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Abstract: The uniaxial compressive strength (UCS) of rocks is one of the key parameters for evaluating
the safety and stability of civil and mining structures. In this study, 386 rock samples containing four
properties named the load strength (PLS), the porosity (Pn), the P-wave velocity (Vp), and the Schmidt
hardness rebound number (SHR) are utilized to predict the UCS using several typical empirical
equations (EA) and artificial intelligence (AI) methods, i.e., 16 single regression (SR) equations,
2 multiple regression (MR) equations, and the random forest (RF) models optimized by grey wolf
optimization (GWO), moth flame optimization (MFO), lion swarm optimization (LSO), and sparrow
search algorithm (SSA). The root mean square error (RMSE), determination coefficient (R2), Willmott’s
index (WI), and variance accounted for (VAF) are used to evaluate the predictive performance of
all developed models. The evaluation results show that the overall performance of AI models is
superior to empirical approaches, especially the LSO-RF model. In addition, the most important
input variable is the Pn for predicting the UCS. Therefore, AI techniques are considered as more
efficient and accurate approaches to replace the empirical equations for predicting the UCS of these
collected rock samples, which provides a reliable and effective idea to predict the rock UCS in the
filed site.

Keywords: uniaxial compressive strength (UCS); empirical approaches; artificial intelligence; lion
swarm optimization (LSO); random forest (RF)

1. Introduction

The uniaxial compressive strength (UCS) is one of the most important physical and–
mechanical characteristic parameters of rock masses in civil and mining engineering design,
which is also to be used for rock mass classification [1,2]. To date, the main accurate way
to obtain the UCS is the direct laboratory method in the light of the International Society
for Rock Mechanics (ISRM) and the American Society for Testing Materials (ASTM) [3].
However, the high-quality cores are necessary to obtain effective and reliable UCS in terms
of the direct laboratory, and it is extremely difficult to obtain highly weathered rocks [1].
Furthermore, the complex operation, time-consuming aspects, and expensive equipment
costs of the direct laboratory are often not considered into the UCS calculation in small-
and medium-sized rock engineering projects. Therefore, it is a challenging and practical
task for modern engineers to explore a convenient and accurate measurement method for
rock UCS.

The empirical approaches are firstly developed by engineers and had achieved some
good estimation results for estimating the rock UCS [4–11]. The empirical approaches are
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usually presented in the form of regression formulas, i.e., one or more parameters related
to UCS are considered to establish deterministic equations for the UCS calculation. The
results of the literature review showed that the porosity (Pn), the Schmidt hardness rebound
number (SHR), the P-wave velocity (Vp), and the point load strength (PLS) are generally
considered independent variables of the most of the empirical equations [3,8,9,12,13].

Nevertheless, the empirical formula universality is gradually exposed due to the
limitation of sample location and lithology [14,15]. The same empirical formula is applied
to different rock types while obtaining underestimates or overestimates for the UCS. Fur-
thermore, the selection of independent variables depends largely on experienced engineers,
which leads to objective errors. To eliminate the influence of lithology and the number and
types of input parameters on the UCS estimation, numerous researchers have reported
some successful cases in predicting the rock UCS by using different prediction models
based on the artificial intelligence (AI) techniques, such as the artificial neural network
(ANN) [16–18], the adaptive neuro-fuzzy inference system (ANFIS) [19,20], the support
vector machine (SVM) [3,21,22], and the multi-layer perceptron (MLP) [20,23]. The random
forest (RF) technique, with the advantages of anti-overfitting ability and processing the
large amounts of data, is a common artificial intelligence model used to solve engineer-
ing prediction problems [24,25]. Many attempts have been tested to consider different
metaheuristic optimization (MHO) algorithms to improve the performance of RF models,
e.g., the imperialist competitive algorithm (ICA) [9,23], the particle swarm optimization
(PSO) [12,17,25–27], the grey wolf optimization (GWO) [28,29], the artificial bee colony
algorithm (ABC) [30], the firefly algorithm (FA) [31], multi-verse optimizer (MVO) [32],
and the sine cosine algorithm (SCA) [33]. However, there are some algorithms that have
not been applied to optimize the RF model for predicting the rock UCS (e.g., flame opti-
mization (MFO), the lion swarm optimization (LSO), and the sparrow search algorithm
(SSA)). In this study, four MHO algorithms are used to improve the performance of the
RF models, i.e., GWO, MFO, LSO, and SSA. It should be noted that the hyperparameters
of RF model and internal parameters of these MHO algorithms (e.g., number of trees (Nt)
and the minimum sample number at a leaf node (Minlefsize) and the population in the
MHO algorithms) are not easily understood and optimized compared to the parameters of
empirical formulas [34].

In fact, mining engineers and geologists tend to use empirical approaches to estimate
the UCS when the rock types have been identified. Furthermore, there are some novel
intelligent models and optimization algorithms that have not been applied to the UCS
prediction. Therefore, this study aims to compare the performance of empirical approaches
and some novel AI models for predicting the rock UCS. To achieve this goal, various
empirical equations are proposed as the representatives of empirical approaches, and four
hybrid random forest (RF) models with different MHO optimization algorithms (i.e., GWO,
MFO, LSO, and SSA) are developed and compared for the UCS prediction. A total of 386
rock samples are used to generate empirical equations and train MHO-RF models. Four
statistical evaluation indices, i.e., the root mean square error (RMSE), the determination
coefficient (R2), the Willmott’s index (WI), and the variance accounted for (VAF), are used
to evaluate the performance of all the developed models.

