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Abstract: The heterogeneity of the fractured-basalt and interbedded-sediment aquifer along the
eastern margin of the Columbia Plateau Regional Aquifer System has presented challenges to resource
managers in quantifying recharge and estimating sustainable withdrawals. Previous studies indicated
recharge pathways in alluvial sediments atop a mountain–front interface upgradient of the basalt
flows. In this sedimentary zone, six seismic stations were deployed for one year to detect velocity
changes in low-frequency seismic waves that could be correlated to changes in groundwater recorded
by a well transducer near the center of the seismic station network. Waveforms in the 1−5 Hz range
were recorded at each station to determine changes in wave velocities between station pairs and
correlate these velocity changes to changes in groundwater levels. The velocity–groundwater relation
allowed for estimation of daily groundwater levels beneath the seismic station network. Existing
hydrogeologic information was used to estimate hydraulic gradients and hydraulic conductivities,
which allowed for the calculation of the daily volume of recharge passing beneath the seismic stations
and into the confined aquifer system. The daily recharge volumes across the seismic station network
were summed for comparison of the total annual recharge calculated from the change in seismic
wave velocities (154,660 m3) to a flow model calculation of recharge based on areal precipitation and
infiltration (26,250 m3). The 6× greater recharge estimated from the seismic wave velocity changes for
this portion of the recharge zone is attributed to preferential pathways of high hydraulic conductivity
and greater depth associated with paleochannels beneath the seismic station network.

Keywords: groundwater recharge; ambient seismic field; passive monitoring

1. Introduction

Groundwater is an important resource for municipal, agricultural, and industrial uses
across Idaho, the United States, and the globe [1–4]. Since 1935, water levels have declined
in the multi-aquifer system in the South Fork Palouse River Basin (Figure 1) located in the
Palouse geographic region and eastern margin of the Columbia Plateau Regional Aquifer
System [5–7]. The South Fork Palouse River Basin aquifer system is contained in the
fractured basalts of the Columbia River Basalt Group (CRBG) and interbedded sediments
of the Latah Formation (Figure 2) that compose the eastern portion of the basin, designated
as the Moscow–Pullman Basin (MPB) [8–10]. Groundwater in the local basin provides a
primary source for drinking water and irrigation [11] and is the sole source of municipal
water in the MPB [12]. Extrapolation of current trends in declining groundwater levels
indicates the possibility of insufficient groundwater resources to meet future community
needs [13]. Quantification of recharge to the MPB aquifer system is necessary to evaluate
sustainable withdrawals or potential water storage/recovery systems. This study was
conducted to evaluate groundwater changes and quantify the annual recharge along a
portion of a theorized recharge zone by passively monitoring the ambient seismic field and
correlating changes in seismic wave velocities to changes in groundwater levels.
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Figure 1. Location of the South Fork Palouse River Basin in the Palouse River Basin within the Co-
lumbia Plateau Regional Aquifer System (CPRAS) (modified from Behrens et al. [14]). 

 
Figure 2. Southwest-to-northeast cross section (A–A’, Figure 1) of the eastern South Fork Palouse 
River Basin near Moscow, Idaho, USA (modified from Bush et al. [9]). 

Past modeling efforts to predict future declines in groundwater levels of the MPB 
have produced mixed results due to a limited understanding of recharge processes [15–
19]. The variable permeability and discontinuity of basalt flows and interbedded sedi-
ments create heterogeneous and anisotropic aquifer matrices in the basin [10,20,21]. Re-
source management entities across the northwestern United States continue to struggle to 
model and predict recharge in such terrains [22]. An interstate, multi-agency committee 
of water providers in the MPB, Palouse Basin Aquifer Committee (PBAC), implemented 
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Figure 2. Southwest-to-northeast cross section (A–A’, Figure 1) of the eastern South Fork Palouse
River Basin near Moscow, Idaho, USA (modified from Bush et al. [9]).

