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Abstract: Permian Ben Giang‑Que Son and Triassic Van Canh granitic rocks are widely distributed
across the southern Kontum Massif, the basement of which consists mainly of metasedimentary
rocks. The Ben Giang‑Que Son granitic rocks are classified as I‑ to S‑type and ilmenite‑series granitic
rocks, while the Van Canh granitic rocks are classified as I‑type and magnetite‑series granitic rocks.
Both granitic rock suites exhibit more or less adakitic properties, suggesting that the subduction of
the high‑temperature Song Ma Ocean crust, part of the Paleo‑Tethys Ocean, beneath the Indochina
Block produced adakitic magma. It is hypothesized that the differences between the two granitic
rock suites were caused by differences in the quantities of incorporated continental crustal materi‑
als and carbon or graphite in clastic sedimentary rocks when their adakitic magma intruded into
the continental crust. Based on their high initial Sr isotope ratios, the Ben Giang‑Que Son granitic
rocks evidently incorporated a higher quantity of continental crustal materials compared to the Van
Canh granitic rocks, resulting in the former showing the signatures of ilmenite‑series and I‑ to S‑type
granitic rocks. Consequently, the Ben Giang‑Que Son granitic rocks have relatively high A/CNK ra‑
tios and high total Al contents in their biotite, whereas the Van Canh granitic rocks have low A/CNK
ratios and low total Al contents in their biotite. The intrusion of the BenGiang‑Que Son granitic rocks
caused high‑temperature metamorphism, which decomposed some of the carbon or graphite in the
surrounding continental crustal materials, such as clastic sedimentary rocks. Meanwhile, the Van
Canh granitic rocks, which intruded later than the Ben Giang‑Que Son granitic rocks, incorporated
smaller quantities of carbon or graphite in continental crustal materials, resulting in them retaining
the chemical characteristics of adakitic, magnetite‑series, and I‑type granitic rocks, different from the
Ben Giang‑Que Son granitic rocks.

Keywords: VanCanh granitic rocks; BenGiang‑Que Son granitic rocks; KontumMassif; geochemical
signatures; magnetic susceptibility; petrogenesis; Vietnam

1. Introduction
The tectonic history of mainland Indochina can be explained by the subduction of the

Paleo‑Tethys Ocean and the amalgamation of the South China, Indochina, and Sibumasu
blocks, which separated from the supercontinent of Gondwana [1–18].

The Song Ma Suture, a partial relict of the Paleo‑Tethys Ocean that once existed be‑
tween the South China and Indochina blocks, runs from the northwest to the southeast of
northern Vietnam (Figure 1) [5,15,19–21]. The Truong Son Fold Belt is located to the south‑
west of the SongMaSuture andwas generated by the amalgamation of the SouthChina and
Indochina blocks when the Song Ma Ocean was subducted beneath the Indochina Block.
The Truong Son Fold Belt continues to the KontumMassif, which is situated in central Viet‑
nam (Figure 1). Moreover, in the south of the Kontum Massif, there are many Cretaceous
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granitic rocks that were formed during the subduction of the Paleo‑Pacific Plate, which
form the Dalat–Kratie Zone [22].

TheKontumMassif comprises part of the eastern edge of the IndochinaBlock (Figure 1).
Permian BenGiang‑Que Son granitic rocks (ca. 280–260Ma) andTriassic VanCanh granitic
rocks (ca. 251–229 Ma) are widely distributed across the southern part of the Kontum
Massif [23–29]. Based on the formation ages of these granitic rocks, most of the Kontum
Massif is considered to belong to the Truong Son Fold Belt.