2. Review the Related Works for Forecasting Rock UCS

The related work to forecast UCS of rock samples has been reviewed and presented
comprehensively in this section, i.e., the application of empirical approaches (i.e., single
and multiple regression formulas) and artificial intelligence models in the UCS prediction.

2.1. Existing Empirical Equations to Estimate UCS

The aim of the empirical approach is to reflect the mathematical relationship between
the input parameters and the UCS. A small number of samples and simple experimental
operations can be established to create a relationship between a single parameter (or
multiple parameters) and the UCS, namely the single regression (SR) equation (multiple



Geosciences 2023, 13, 294 3 of 20

regression (MR) equation). Researchers have successfully predicted UCS by using a single
factor to establish some similar SR equations (see Table 1), including the PLS, the Pn, the Vp,
and the SHR. The PLS is usually used as the main parameter to predict the rock UCS, which
can be obtained from the PLS tests at the rock engineering project site. Several researchers
have reported a comprehensive list of empirical equations between the UCS estimation
and the PLS [11,35,36]. The Pn can be estimated from physical tests for rock samples by
using some simple and accurate experimental methods, such as the saturation and caliper
techniques, the saturation and buoyancy techniques, etc. The Vp is determined through
the ultrasonic pulse velocity (UPV) tests, which represent the compactness degree of the
measured rock samples. The SHR is also an experimental parameter based on the Schmidt
hammer, which indicates the strength of the tested materials. These four variables are
widely used in the UCS estimation for different types of rocks in terms of establishing their
respective SR equations [1,8,10,37,38].

Table 1. Related works on UCS prediction using the SR equations.

Variable Single Equation Samples Lithologies Reference

PLS UCS = 7.3PLS1.71 188 sedimentary Tsiambaos and Sabatakakis [39]
UCS = 10.52PLS − 3.966 121 sedimentary Yilmaz and Yuksek [19]
UCS = 16.4PLS 44 igneous Kohno and Maeda [40]
UCS = 50.742e0.2242PLS 71 igneous Armaghani et al. [9]
UCS = 17.6PLS + 13.5 104 sedimentary Aliyu et al. [11]

Pn UCS = 273.15e0.076Pn 12 sedimentary Palchik and Hatzor [41]
UCS = −33.13ln(P n) + 64.6 32 metamorphic Diamantis et al. [42]
UCS =228.2e−1.98Pn 20 sedimentary Mishra and Basu [43]
UCS = −287.7Pn+221.42 71 igneous Armaghani et al. [9]
UCS =47.735Pn

−0.743 71 igneous Armaghani et al. [10]

Vp UCS = 0.78e0.88Vp 171 igneous Entwisle et al. [44]
UCS = 0.11Vp−515.56 32 metamorphic Diamantis et al. [42]
UCS = 3.7Vp

2.3 72 sedimentary Beiki et al. [45]
UCS = 0.03Vp−53.709 45 igneous Armaghani et al. [9]
UCS = 18.506e0.0003Vp 71 igneous Armaghani et al. [9]

SHR UCS = 1.45e0.07SHR 40 igneous Aydin and Basu [46]
UCS = 0.0137SHR0.272 19 igneous, sedimentary

metamorphic
Kılıç and Teymen [47]

UCS = 0.64SHR + 37.5 29 igneous, metamorphic Gupta [38]
UCS = 234.95ln(SHR)− 799.521 71 igneous Armaghani et al. [9]
UCS = 8.36SHR − 416 60 igneous, sedimentary

metamorphic
Aladejare [1]

In addition, MR is another style of empirical approach developed by engineers and
researchers to estimate the UCS [13,48–52]. The recent works of using MR on the UCS
prediction are shown in Table 2. The main purpose of using MR equations is to estimate
the UCS with multiple codependent variables. Diamantis et al. [42] only used the PLS and
the Vp to create a good MR formula for estimating the UCS. Dehghan et al. [8] imposed a
multivariate quadratic equation to calculate the UCS, which is different from the common
equation (i.e., multivariate linear).

Table 2. Related works on UCS prediction using MR equations.

Variable Multiple Equation Samples Lithologies Reference

PLS, Vp, SHR UCS = −35.9+0.89SHR + 13.4PLS − 1.68Vp 90 igneous, sedimentary
metamorphic

Karakus et al. [53]

PLS, Vp, SHR UCS = 4.14PLS + 29.8Vp+0.54SHR − 116 15 sedimentary Çobanoğlu and
Çelik [48]

PLS, Vp UCS = 10.61PLS + 0.0687Vp−339.48 32 metamorphic Diamantis et al. [42]
PLS, Pn, Vp, SHR UCS = −442.363Vp+45.338Vp

2−6.1Pn+0.52Pn
2+28.31PLS

−4.06PLS2+115.822SHR − 2.007SHR2−595.303
30 sedimentary Dehghan et al. [8]
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Table 2. Cont.