Past modeling efforts to predict future declines in groundwater levels of the MPB
have produced mixed results due to a limited understanding of recharge processes [15–19].
The variable permeability and discontinuity of basalt flows and interbedded sediments
create heterogeneous and anisotropic aquifer matrices in the basin [10,20,21]. Resource
management entities across the northwestern United States continue to struggle to model
and predict recharge in such terrains [22]. An interstate, multi-agency committee of water
providers in the MPB, Palouse Basin Aquifer Committee (PBAC), implemented a study
to develop a new groundwater flow model to assist in understanding the continued
decline in groundwater levels. As part of the modeling effort, recharge to the aquifer
system was estimated by assigning a higher areal precipitation and infiltration rate to
the foothill/mountainous region across the eastern portion of the basin (aligns with the
recharge zone in Figure 1) and a lower rate for the lowlands of the basin [20]. This current
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study was conducted to compare the annual recharge of the PBAC groundwater model in
a portion of the recharge zone to the annual recharge calculated from groundwater levels
derived from changes in the velocity of low frequency seismic waves recorded in the same
portion of the recharge zone.

1.1. Recharge Zone

Previous studies have indicated that groundwater recharge (e.g., snowmelt) is entering
the aquifer system through sediments of the Latah Formation [14,23–25] at the mountain–
front interface along the eastern margin of the MPB [15,25–28]. These sediments overly
the granitic basement rock at the mountain front of the Palouse Range (Figure 3). The
sediments of the Latah Formation can range from permeable alluvial/colluvial deposits to
clayey wetland deposits emplaced during damming of streams with the intrusion of CRBG
flows [10]. Additionally, coarse paleochannel sediments are interspersed throughout the
Latah Formation because of the continued rerouting of the paleostream network with the
intrusion of at least 25 basalt flows [9,10]. The uppermost sediments of the Latah Formation
can be clay rich but also contain coarser material that corresponds to the current stream
network [9,10].
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Figure 3. Theorized mountain–front interface of the Palouse Range and sedimentary units of the
Latah Formation that contain paleochannel deposits from prior iterations of the stream network
draining the Palouse Range (updated from Bush et al. [29]).

Downgradient of the theorized recharge zone, Duckett et al. [25] were able to dis-
criminate two primary groundwater sources that originated from snowmelt moving either
quickly into the subsurface (“fast pathway”) or snowmelt and/or rainfall that stayed in the
surface-water network and entered the subsurface further downgradient (“slow pathway”).
Behrens et al. [14] were able to refine the fast and slow pathway concept through an isotopic
analysis of snowpack, snowmelt, runoff, creek, and groundwater samples collected from
the mountain top to the recharge zone. The fastest recharge pathways appear to be located
within the central portion of the recharge zone and slower pathways are located along the
western and eastern peripheries [14]. These pathway types have some overlap with the
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existing stream network but are not fully aligned, and the higher conductivity flowpaths in
the recharge zone likely are associated with paleochannels [14].

1.2. Passive Seismic Monitoring for Estimating Groundwater Levels

Passive seismic monitoring can be used to interpret near-surface conditions [30–34],
such as changes in groundwater levels in unconfined and non-compartmentalized alluvial
aquifers [35–37]. The scattering of seismic waves in the Earth’s crust allows for an averaged
and volumetric view of changes in groundwater where the velocity of scattered seismic
waves is sensitive to changes in pore pressure (e.g., grain-to-grain contact) [37–39]. Seis-
mometers can be deployed to passively record low frequency waves of the ambient seismic
field generated by natural or anthropogenic earth movements [40,41]. These low-frequency
waves are influenced by the elastic properties of near surface materials and properties, such
as changes in saturated thickness/pore pressure [37,38,40,42–46]. The velocity of scattered
seismic waves in an aquifer will respond to changes in pore pressure caused by increased
water levels and decreased grain contacts [36,38]. The recharge zone at the mountain front
in the MPB is composed of unconsolidated sediments of the Latah Formation outside of
the furthest extent of the basalts, which allowed for deployment of a temporary network
of seismic stations to enhance the limited groundwater monitoring in this area (one well
transducer).

2. Materials and Methods

To quantify the annual recharge along a portion of the mountain–front recharge zone,
six seismic stations were installed as a transect perpendicular to groundwater flow. This
temporary seismic network was used to collect seismic spectra from October 2020 through
September 2021 to correlate changes in seismic wave velocities to changes in groundwater
levels. Available geologic data (e.g., well logs and local geologic reports) were used to inter-
pret hydraulic gradients and hydraulic conductivities. The combination of groundwater
levels/saturated thicknesses, hydraulic gradients, and hydraulic conductivities, allowed
for estimating the volume of water passing beneath the seismic network and entering the
MPB confined aquifer system during the study period.