The basic classification of granitic rocks was proposed by Chapell andWhite [30] and
Ishihara [31]. Chappell and White [30] classified granitic rocks as I‑type (igneous rock)
and S‑type (sedimentary rock), based on differences in the source materials. Ishihara [31]
classified granitic rocks asmagnetite‑series and ilmenite‑series granite, based on theirmag‑
netic susceptibility. Although there are some differences between the two classifications,
the former is considered to have been formed under relatively oxidizing conditions, while
the latter is considered to have been formed under relatively reducing conditions. The Ben
Giang‑Que Son granitic rocks are reported to be I‑type granitic rocks [32], while the Van
Canh granitic rocks are reported to be S‑type granitic rocks [29]. However, this study re‑
vealed that the Van Canh granitic rocks have high magnetic susceptibility; therefore, they
should be classified as magnetite‑series and I‑type granitic rocks, contradicting their cur‑
rent classification as S‑type granitic rocks. In this study, we conducted a detailed investi‑
gation of the Van Canh and Ben Giang‑Que Son granitic rocks using samples taken from
the Kontum and Gia Lai provinces, which occupy the southern part of the Kontum Mas‑
sif. We performed in situmagnetic susceptibilitymeasurements and collected granitic rock
samples forwhole‑rock chemical composition analysis, Nd–Sr isotope ratiomeasurements,
and biotite chemical composition analysis. On the basis of these data, we aimed to clarify
the petrogenesis of both suites of granitic rocks in relation to the tectonic history between
the South China Block, the Indochina Block, and the Song Ma Ocean.
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Figure 1. Simplified tectonic setting map of southeast Asia. Data obtained from Metcalfe [5],
Wang et al. [15], Cheng et al. [19], Kasahara et al. [20], Uchida et al. [21], Hung et al. [28], and this
study. The study area is shown by the red square.
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2. Geological Settings
The northernmost part of Vietnam belongs to the South China Block, while the south‑

ern part, which is separated from the northernmost part by the Song Ma Suture, belongs
to the Indochina Block. The southern part of Vietnam consists of the Truong Son Belt, the
Kontum Massif, and the Dalat Zone (from north to south) (Figure 1) [4,5,13,15,22].

The Kontum Massif is located in central Vietnam and has the largest Precambrian
basement in Southeast Asia. The Kontum Massif is delimited on its northern side by the
east–west striking Tam Ky‑Phuoc Son Suture (Figure 1); however, its other boundaries are
not clear.

The basement of theKontumMassif consistsmainly of five different units ofmetased‑
imentary rocks, which were deposited in five periods from the Late Paleoproterozoic
(1.80–1.65 Ga) to the Late Neoproterozoic–Early Paleozoic eras (0.61–0.51 Ga) [33]. It is con‑
sidered that most of the Precambrian sediments came from southwestern Laurentia [33].

Precambrian metamorphic rocks are widely distributed across the Kontum Massif,
forming the core of the Indochina Block. Ordovician‑Silurian and Permian‑Triassic high‑
to ultra‑high‑temperature metamorphic rocks (amphibolite‑ to granulite‑facies) are also
common [23,34–40]. There are four complexes distributed across the Kontum Massif: the
Kham Duc, Ngoc Linh, Kan Nak, and Dien Binh complexes (from northwest to south‑
east) [41]. The Van Canh and Ben Giang‑Que Son granitic rocks investigated in this study
are mainly distributed in the Kan Nak and Dien Binh complexes. The Kan Nack Complex
experienced granulite‑ to amphibolite‑facies metamorphism, while the Ngoc Linh Com‑
plex mainly comprises amphibolite‑facies metamorphic rocks [33].

3. Materials and Methods
The distributions of Van Canh and Ben Giang‑Que Son granitic rocks across the Kon‑

tum and Gia Lai provinces are shown in Figure 2. Granitic rock samples were collected
from roadside outcrops and quarries, and we selected granitic rocks that were as fresh
and little weathered as possible. In total, 10 Van Canh and 5 Ben Giang‑Que Son granitic
rock samples were collected in this study [42]. Table 1 shows the latitudes and longitudes
of each sampling site. Magnetic susceptibility was also measured at 10 points across each
sampling site using a portablemagnetic susceptibilitymeter (SM30, ZH Instruments, Brno,
Czech Republic).
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Table 1. Sampling locations (latitude and longitude) of theVanCanh andBenGiang‑Que Son granitic
rock samples.

