ratios at a shallower depth than the concentric linear magnetic anomalies
targeted in Lines 1 and 2 suggesting a non-anthropogenic or geogenic feature (Table 4).
This longitudinal feature could represent the remains of a paleochannel or flooding marks
from past flooding events as those that have been repeatedly reported in historical periods
originating from the nearby Lake Karla.

In the case of Perdika II, during the augering of the targeted enclosures, stone was
bottomed relatively shallow (~0.32–0.5 m depth), already suggesting the different nature of
these features. Since the site is located on a hilltop, it could be argued that this may be the
depth of the natural bedrock. However, other augers did not reach stone beyond 0.75 m
depth at neighboring locations. Moreover, the augured points targeting the enclosures
bottomed flat and fine-grained stone instead of the angular stone outcropping at the NW
of the hilltop (conglomerate). Taking into consideration the magnetic-susceptibility results
and the presence of shallow sandstone in the area, the curvilinear anomalies detected with
the magnetometer survey may be caused by the presence of stone-based enclosures, which
were built using the local and easy to work sandstone.

4.2.2. About Structures and Materials

The very high χlf and χfd values obtained from Auger A3 samples in Almyriotiki
(Line 2 in Figure 8) suggest a thermoremanent component (i.e., intense burning). The first
peak was fairly shallow (0.32–0.42 m depth in Auger A3, ST2 with 8.18 × 10−6 m3/kg χlf
and 11 χfd%). This auger was the only one analyzed for phosphate concentration and also
gave a high peak value at the same depth (5746 ppm). Considering this high magnetic
susceptibility and phosphate-concentration values, the high magnetic gradients and the
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regular shape of the magnetic anomalies support the idea that the collected samples could
be correlated to burnt structural remains made of material containing a high component of
organic material (e.g., daub).

Despite the fact that high magnetic-susceptibility readings were recorded above similar
structures along Line 1, the extreme values were not observed above the burnt structural
remains. On the other hand, magnetic-gradient peaks were measured in this Area A in both
lines. This difference may be indicative of different daub types used for the construction
of the houses. Magnetic gradient is always high above the structures, as it measures
both remanent and induced magnetization, but the different signatures of the magnetic
susceptibility may indicate different constituents of the daub that allowed a higher or lower
induced magnetization.

4.2.3. About Intra-Site Activity

The phosphate enhancements were found in areas immediately inside the innermost
concentric ditched enclosures in Rizomilos and Perdika II. In Rizomilos, the highest phos-
phate values were obtained in the area surrounded by the innermost of the concentric
ditches that define the center of the site (Figure 2). In this area, a series of narrower (<2 m)
and also concentric anomalies of stronger magnetic intensity were also detected and inter-
preted as walled enclosures [20]. The phosphate enhancement in the space defined by these
(non-built central area) seems to indicate the core of the anthropogenic activity. In contrast,
the highest lateral phosphate concentration was found in the side of the Almyriotiki mound,
containing the possible stone structures (Area B in Figure 7). In Area A, the phosphate
concentration was more variable (Figure 7). However, taking into account the phosphate
results in Auger A3 (Figure 8), it seems very likely that this area would have resulted in
enhanced values if more samples had been collected at other areas.

Other results obtained within the non-built central areas in Rizomilos and Almyriotiki
may be indicative of other buried features. In Almyriotiki, the only distinctive enhanced
χlf value (4.91 × 10−6 m3/kg) with a medium χfd of 8% was from a sample taken in Line
1, over a positive magnetic anomaly (Figure 7). This matched with the highest value of the
magnetic gradient and a phosphate-concentration peak, suggesting the presence of a large
pit or other type of buried deposit of different character compared to the burnt structural
material of Area A (with samples exhibiting χfd of 10–12%). In Rizomilos, the samples
collected within the postulated non-built central area resulted in distinct high phosphate
values and high magnetic-gradient values, also indicating the presence of pits (Figure 3).
Considering the apparent lack of constructions within these spaces, the interpretation of
these as non-built communal areas (e.g., used for gathering or storage) seems reasonable.

The samples collected outside the site’s enclosed center in Rizomilos showed enhanced
phosphate and magnetic susceptibility, suggesting that the occupation extended further
off the core of the site. This is in agreement with the final interpretation of the geophysical
surveys, wherein several structural anomalies were identified in the area near Line 3, or
within the outer enclosures, or as earlier (or satellite) sites, as shown in Figure 6.

In the case of Perdika II, the phosphate concentration was a clear proxy of human
activity location and showed enhancements inside the innermost enclosure, especially in the
northeast and the easternmost area containing the structures detected with the GPR survey
(Figure 11). In this case, and taking into account the site typology (flat-extended instead
of tell-type) and scarce superficial artefacts, we propose that the source of anomalous
phosphate concentrations here may have been more influenced by other sources than waste
from habitation and perhaps more as a product of animal husbandry. Further multi-element
geochemical analysis could provide clues to clarify if Perdika II was a long-term habitation
site or a more temporary agropastoral site related with livestock herding practices.