Variable Multiple Equation Samples Lithologies Reference

PLS, Vp UCS = 5.01PLS + 5.52e0.0004Vp−3.53 85 igneous Ng et al. [54]
PLS, Pn, Vp, SHR UCS = −153.616Pn+7.111PLS + 0.01Vp+0.541SHR + 63.655 71 igneous Armaghani et al. [9]
PLS, Vp, SHR UCS = −35.051+11.442e0.0297SHR + 0.001Vp

1.178

+22.2971PLS
124 igneous Armaghani et al. [10]

2.2. Existing Artificial Intelligence Models for Estimating UCS

With the development of computer science and the popularity of interdisciplinary
cross applications, numerous researchers have introduced AI models to predict the UCS
and achieved remarkable results [1,12,15,55–57]. In this study, the PLS, the Pn, the Vp, and
the SHR are considered as input variables in the UCS prediction, the related works have
been shown in Table 3. Armaghani et al. [10] used the three nonlinear prediction models to
forecast the UCS based on the 124 rock samples obtained from a tunnel in Malaysia. The
results of predictive performance showed that the ANFIS has a better performance than
the MR equations and ANN models. Furthermore, several studies have proved that the
MHO optimization algorithms can improve the predictive performance of the initial AI
models [58–60]. Momeni et al. [12] used the PSO algorithm to strengthen the performance
of a BPNN model for predicting the UCS and achieved a success. Armaghani et al. [9]
developed a hybrid model by combining the ANN and the ICA optimization algorithm to
predict the UCS, and the results of prediction accuracy showed that the ANN performance
has been significantly improved.

Table 3. Related works on UCS prediction using the AI models.

Variable AI Models Samples Lithologies Reference

PLS, Pn, Vp, SHR ANN 30 sedimentary Dehghan et al. [8]
PLS, Pn, Vp, SHR PSO-BPNN 66 sedimentary, igneous Momeni et al. [12]
PLS, Pn, Vp, SHR ICA-ANN 71 igneous Armaghani et al. [9]
PLS, Vp, SHR ANFIS 124 igneous Armaghani et al. [10]
PLS, Vp, SHR, BPI FIS 108 sedimentary Heidari et al. [13]
PLS, Pn, Vp, SHR GPR 170 igneous, sedimentary, metamorphic Mahmoodzadeh et al. [3]

Note: FIS: fuzzy inference system; GPR: Gaussian process regression; BPI: block punch index.

3. Rock Data Preparation and Performance Indices

To evaluate the performance of AI models and empirical approaches for predicting the
UCS, more rock samples from various rock engineering projects with lithologic diversity
were integrated to the rock database used in this study. As a result, a dataset of 386 rock
samples was collected from different previously published research studies, including 30
Travertine samples from Haji mine by Dehghan et al. [8]; 71 Granite block rock samples
from the PSRWT tunnel by Armaghani et al. [9]; 115 Granite samples of weathering Grade
III from the bedrock in Macao, China by Ng et al. [54]; and 170 hybrid rock samples
(Claystone, Granite, Schist, Sandstone, Travertine, Limestone, Slate, Dolomite, and Marl)
from a quarry in Iran by Mahmoodzadeh et al. [3]. The above samples can be divided into
three categories according to lithologies, i.e., igneous (Granite), sedimentary (Travertine,
Claystone, Sandstone, Limestone, Dolomite, Marl), metamorphic (Schist, Slate). Reviewing
the published studies, the Pn, the SHR, the Vp, and the PLS were also considered as input
variables to predict the UCS; the statistical information of input and output variables
according to the rock lithologies are shown in Table 4. As it can be seen in this table,
the statistical values of the variables were similar for each rock lithology, indicating that
the underlying relationship between four input variables and an output variable was
consistent. Therefore, the rock data of different lithologies can be combined into a new
database to improve the model prediction performance. Figure 1 shows the correlation
between input and output variables based on different rock types. For the igneous rock
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data, the correlation between the Vp and the UCS was the greatest. The SHR had a stronger
correlation with the UCS than other variables for both of sedimentary and metamorphic
samples. Note that except the Pn, other three variables were positively correlated with
the UCS. In general, correlation results directly illustrated the necessity for the above four
variables with high correlation coefficient values to be considered as input variables for
predicting the UCS.

Table 4. Details of input and output variables.

Lithologies Variables Types Minimum Maximum Mean Median St. D

igneous

PLS (MPa) input 0.89 11.73 4.08 3.97 1.76
Pn (%) input 0.10 7.23 1.48 0.98 1.51
Vp (km/s) input 1.16 7.94 4.76 4.70 1.19
SHR input 16.80 65.57 45.57 46.00 8.01
UCS (MPa) output 20.30 211.90 78.32 62.30 44.73

sedimentary

PLS (MPa) input 0.89 14.13 3.98 3.29 2.33
Pn (%) input 0.06 16.80 3.53 0.54 4.28
Vp (km/s) input 2.73 7.61 5.35 5.47 0.95
SHR input 25.46 67.07 40.95 42.00 12.13
UCS (MPa) output 12.01 215.21 86.51 77.04 53.31

metamorphic

PLS (MPa) input 0.86 9.08 4.58 3.72 2.09
Pn (%) input 0.12 14.67 3.58 1.54 4.06
Vp (km/s) input 2.99 7.94 5.24 5.23 0.96
SHR input 26.13 61.00 42.90 46.00 11.35
UCS (MPa) output 23.45 154.30 73.71 77.30 35.24