Sample No. Latitude Longitude

Van Canh granitic rock

VN301 14◦07′52.1′′ N 107◦57′36.4′′ E
VN303 14◦11′10.9′′ N 108◦06′16.7′′ E
VN304 14◦03′11.6′′ N 108◦15′19.7′′ E
VN307 13◦58′45.9′′ N 108◦41′14.5′′ E
VN308 13◦58′11.2′′ N 107◦41′05.0′′ E
VN310 13◦58′24.8′′ N 107◦29′09.3′′ E
VN311 14◦02′06.7′′ N 107◦27′21.9′′ E
VN312 13◦49′57.2′′ N 107◦50′22.9′′ E
VN313 13◦46′18.0′′ N 107◦32′32.4′′ E
VN316 13◦22′47.4′′ N 108◦07′50.6′′ E

Ben Giang‑Que Son granitic rock

VN302 14◦26′09.7′′ N 108◦08′16.8′′ E
VN305 13◦46′01.4′′ N 108◦31′26.2′′ E
VN306 13◦58′12.4′′ N 108◦44′31.9′′ E
VN309 13◦57′31.9′′ N 107◦29′06.3′′ E
VN315 13◦25′37.0′′ N 108◦05′36.5′′ E

Thin sections were prepared from the collected granitic rock samples and mineral
identification was performed under a polarizing microscope. The granitic rock sam‑
ples were also ground using a tungsten carbide rod mill (TI‑100, Heiko Seisakusho Ltd.,
Fukushima, Japan) and 5 g of powder from each rock samplewas sent toActivation Labora‑
tories Ltd., Ontario, Canada, for whole‑rock chemical composition analysis. This analysis
was requested according to the “4Litho” litho‑geochemistry package. However, the tung‑
sten and cobalt values were excluded from the analytical results owing to contamination
during the pulverization of the rock samples using the tungsten carbide rod mill.

The biotite in the granitic rock samples was subjected to chemical composition analy‑
sis using an energy dispersive spectrometer (INCA ENERGY, Oxford Instruments, Abing‑
don, UK), which was attached to a scanning electron microscope (JEOL JSM‑6360, Tokyo,
Japan) (SEM‑EDS) in Waseda University. The thin sections were carbon‑coated prior to
analysis. The accelerating voltage was 15 kV, and the current was adjusted so that the to‑
tal X‑ray counts on metallic cobalt were 2000 counts/s. The measurement time was around
60 s. The elements measured were Si, Ti, Al, Fe, Mn, Mg, Na, and K and synthetic SiO2,
TiO2, Al2O3, Fe2O3, MnO, MgO, natural albite, and K‑feldspar were used as the standard
materials, respectively. In addition to microscopic observations, the SEM‑EDS analysis
results were also taken into consideration when determining whether the biotite was chlo‑
ritized. If the number of K atoms was less than 1.6 on the basis of O = 22, the biotite was
considered to be chloritized and was excluded from the results.

Nd–Sr isotope ratiomeasurementswere performed on the collected rock samples at the
Research Institute for Humanity and Nature in Kyoto, Japan. The separation of Nd and Sr
from the collected rock samples was performed according to the method of Na et al. [43]. A
multi‑collector inductively coupled plasma mass spectrometer (MC–ICP–MS; NEPTUNE,
Thermo Fisher Scientific Inc., Waltham, MA, USA) was used for the analysis. The mea‑
sured 87Sr/86Sr and 143Nd/144Nd isotope ratios were corrected using the abundance ratios
of 86Sr/88Sr = 0.1194 [44] and 146Nd/144Nd = 0.7219 [45] in nature. The 87Sr/86Sr ratio for the
Sr standard sample (NIST SRM 987), which was measured at the same time as the unknown
samples, was 0.710286± 0.000011 (2σ) (n = 5) and the 143Nd/144Nd ratio for the Nd standard
sample (JNdi‑1) was 0.511934 ± 0.000013 (2σ) (n = 6). The Sr and Nd isotope ratios for the
measured rock samples were corrected using the isotope ratios of 87Sr/86Sr = 0.710250 (NIST
SRM 987) [46] and 143Nd/144Nd = 0.512115 (JNdi‑1) [47], respectively.
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4. Results
4.1. Petrographic Description and Constituent Minerals