2.1. Seismometer and Station Construction

The Raspberry Shake® 1D was used for construction of the seismic stations. The Rasp-
berry Shake® 1D contains a 4.5-Hz vertical geophone and internal memory for datalogging
of up to 80 days. The geophone has the potential to resolve the low frequency range (0.1–5
Hz) that constitute the portion of the ambient seismic field that has previously been used
to detect changes in seismic velocity because of changes in pore pressure/groundwater
levels [31,37,45,47]. The seismometers were fitted with GPS units for an accurate record
of time because of the need for cross-correlation analysis between stations for identifying
changes in wave velocities [37,41,48,49]. The seismometer vaults (Figure 4) consisted of
a weather-proof sealable container (action packer) for containing the seismometer in a
weatherproof case and a deep cycle marine battery for power. The weatherproof case
containing the seismometer was bolted to a granitic rock plinth and placed on a sand
bed inside the action packer to ensure connection of the seismometer to the surrounding
earth. The battery was connected to a solar panel (Figure 4) to reduce the need for battery
replacement during the deployment period. Each seismic station was placed 1 m below
land surface to connect with the surrounding earth and allow access to the seismometer.
A data retrieval cable was paired with the power cable connecting the solar panel to the
seismic station.
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view of the container with the marine battery and weatherproof case containing the seismometer.

2.2. Seismic Station Locations

Seismic station locations (Table 1) were based on proximity to the mountain front and
outside the extent of the Wanapum basalt (Figure 3). Local drilling logs indicated that the
selected sites likely had relatively shallow groundwater (<100 m) and relatively shallow
basement rock (<500 m). One site was pre-selected because of an existing well containing an
hourly recording Aqua4Plus 1.9.10 transducer (Figure 5) to which the seismic spectra were
correlated for estimating groundwater across the seismic station network. The transducer
well is 77 m deep and set in a mixed alluvium consisting of alternating clay- or gravel-rich
layers that are part of the sediments of Bovill [9,24]. For quality control purposes, each
seismic station was visited monthly for data downloading to ensure data preservation and
identification of possible recording/power issues. If abnormal data output or power levels
were detected, the vault was opened, and the instrumentation checked on-site.

Table 1. Seismic station location description.

Station ID Latitude 1 Longitude 1 Elevation (m) 2

1 46.78935 −117.010 848
2 46.78417 −116.987 853
3 46.77367 −116.975 824
4 46.77975 −116.972 848
5 46.77078 −116.951 846
6 46.76875 −116.936 863

1 North American Datum of 1983 (NAD 83); 2 North American Vertical Datum of 1988 (NAVD 88).

2.3. Seismic Station Network and Quantifying Recharge

The seismic stations constituted a network of points overlying the non-compartmentalized
sedimentary units composing the recharge zone, which connects the primary source water
(e.g., infiltrated snowmelt at the mountain front) to the confined portion of the aquifer
system. To correlate changes in seismic wave velocities and groundwater levels, the
seismic station network was divided into station pairs and associated segments (Table 2
and Figure 5). Stations were paired by closest neighbor (west to east) for cross-correlation
analysis of the waveforms recorded at each station. If a station could be paired to multiple
stations (correlatable waveform distributions), each available pair was included in the
analysis and recharge volumes from overlapping station pairs were averaged across the
intersected area. From the station pairs and given sufficient ambient waveforms, a change
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in velocity relative to velocity (dv/v) can be used to determine groundwater levels [37].
Such a correlation is possible because the velocity of ambient waves is sensitive to changes
in pore pressure with increasing or decreasing groundwater levels [38]. The velocity
comparison (dv/v) is a relativistic determination of waveform velocity differences recorded
across the paired stations and represents a perturbation in the waveform velocity due to a
change in groundwater levels that influence grain-to-grain contact from changes in pore
pressure [37].

Table 2. Station pairs and associated network segments.

Station pairs 1–2 2–3 2–4 3–5 4–5 5–6
Recharge segments A B 1 C 1 D 1 E 1 F

1 Overlapping station pairs were averaged for recharge calculations.
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2.4. Identifying Applicable Waveforms in the Ambient Seismic Field

The waveforms from each seismic station were evaluated in ObsPy [50] with prob-
abilistic power spectral density (PPSD) plots [51], which provided a view of smoothed
and binned power spectral densities. These plots assisted in determining if low frequency
waves were consistently detected by each seismometer. The 1–5 Hz range proved to be
the most consistent waveform range at each station, which is within the applicable range
for detecting changes in saturated thickness/pore pressure [37]. Small periods (hours to a
few days) of data loss occurred at most seismic stations because of data corruption, but
these short periods were linearly interpolated using the preceding and following changes
in velocity. The percent of missing data ranged from 0% (segment F) to 11.8% (segment A)
with an average data loss of 4.4%.