All samples

PLS (MPa) input 0.86 14.13 4.07 3.57 2.04
Pn (%) input 0.06 16.80 2.49 0.85 3.32
Vp (km/s) input 1.16 47.94 5.04 5.09 1.12
SHR input 16.80 67.07 43.44 45.00 10.38
UCS (MPa) output 12.01 215.21 81.43 65.30 48.07

Four statistical evaluation indices were used to evaluate the performance of the em-
pirical approaches and the proposed AI models, including the fact that the RMSE was
responsible for measuring the difference between model predictions and observed values,
the R2 was used to judge the model fitting effect, and the WI was used to measure pre-
diction accuracy and the VAF. The mean squared error (MSE) especially was considered
separately as the fitness function to evaluate the optimization performance of all used
MHO algorithms. These performance indices were introduced in several references [61–69]
and are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(Ui − ui)
2 (1)

WI = 1 −
[

∑n
i=1(Ui − ui)

2

∑n
i=1
(∣∣ui − U

∣∣+ ∣∣Ui − U
∣∣)2

]
(2)

MSE =
1
n

n

∑
i=1

(Ui − ui)
2 (3)

R2 = 1 −

[
n
∑

i=1
(Ui − ui)

]2

n
∑

i=1
(ui − u)2

(4)

VAF =

[
1 − var(Ui − ui)

var(Ui)

]
× 100%, (5)
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where n is the number of the samples in the training and testing phase. Ui and ui are the
actual and predicted values of the UCS, respectively. U and u are the average of the actual
values and the predicted values of the UCS, respectively.

Figure 1. Correlation between input and output variables based on different rock types: (a) igneous;
(b) sedimentary; (c) metamorphic; (d) all samples.

4. Performance Evaluation of the Proposed Models in the UCS Estimation

The 16 SR and 2 MR equations of empirical approaches and the other four hybrid
MHO-RF (GWO-RF, MFO-RF, LSO-RF, and SSA-RF) models have been considered in this
investigation. Figure 2 briefly displays a framework of the proposed methods in the
UCS estimation and prediction. The development of the equations and models with their
corresponding results are presented and discussed comprehensively.

4.1. Empirical Approaches

The SR analysis is the famous traditional method to estimate the rock UCS. In this study,
four considered variables (PLS, Pn, Vp, and SHR) are established regression relationships
with UCS, respectively. The form of the regression equation can be set to the exponential,
linear, logarithmic, and power [9,54]. Table 5 shows the fitting results of all developed 16 SR
equations on the UCS estimation. The values of R2 and RMSE describe the performance of
each single variable to predict the UCS with the whole data. For the exponential regression
equation, the relationship between the Vp and the UCS is closer than others by result in
higher value of R2 and lower value of RMSE. From the power regression equation, the
equation of Pn has a better performance in predicting the rock UCS.
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Figure 2. Framework of predicting rock UCS based on the empirical approaches and artificial
intelligence models.

Table 5. Results of single regression analyses for the UCS prediction.

Model Regression Types Variable Function R2 RMSE

SR-1

Exponential

PLS UCS = 47.523e0.087PLS 0.0483 48.3071
SR-2 Pn UCS = 90.99e−0.119Pn 0.3356 39.1339
SR-3 Vp UCS = 10.28e0.3738Vp 0.4748 34.7941
SR-4 SHR UCS = 9.6103e0.449SHR 0.4555 35.4278

SR-5

Linear

PLS UCS = 5.4924PLS + 59.084 0.0544 46.6861
SR-6 Pn UCS = −8.2588Pn+101.96 0.3247 39.4528
SR-7 Vp UCS = 29.784Vp−68.775 0.4792 34.6478
SR-8 SHR UCS = 3.199SHR − 57.547 0.4773 34.7107

SR-9

Logarithmic

PLS UCS = 19.167ln(PLS) + 56.909 0.0419 46.9929
SR-10 Pn UCS = −29.81ln(P n) + 83.676 0.6676 27.6785
SR-11 Vp UCS = 123.19ln(V p)− 114.42 0.4105 36.8604
SR-12 SHR UCS = 125.25ln(SHR)− 387 0.4529 35.5103

SR-13

Power

PLS UCS = 45.036PLS0.3189 0.0465 48.6029
SR-14 Pn UCS = 69.772Pn

−0.394 0.7222 25.3029
SR-15 Vp UCS = 5.208Vp

1.6137 0.4315 36.1995
SR-16 SHR UCS = 0.0833SHR1.7916 0.4591 35.3090

The purpose of MR analysis is to use appropriate variables for improving the com-
putational accuracy. Most MR equations include two or more variables, but the forms of
MR equations commonly used in the UCS prediction are mainly multivariate quadratic
equations [8] and multivariate linear equations [9]. After determining the equation form,
the coefficients can be calculated by using some fitting techniques, such as the least-squares
fit. Therefore, two styles of MR equations are created through the four variables (PLS, Pn,
Vp, and SHR) to predict the UCS as shown in Equations (6) and (7).
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UCS1= −119. 786+3.831PLS − 1.048Pn+22.0009Vp+2.496SHR (6)

UCS2 = −28.2459−6.773PLS + 0.4437PLS2−8.7576Pn+0.5958Pn
2

−7.112Vp+2.9622Vp
2+2.7389SHR − 0.0113SHR2 , (7)

where UCS1 and UCS2 represent the predicted UCS by using the multivariate linear of MR
equation and multivariate-quadratic of MR equation, respectively.