In addition, at Perdika II, the auger located in the area containing the strong magnetic
signature (C1) showed general enhanced magnetic susceptibility from 0.24 m in depth until
stone was reached at 0.56 m in depth. Whilst the χfd percentages varied between 9 and
10% in most of the samples analyzed from other augers, the C1 samples ranged from 11
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to 13%. This suggests the presence of other enhanced anthropogenic soil outside of the
concentric enclosures; hence, there is a possibility of other areas of occupation beyond the
enclosed central area of the site.

Comparing the total phosphate concentrations at each site, the highest average load
was noticed in Almyriotiki (4230 ppm), followed by Rizomilos (1804 ppm) and Perdika II
(1795 ppm) (Table 3). This may be indicative of the intensity of population and length of
occupation at the sites. Even when considering the limitations posed by the few control
samples analyzed and current field use at the time of sampling, this observation seems to
agree with other evidence. For example, in Almyriotiki, the results of the magnetometer
surveys mapped numerous structures spreading outside from the nucleus of the site, which
suggests a long-term occupation of the same site and population growth. At Rizomilos, the
magnetometer results revealed an earlier site to the east of the main site, which may fit with
comparably less intensive occupation (of the later site). In the case of Perdika II, the lower
concentration of phosphate also seems to fit the shorter or more temporary occupation
expected at this type of site, as well as the relatively lower abundance of surface artefacts.

4.3. Future Actions

As for further work, continuing with the same ‘minimally invasive’ perspective, the
determination of Königsberger (Q) ratios (ratio between remanent and induced magne-
tization) of the deposits sampled in Area A at Almyriotiki could help to determine the
importance of the remanent magnetization, i.e., to know the intensity of burning. A more
detailed characterization of the magnetic properties of the daub, as well as a multi-element
analysis, could help to clarify potential differences in the makeup of such material that
appears to be behind the different signatures in magnetic susceptibility. Multi-element or
other mineralogical analyses could provide other insights relating to the function of the
enclosures in Almyriotiki and Rizomilos. These types of analyses could also provide more
evidence to determine the nature of the activities carried out at these sites (e.g., permanent
occupation in Almyriotyki and Rizomilos vs. temporary livestock habitation at Perdika II).

5. Conclusions

The results of this comparative study demonstrate that shallow-buried and long-term-
occupied Neolithic sites of different morphologies in Thessaly (tell and extended sites)
can be located, generally as enhanced areas, using routinely and relatively ‘low-cost’ soil
magnetic-susceptibility and phosphate analyses. The latter can be considered less cost-
efficient given the number of reagents and laboratory processing time required to analyze
the samples. In combination with large-area-coverage magnetometer surveys and targeted
soil sampling using an auger, such analyses can provide complementary information about
subsurface features of interest without the need of opening large excavation trenches, thus
contributing to the minimally invasiveness character of this methodology.

A phosphate-concentration analysis through exploratory lines (lateral results) can be
especially useful as a basic prospection tool to detect tell-type sites given their characteristic
formation process (sequential accumulation of anthropogenic deposits or debris with an
inherent component of organic matter, resulting in a higher phosphate concentration).
The phosphate results can support magnetometer results to identify activity areas within
a site that may have happened not only in the nucleus or center of the enclosed site
(e.g., Almyriotiki case) but also beyond it, as illustrated in Rizomilos and Perdika II. A
comparison of phosphate loads, also in combination with geophysical survey results, can
provide hints of the relative intensity of the occupation of the sites.

The soil magnetic-susceptibility analysis also demonstrated potential in this study to
detect such sites. However, these may produce unexpected lateral patterns (depletions
instead of enhancements at the nucleus of the sites) due to disturbances from modern
agricultural activities or lack of habitational structures at the core of the site, as in the case
of Rizomilos. High magnetic-susceptibility values and high χfd percentages (together with
high phosphate concentration) observed in-depth (auger points) suggest the presence of



Geosciences 2023, 13, 3 23 of 26

burnt structural remains with a high component of organic material (e.g., daub). Medium
magnetic-susceptibility in-depth values and associated high χfd percentages obtained from
the backfill deposits of the enclosures surrounding the core of the sites at Almyriotiky
and Rizomilos support the interpretation of the magnetometer results of these features as
ditch-cut and deeper than 0.50 m; meanwhile, the results of Perdika II revealed a different
character of the enclosures at this site (walled, instead of ditched). The comparison of the
magnetic-susceptibility (in-depth) results allowed us to distinguish a geogenic concentric
feature (a paleochannel or flooding marks) from the archaeological enclosures.
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