The cross-correlation function of MsNoise [52] was used to identify similar waveforms
recorded between stations to create a proxy of Green’s function. A whitening filter from
1–5 Hz was applied to correct for frequency attenuation of the recorded waves in this target
range [53,54]. The cross-correlation functions between each station pair were computed at
1 h intervals with a 30 min overlap [37]. A 14-day stack of cross-correlation functions was
used to maximize temporal resolution while minimizing spurious oscillations. A moving
window cross spectral (MWCS) technique [37,55] was used to evaluate the delay in arrival
times (change in time relative to time or dt/t) for waveforms in the 1–5 Hz target range. It is
assumed that there is a linear relation between relative time lags and seismic wave velocity
changes (change in velocity relative to velocity or dv/v), or −dt/t = dv/v [37,41,54,56].
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2.5. Velocity Changes to Groundwater Levels

The groundwater level (GWL) between each station pair was derived through cor-
relation of station pair dv/v and groundwater levels recorded by the well transducer
near the center of the network. A single transducer recording groundwater levels can be
reflective of changes in saturated thickness across a seismic station network overlying a
non-compartmentalized alluvial aquifer (no barriers to recharge and GWL changes across
the sedimentary units composing the aquifer) [37]. Estimates of GWL were calculated
for each day at each station pair to produce daily groundwater values across the seismic
station network for estimating the annual recharge volume. To correlate dv/v to ground-
water, the relative changes had to be correlated within distinct seasonal periods. The
dv/v-groundwater relations were assumed linear during the seasonal periods (rising or
falling on a seasonal basis) and reflective of the elastic properties of the aquifer [37,40,57].
The study time frame was divided into four periods that correlate with periods of sea-
sonal precipitation and infiltration or the lack of precipitation and infiltration: the end of
the dry season and return of rainfall (October or period 1), winter snowfall/snowmelt
(November through May or period 2), spring/summer snowmelt (June or period 3), and
the dry summer season (July through September or period 4). These divisions align with
basin precipitation patterns and subsequent streamflow and mountain–front groundwater
response as monitored by the Natural Resources Conservation Service [58] and identified
by past research in the basin [1,14,20,59]. The linear relation of groundwater changes
(∆GWL) and dv/v changes (∆dv/v) were calculated from the period difference (maximum
value − minimum value) of each seasonal period to determine the applicable correlation
constant (Cperiod):

GWLmax − GWLmin

dv/vmax − dv/vmin
=

∆GWL
∆dv/v

= Cperiod (1)

The daily dv/v change (∆dv/vday) was calculated by the difference between the initial
dv/v of the period and a specific day dv/v:

dv/vinitial − dv/vday = ∆dv/vday (2)

The daily change in groundwater level (∆GWLday) was derived from the Cperiod and the
∆dv/vday):

∆dv/vday × Cperiod = ∆GWLday (3)

The ∆GWLday was added to the initial period groundwater level (GWLinitial) measured by
the transducer to obtain the daily groundwater level (GWLday) for each station pair:

∆GWLday + GWLinitial = GWLday (4)

2.6. Interpretations of Hydraulic Conductivity, Gradient, and Recharge

By discriminating sedimentary layer composition beneath seismic stations from local
well logs and geologic reports [9,10,60,61], a composite hydraulic conductivity (K, m/d) was
assigned for each station pair according to accepted K values for such alluvium types [62,63].
Given the unconfined alluvial aquifer of the recharge zone, hydraulic gradients (∆h/L)
were assumed to correspond to basement rock gradients beneath each station pair. The
∆h/L of groundwater passing beneath each station pair were estimated from well logs
above and below each station pair (depth to bedrock and linear interpretation of depth
perpendicular to the station pair) and checked against the bedrock gradient derived by
Bush et al. [10]. The ∆h/L values ranged from 0.03 to 0.08 and correspond to the land
surface gradient with the transition from the steeper mountain slope of the Palouse Range
to the basin floor [10]. With calculation of daily groundwater levels from dv/v and depth
to basement rock from the well logs, the daily saturated thickness could be calculated for
each network segment (depth × segment length = area (A) in m2). Given K, ∆h/L, and
A, the daily volume of recharge (Q, m3/d) passing beneath each network segment was
calculated using Darcy’s law (Q = A × K × ∆h/L).
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3. Results
3.1. Velocity Changes and Relation to Groundwater