The measured UCS against their predicted values using the multivariate linear and
multivariate quadratic MR equations are shown in Figure 3a, b, respectively. As it can be
seen in this picture, two MR equations have similar performance in UCS estimation using
the almost consistent R2. The results of the other three statistical parameters of two MR
equations are shown in Table 6.

Figure 3. Proposed multiple regression for UCS: (a) Equation (6); (b) Equation (7).

Table 6. Comparison of the performance of all multiple regression models.

Reference Eqs. R2 RMSE WI VAF (%)

This study Equation (6) 0.7446 24.2627 0.9187 74.4828
Equation (7) 0.7774 22.6503 0.9328 77.7455

4.2. AI Methods

To clarify the application of the artificial intelligence methods in the UCS prediction,
the RF and one of the four used MHO algorithms called the LSO algorithm are described
comprehensively, and the parameter setting and running of the remaining MHO algorithms
can be found in the following studies [29,32,65,70–73].

4.2.1. RF Model

The RF is an ensemble learning method widely used to solve regression and classifica-
tion problems by means of regression and classification trees (RECT). The development of
RF has gone through two phases, i.e., initial random decision forests created by Ho [74] and
the extension of the random decision forests improved by Breiman [75]. From a statistical
point of view, the resampling is one of the operation criteria of RF model. In other words,
each new bootstrap train set is randomly extracted from the original training set to form an
independent decision tree model while the unselected samples (one-third of the original
training set) form an out-of-bag (OOB) prediction set to be responsible for the prediction
performance of each new decision tree. Therefore, the diversity of decision trees can be
increased by returning samples and randomly changing the combination of predictors in
different tree evolutions. Finally, the prediction results of all decision trees are combined to
obtain the average value as the final RF prediction performance. Then, the output of RF
model can be described in Equation (8), and the entire process of running a random forest
model is shown in Figure 4.

Ro =
1
n

n

∑
i=1

Ri(x), (8)
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where Ro represents the average output of RF, Ri(x) denotes the individual output of a tree
for on input x, and n represents the total number of decision trees.

Figure 4. Flowchart of running a random forest.

4.2.2. Hybrid MHO-RF Model Development

Prior to developing the MHO-RF prediction model, the hyperparametric optimization
range of the RF model and the key structural parameters of the four MHO algorithms need
to be set in advance. In this study, both the Nt and the Minlefsize are considered in a range
of 1–100. For MHO algorithms, the swarm size and iteration are two key impact parameters
for tuning hyperparameters [76], which are set as [20, 40, 60, 80, 100, and 150] and 400,
respectively. In addition, the train set accounted for 70 percent of the total rock samples,
and the remaining 30 percent was used as the test set. All parameters normalized into a
pointed range of −1 to 1. To determine the optimal internal parameters of MHO algorithms
and the best hyperparameter combination of the RF, the MSE was used to establish the
fitness function. Figure 5 shows the effect of the swarm size on the performance of four
hybrid models for 400 iterations, respectively. As can be seen in this picture, the best swarm
sizes of all MFO models have been obtained by means of the lowest values of the MSE,
which are 40 wolves for GWO, 100 moths for MFO, 60 lions for LSO, and 60 sparrows for
SSA, respectively.

Further comparison results of two performance indices (R2 and RMSE) in the training
and testing phases for four MHO-RF models are presented in Table 7. As it can be seen
in this table, each MHO model with all the considered swarm sizes have been capable of
reaching satisfying performance indices in terms of resulting in high values of R2 and low
values of RMSE in the training phase. Nevertheless, the performance of models with the
same swarm size in the testing phase is inconsistent with that in the training phase. As
can be realized that the swarm size of 40, 100, 60, and 60 in GWO-RF, MFO-RF, LSO-RF,
and SSA-RF with the highest values of R2 (0.8994, 0.8960, 0.8997, and 8975) and the lowest
values of RMSE (14.7512, 14.9954, 14.7261, and 14.8865) are the best model for the UCS
prediction in the testing phase, respectively. Meanwhile, the running time of each model
with different swarm sizes has been recorded in this table. The running time is increasing
with swarm size, but the time required by the best models is appropriate; thus, these
models can be adopted to predict the rock UCS in this study.
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Figure 5. Optimization MHO-RF models with different swarm sizes for predicting the UCS.

Table 7. Comparative performance indicates of MHO-RF model with different swarm sizes.

Model Swarm Size
R2 RMSE Time (Sec.)

Training Testing Training Testing

GWO-RF 20 0.9194 0.8909 13.8053 15.3570 189
40 0.9188 0.8994 13.8564 14.7512 401
60 0.9243 0.8854 13.1171 15.7414 575
80 0.9229 0.8912 13.5070 15.3364 781
100 0.9250 0.8803 13.3191 16.0884 946
150 0.9303 0.8762 12.8409 16.3657 1350

Model Swarm Size
R2 RMSE Time (Sec.)

Training Testing Training Testing

MFO-RF 20 0.9219 0.8936 13.5943 15.1714 246
40 0.9302 0.8867 12.8499 15.6517 375
60 0.9209 0.8943 13.6767 15.1157 589
80 0.9213 0.8916 13.6483 15.3081 741
100 0.9203 0.8960 13.7304 14.9954 1052
150 0.9297 0.8772 12.9008 16.2968 1489

Model Swarm Size
R2 RMSE Time (Sec.)

Training Testing Training Testing

LSO-RF 20 0.9207 0.8948 13.6983 15.0811 305
40 0.9175 0.8957 13.9726 15.0169 463
60 0.9200 0.8997 13.7545 14.7261 687
80 0.9284 0.8876 13.0185 15.5939 912
100 0.9208 0.8895 13.6929 15.4621 1150
150 0.9141 0.8910 14.2522 15.3516 1560

Model Swarm Size
R2 RMSE Time (Sec.)

Training Testing Training Testing

SSA-RF 20 0.9208 0.8927 13.6911 15.2358 315
40 0.9252 0.8854 13.3036 15.7461 578
60 0.9224 0.8975 13.5502 14.8865 821
80 0.9309 0.8837 12.7861 15.8606 1021
100 0.9279 0.8818 13.0633 15.9858 1468
150 0.9219 0.8922 13.5977 15.2656 2020
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5. Comparison of Prediction Performance

After developing the SR and the MR equations and four MHO-RF methods, a se-
ries of comparative evaluation analysis between empirical approaches and AI methods
for predicting the rock UCS was conducted in this section. Table 8 illustrates the per-
formance indices results of 16 SR equations, 2 MR equations, and 4 MHO-RF models in
the training phase. As can be seen in this table, four SR equations developed by PLS
(SR-1. SR-5, SR-9, and SR-13) have poor performance with lower values of R2 (even less
than zero; this is caused by the very large deviation of the prediction demonstrated in
Equation (4)), WI, and VAF and higher values of RMSE. Among these SR equations, SR-14
has obtained the best performance indices of R2 = 0.7090, RMSE = 26.2379, WI = 0.8974, and
VAF = 71.9010%. By contrast, two MR equations and four hybrid MHO-RF models have
satisfactory performance indices by considering high values of R2, WI, and VAF (close to 1,
1, and 100%, respectively) and low values of RMSE (close to 0). Among them, the MR-2
(R2 = 0.7559, RMSE = 24.0312, WI = 0.9265, and VAF = 75.5940%) and SSA-RF (R2 = 0.9224,
RMSE = 13.5502, WI = 0.9788, and VAF = 92.2401%.) are the best model of MR equations
and all AI models for UCS prediction in the training phase, respectively. However, the
prediction performances of the considered four MHO-RF models are obviously superior to
two MR equations with higher accuracy.

Table 8. Performance comparison of SR and MR equations and MHO-RF methods in the train-
ing phase.

Model
Performance

R2 RMSE WI VAF (%)

SR-1 −0.0135 48.9683 0.4249 5.6413
SR-2 0.3257 39.9415 0.6215 36.3621
SR-3 0.4764 35.1956 0.7901 50.4493
SR-4 0.4386 36.4466 0.7835 45.8063
SR-5 0.0527 47.3417 0.3047 5.2738
SR-6 0.3140 40.2879 0.6754 31.3986
SR-7 0.4903 34.7257 0.8046 49.0569
SR-8 0.4584 35.7952 0.7860 45.8463
SR-9 0.0340 47.8060 0.2633 3.4053
SR-10 0.6441 29.0187 0.8823 64.4087
SR-11 0.4457 36.2127 0.7606 44.5739
SR-12 0.4361 36.5261 0.7696 43.6100
SR-13 −0.032 49.4143 0.3749 4.0102
SR-14 0.7090 26.2379 0.8974 71.9010
SR-15 0.4361 36.5269 0.7369 47.2350
SR-16 0.4405 36.3845 0.7654 46.1874
MR-1 0.7237 25.5679 0.9119 72.3698
MR-2 0.7559 24.0312 0.9265 75.5940
GWO-RF 0.9188 13.8564 0.9777 91.8895
MFO-RF 0.9203 13.7304 0.9782 92.0332
LSO-RF 0.9200 13.7545 0.9781 92.0076
SSA-RF 0.9224 13.5502 0.9788 92.2401

To further compare the performance of empirical approaches and AI models for
predicting the UCS, the regression diagrams of all SR and MR equations and four MHO-RF
models are demonstrated in Figures 6–8. The vertical and horizontal coordinates represent
the predicted and observed values of UCS, respectively. The solid black line in each diagram
represents the line with 0 error between the predicted and observed UCS. The other dotted
lines represent the lines with errors of 10% and 30%, respectively. The significance of these
error lines is that the more data points are concentrated on the line with 0 error, the stronger
the prediction performance of the model will be. As can be observed in these pictures, the
power equation of Pn (SR-14), multivariate quadratic equation (MR-2), and SSA-RF model
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of MHO models have more data points concentrated on and near the line with 0 error than
other models of the same type in the training phase, respectively.