Changes in seismic velocity varied between station pairs (Figure 6) and ranged from a
dv/v high of +0.45% (period 4) to a dv/v low of −0.3% (period 2). The velocity changes
inversely reflected the seasonal changes (rising or falling during the seasonal period) in
groundwater elevation that ranged between 791 m and 795 m (Figure 6). The recorded
changes in groundwater levels were representative of historical annual changes recorded
at the transducer well location near the center of the transducer network. The dv/v
values were lowest during periods of higher groundwater elevation (period 2 or the
winter/spring snowmelt season) and highest during the dry periods (periods 1 and 4)
that produced lower groundwater elevations (Figure 6). This inverse relation of dv/v
and groundwater elevation corresponds to the expected changes in low-frequency wave
velocities with changes in saturated thickness [37,40,45]. The seasonal flux of groundwater
at the transducer represents the expected seasonal flux of recharge to the aquifer that is
primarily driven by fall rainfall and winter/spring snowmelt [1,14,59].
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Figure 6. Changes in seismic velocity (dv/v) at each network segment (Figure 5) and groundwater
elevation recorded by the well transducer. Temporal periods (1–4) are seasonal divisions used to
develop correlations between dv/v and groundwater changes for each seasonal period.

3.2. Converting Seismic Velocity to Groundwater

The distinct seasonal periods in groundwater levels recorded by the transducer pro-
vided the necessary temporal periods for correlating dv/v and groundwater as separate
seasonal relations (Table 3). The assumption of seasonal dv/v-groundwater relations paral-
lels the seasonal flux of recharge that corresponds to surface hydrological processes of the
basin [1,14,28,59]. The change in Cperiod (range of 4.6 to 37.3) reflects the high variability
of groundwater levels/recharge during the 1-year study period (Table 3). Although the
seasonal discrimination of the dv/v-groundwater relation provided a more refined correla-
tion compared to an annual relation, groundwater elevations derived from dv/v tended
to underestimate groundwater elevation during periods of increasing groundwater and
overestimate groundwater elevation during periods of decreasing groundwater (Figure 7).
These underestimation/overestimation periods represent a lag in the dv/v-groundwater
relation following substantial changes in aquifer recharge (Figure 7). It is assumed that the
lag period is an adjustment of overall grain-to-grain contact to the pore pressure changes
reflective of the change in groundwater level.
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Table 3. Seasonal periods and associated changes in groundwater (∆GWL) and seismic wave velocity
(∆dv/v) for correlating (Cperiod) the data sets and estimating groundwater levels.

Period Date Range
(2020–2021) ∆GWL (m) ∆dv/v (%) Cperiod

1 October +2.19 −0.07 31.2
2 November–May +0.93 −0.20 4.6
3 June −1.89 +0.05 37.3
4 July–September −0.62 +0.12 5.3
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3.3. Recharge Volumes by Network Segment

Interpretation of the well logs and geologic reports for evaluation of hydraulic conduc-
tivity (K) by network segment produced a range of segment composite K values from a low
of 0.024 m/d (more clayey sediments of Bovill that are part of the Latah Formation [8]) to a
high of 0.052 m/d (more paleochannel sand) (Table 4). These interpreted K values were
calculated by the proportion of different sediment types estimated beneath each station or
the mixture of lower conductivity alluvium (clayey) with paleochannel deposits (sand) and
the presence of eroded basement rock (granular) [24]. The segment K values were smaller
towards the west and largest on the east end of the seismic network. Hydraulic (bedrock)
gradients also varied from low to high moving west to east with a corresponding increase in
saturated thickness (Table 4). With the available groundwater levels (saturated thicknesses)
across the seismic network and associated hydraulic conductivities and hydraulic gradients
at each station pair, daily recharge volumes (example in Table 4) were calculated for each
network segment and the overall seismic network (Figure 8). The average recharge volume
was 422 m3/d with the largest recharge during period 2 (435 m3/d) and smallest during pe-
riod 1 (404 m3/d) (Figure 8). Recharge was largest after a 10-day snowmelt period in early
spring when approximately 15% of the mountain-snowpack water equivalent was lost [59].
Recharge volumes were smallest in period 1 following the summer dry season when <4 cm
precipitation occurred in the preceding 3 months [59]. The total annual recharge for the
recharge zone beneath the seismic network was estimated at 154,660 m3.
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Table 4. Example of recharge calculations at each network segment and total recharge across the
network for 1 October 2020. Overlapping segments were averaged for an adjusted recharge value.