Figure 6. Regression diagrams of the SR models in the training phase.

Figure 7. Regression diagrams of the MR models in the training phase.
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Figure 8. Regression diagrams of the AI models in the training phase.

The performance of the all models in the training phase cannot represent the final
performance in the UCS prediction, and it is vital to continue to keep good prediction
performance in the testing phase. Table 9 illustrates the performance indices of 16 SR
equations, 2 MR equations, and 4 MHO-RF models using the test ser. As it can be seen in
this table, the power equation of Pn (SR-14) and MR-2 equation also has a better performance
by resulting in higher values of R2 (0.7558 and 0.8321), WI (0.9218 and 0.9488) and VAF
(76.4239% and 83.3190%), and lower values of RMSE (22.9797 and 19.0525) than other
models of the same type, respectively. For AI models, the LSO-RF model has replaced SSA-
RF as the best model with the highest accuracy (R2 = 0.8997, RMSE = 14.7261, WI = 0.9731,
and VAF = 90.2630%) in the testing phase.

Table 9. Performance comparison of the empirical methods and AI models using the test set.

Model
Performance

R2 RMSE WI VAF (%)

SR-1 −0.0098 46.7317 0.4345 5.5412
SR-2 0.3606 37.1863 0.6458 40.1272
SR-3 0.4704 33.8411 0.7747 49.2392
SR-4 0.4984 32.9345 0.8200 51.3333
SR-5 0.0585 45.1232 0.3118 5.8600
SR-6 0.3695 36.9274 0.6870 36.9966
SR-7 0.4620 34.1114 0.7871 46.4566
SR-8 0.5267 31.9917 0.8265 52.6895
SR-9 0.0618 45.0435 0.2880 6.1913
SR-10 0.7281 24.2508 0.9150 72.8103
SR-11 0.3845 36.4828 0.7284 38.8996
SR-12 0.5127 32.4624 0.8129 51.3004
SR-13 −0.0067 46.6596 0.3949 6.2356
SR-14 0.7558 22.9797 0.9218 76.4239
SR-15 0.4197 35.4256 0.7186 44.6975
SR-16 0.5065 32.6688 0.8078 52.5023
MR-1 0.7978 20.9114 0.9358 80.0131
MR-2 0.8321 19.0525 0.9488 83.3190
GWO-RF 0.8994 14.7512 0.9729 90.0986
MFO-RF 0.8960 14.9954 0.9720 89.7520
LSO-RF 0.8997 14.7261 0.9731 90.2630
SSA-RF 0.8975 14.8865 0.9723 89.9029
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The necessary validation can prevent the adverse result of the inconsistent perfor-
mance of the aforementioned models in the training and testing phase. Figures 9–11 show
the regression diagrams of all SR and MR equations and four MHO-RF models in the testing
phase. As it can be seen in these pictures, the SSA-RF obtained an unsatisfactory prediction
performance compared to the training phase in terms of resulting in fewer data points
clustered on the line with 0 error. Conversely, the LSO-RF model has the largest number of
concentrated points on the line with 0 error, and the power equation of Pn (SR-14) and mul-
tivariate quadratic equation (MR-2) also have more data points concentrated on and near
the line with 0 error than other models of the same type in the testing phase, respectively.

Figure 9. Regression diagrams of the SR models in the testing phase.

Figure 10. Regression diagrams of the MR models in the testing phase.



Geosciences 2023, 13, 294 15 of 20

Figure 11. Regression diagrams of the AI models in the testing phase.

Based on the performance results in Tables 8 and 9, the best model based on the empir-
ical approaches and AI models is the SR equation of Pn, the MR equation of multivariate
quadratic, and the LSO-RF model, respectively. To clearly compare the performance differ-
ences between empirical models and AI methods in predicting UCS, the graphs include
compressive curves, error analyses, and the regression diagrams of the UCS predicted
by empirical and artificial intelligence models in the training phase, which are shown
in Figure 12. As it can be seen in Figure 12a, the prediction curves of UCS for the three
models are basically consistent with the original training curve, but the LSO-RF model
has obviously better performance. The distribution of errors between the observed and
predicted UCS of the three models is shown in Figure 12b. The LSO-RF model has the
lowest median value of error (5.64), and the SR equation of n has the largest median value
of error (13.13). Meanwhile, the upper and lower errors obtained by the SR model are
broader than the other two models, which represent the worse prediction performance.
Figure 12c shows the regression diagram of all models in the training phase. As it can be
observed in this diagram, the LSO-RF model not only has more data points clustered on
the line with 0 error, but it also has the highest value of R2 (0.9200). After this model, the
MR equation of multivariate quadratic has a better prediction performance than the SR
equation of Pn. The same results of performance comparison have been obtained in the
testing phase, as shown in Figure 13.

Figure 12. Compressive UCS prediction in the training phase.
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Figure 13. Compressive UCS prediction in the testing phase.

To further accurately evaluate the performance of all models in the testing phase,
the graphical Taylor diagram is also drawn in Figure 14. A typical Taylor diagram can be
divided into three parts, i.e., correlation coefficient, standard deviation, and RMSE. As it can
be seen in this picture, the red arcs and dots represent the correlation coefficient, the black
arcs and dots represent standard deviation, and the green arcs and dots represent RMSE.
The RMSE and correlation coefficient of the test data is defaulted to 0 and 1, respectively.
Then, the prediction performance is determined by a correlation coefficient, standard
deviation, and RMSE, which will be compared with those of the measured data in the test
set. It can be observed that the LSO-RF is the best model with the closest position to the test.

Figure 14. Taylor diagram for comparison of the empirical and artificial intelligence models.

After determining the best model for predicting the UCS of rock, the importance of
input variables can be estimated by using the LSO-RF model. In addition, the MR equation
of multivariate quadratic is also used to calculate the importance of input variables for
comparison with the LSO-RF model. The results of the sensitivity analysis are shown in
Figure 15. As it can be seen in this picture, the most important input variable is the Pn
with the scores of 0.7398 and 0.7031 obtained from the LSO-RF model and MR equation,
respectively. The order of importance of the remaining parameters is the Vp (LSO-RF:
0.6311 and MR: 0.6367), the SHR (LSO-RF: 0.5814 and MR: 0.5675), and the PLS (LSO-RF:
0.5070 and MR: 0.4343).
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Figure 15. Importance of input variables based on empirical and AI models.

6. Conclusions and Summary

As one of the most important physical and mechanical characteristic parameters for
rocks in civil and mining engineering, the UCS can be estimated using various methods.
In this study, the widely used empirical approaches by mining engineers and recently
concerning AI methods were developed and compared in UCS predicting. A total of
386 rock samples were collected to form a dataset, and the Pn, the SHR, the Vp, and
the PLS are considered input variables. The results of performance indices showed that
the power equation of Pn and multivariate quadratic equation are the best models of SR
and MR equations, respectively, and all MHO-RF models of AI techniques have superior
performance than empirical approaches for predicting the rock UCS. However, the LSO-RF
model is the best model among the three AI excellent models by means of higher R2 (0.9200;
0.8997), WI (0.9781 and 0.9731), and VAF (92.0076%; 90.2630%) and lower values of RMSE
(13.7545; 14.7261) in the training and testing phases, respectively. Meanwhile, the sensitive
analysis results illustrated that the Pn is the most important input variable for predicting
the rock UCS.

Compared with the empirical method to predict the rock UCS, the advantages of AI
techniques are strong data compatibility and model generalization. Since only nine rock
types from three major lithologies were collected to train the AI models, the prediction
accuracy for other rock types other than that used in this paper is not guaranteed. Therefore,
more UCS data from various rock types should be supplemented to further improve the
prediction accuracy of the proposed models. However, the random population initialization
tends to trap optimization into local minima. Therefore, the LSO algorithm must be further
optimized to select the optimal model hyperparameters. The chaos mapping can be
introduced to achieve this goal. Furthermore, other AI models should also be developed to
predict the UCS for generating a multivariate mixing model to adapt to UCS estimations of
different rocks.

Author Contributions: Conceptualization: C.L. and D.D.; methodology: C.L., J.Z. and K.D.; Investi-
gation: C.L., D.D. and J.Z.; Writing—original draft preparation: C.L. and J.Z.; Writing—review and
editing: C.L., J.Z., D.D. and M.K.; Visualization: C.L., K.D. and M.K.; Funding acquisition: C.L. All
authors have read and agreed to the published version of the manuscript.

Funding: The study reported here is financially supported by China Scholarship Council (Grant
No. 202106370038). The authors want to thank all the members who gave us lots of help and cooperation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are from published researches: Mah-
moodzadeh et al. [3] (https://doi.org/10.1016/j.trgeo.2020.100499); Dehghan et al. [8] (https://doi.
org/10.1016/S1674-5264(09)60158-7); Armaghani et al. [9] (https://doi.org/10.1007/s12517-015-205
7-3); Ng et al. [54] (https://doi.org/10.1016/j.enggeo.2015.10.008).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

https://doi.org/10.1016/j.trgeo.2020.100499
https://doi.org/10.1016/S1674-5264(09)60158-7
https://doi.org/10.1016/S1674-5264(09)60158-7
https://doi.org/10.1007/s12517-015-2057-3
https://doi.org/10.1007/s12517-015-2057-3
https://doi.org/10.1016/j.enggeo.2015.10.008


Geosciences 2023, 13, 294 18 of 20

References
1. Aladejare, A.E. Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and

physical tests. J. Rock Mech. Geotech. Eng. 2020, 12, 256–268. [CrossRef]
2. Aladejare, A.E.; Wang, Y. Estimation of rock mass deformation modulus using indirect information from multiple sources. Tunn.

Undergr. Space Technol. 2019, 85, 76–83. [CrossRef]
3. Mahmoodzadeh, A.; Mohammadi, M.; Ibrahim, H.H.; Abdulhamid, S.N.; Salim, S.G.; Ali, H.F.H.; Majeed, M.K. Artificial

intelligence forecasting models of uniaxial compressive strength. Transp. Geotech. 2021, 27, 100499. [CrossRef]
4. Gunsallus, K.T.; Kulhawy, F.H. A comparative evaluation of rock strength measures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.

1984, 21, 233–248. [CrossRef]
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