Network
Segment

Hydraulic
Conductivity

(m/d)

Saturated
Thickness (m)

Station
Distance (m)

Hydraulic
Gradient

Potential
Recharge

(m3/d)

Adjusted
Recharge 1

(m3/d)

A 0.024 8.0 1812 0.030 10.3 10.3
B 1 0.033 17.8 1253 0.031 22.4

43.0C 1 0.033 23.5 1500 0.055 63.5
D 1 0.042 32.9 1883 0.080 210.6

189.8E 1 0.042 47.6 1927 0.044 169.0
F 0.052 44.9 1130 0.063 164.6 164.6

Network sum (m3/d): 407.7
1 Average recharge for overlapping network segments (Figure 5).
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Figure 8. Daily recharge passing beneath the segments of the seismic network (Figure 5) and their
summation from dv/v-derived groundwater elevations. Temporal periods (1–4) were seasonal
divisions used to develop correlations between dv/v and groundwater changes.

4. Discussion

Recharge volumes were spatially variable across the seismic network with the largest
volumes occurring in the central to eastern portion of the network because of greater
saturated thicknesses (deeper bedrock), higher hydraulic conductivities (coarser grains
from the presence of paleochannels), and steeper hydraulic gradients. This portion of
the network (segments D/E and F) constituted 86% of the annual recharge volume while
comprising about 50% of the network. The coarser grains, larger hydraulic conductivi-
ties, and steeper gradients of the eastern portion of the seismic network suggest faster
recharge pathways, which aligns with the theorized fast recharge pathway identified for
this area by Behrens et al. [14]. This faster pathway was assumed to be dominated by a
greater concentration of paleochannels, which aligns with the review of sedimentary layer
composition beneath this portion of the seismic network. The deeper bedrock of this area
suggests greater erosion of the mountain front and correlates with the greater concentration
of paleochannels and steeper gradients.
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To compare the dv/v-derived recharge volume and the recharge volume derived by the
PBAC groundwater model, the model aerial infiltration rate used for the foothills/mountainous
region (105 mm/yr) was applied to the area from the seismic network to the upgradient
watershed boundary for an annual estimate of 26,250 m3/yr. The larger estimate of recharge
derived from the dv/v data (154,660 m3) is a reflection of greater saturated thicknesses and
higher hydraulic conductivities paired with steeper hydraulic gradients, which align with
the fast pathway concept of Duckett et al. [25] and Behrens et al. [14].

5. Conclusions

Discrimination of recharge pathways and quantification of recharge to the Moscow–
Pullman Basin aquifer system in the Columbia Plateau Regional Aquifer System has posed
challenges to resource managers due to the unique geology of the basin and limited well
drilling in the theorized recharge zone. Such limitations have made it difficult to determine
sustainable withdrawals from the aquifer system, which has undergone groundwater
mining for a century. A recent groundwater modeling effort to assist with interpreting the
effects of water conservation and withdrawal practices used an aerial infiltration method
to estimate recharge along the eastern margin of the basin in a primary recharge zone. Six
seismic stations were temporarily installed to enhance groundwater monitoring in a portion
of the recharge zone and calculate an annual recharge to the confined aquifer system for
comparison to recharge estimates from the groundwater model. Sufficient low-frequency
seismic waves were recorded at the six seismic stations composing the seismic network for
correlation to groundwater levels recorded by a well transducer located in the center of
the network. Estimates of groundwater changes from changes in seismic wave velocities
and estimates of hydraulic conductivities and hydraulic gradients from local well logs and
geologic reports allowed for estimation of daily recharge volumes passing beneath the
seismic network. Summation of the daily recharge estimates produced an annual recharge
volume of 154,660 m3, which is six times greater than the model estimate of 26,250 m3 for
the same area. The larger estimate of recharge derived from the dv/v data is a reflection
of a perceived faster pathway of recharge underlying a substantial portion of the seismic
network. This faster pathway area highlights the variability of recharge pathways across
the mountain front and the difficulty in modeling recharge in the basin.
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