Photographs and photomicrographs under a polarizing microscope of representative
Van Canh and Ben Giang‑Que Son granitic rock samples are shown in Figure 3. The rock
sampling locations (latitude and longitude) and constituent minerals are summarized in
Tables 1 and 2, respectively.
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Table 2. Constituent minerals of the Van Canh and Ben Giang‑Que Son granitic rock samples.

Granitic Body Sample
No. Rock Type Q Pl Kf Bi Hb Zr Ap Mu Ti Op Ep Ru Cpx Tour Alla Cal Remarks

Van Canh
granitic rock

VN301 Biotite
Granite 〇 〇 ⊚ 〇 – – – – Bi is partly

altered.

VN303 Biotite
Granite ⊚ ⊚ ⊚ △ – – – – – Pl and Bi are

altered.

VN304
Hornblend
Biotite
Granite

〇 〇 ⊚ △ – – – –
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Table 2. Cont.

Granitic Body Sample
No. Rock Type Q Pl Kf Bi Hb Zr Ap Mu Ti Op Ep Ru Cpx Tour Alla Cal Remarks

Van Canh
granitic rock

VN307
Hornblend
Biotite
Granite

〇 ⊚ 〇 〇 – △ – – – – –

VN308
Hornblend
Biotite
Granite

〇 〇 ⊚ △ – – – – Bi is altered.

VN310 Biotite
Granite ⊚ 〇 ⊚ △ – – – Bi is almost

altered.

VN311
Hornblend
Biotite
Granite

〇 〇 ⊚ △ – – – – Bl is partly
altered.

VN312 Biotite
Granite 〇 〇 ⊚ △ – – – – Bl is partly

altered.

VN313 Diorite 〇 ⊚ 〇 〇 〇 – – – – – – Bl is partly
altered.

VN316 Biotite
Granite 〇 〇 〇 △ 〇 – – – 〇

Ben Giang‑Que
Son granitic

rock

VN302 Biotite
Granite 〇 ⊚ 〇 〇 – – △ – Bi is almost

altered.

VN305 Biotite
Granite ⊚ 〇 ⊚ 〇 – – –

VN306 Biotite
Granite ⊚ 〇 ⊚ 〇 – – – Pl and Bi are

altered.

VN309 Biotite
Granite 〇 ⊚ ⊚ 〇 – – – Bl is partly

altered.

VN315 Biotite
Granite ⊚ ⊚ ⊚ △ – – – – Bi is almost

altered.

Modal proportions: ⊚, >30 vol%;〇, 30–10 vol%;△, 10–2 vol%; –, <2 vol%. Abbreviations: Q, quartz; Pl, plagio‑
clase; Kf, K‑feldspar; Bi, biotite; Hb, hornblende; Ch, chlorite; Zr, zircon; Ap, apatite; Mu, muscovite; Ti, titanite;
Op, opaque minerals; Ep, epidote; Ru, rutile; Cpx, clinopyroxene; Tour, tourmaline; Alla, allanite; Cal, calcite.

The Van Canh granitic rocks were coarse‑ to medium‑grained and gray‑white to slightly
pink in color. The major constituent minerals were K‑feldspar, plagioclase, quartz, biotite,
and amphibole. Zircon, apatite, titanite, opaque minerals (magnetite and ilmenite), and
epidote were also observed as minor constituent minerals. The chloritization of biotite
was recognized in some samples.

The Ben Giang‑Que Son granitic rocks were also medium‑grained and gray‑white to
slightly pink in color. The main constituent minerals were K‑feldspar, plagioclase, quartz,
and biotite. Zircon, apatite, opaque minerals (ilmenite and pyrite), and muscovite were
also observed as minor constituent minerals. The chloritization of biotite was recognized
in some samples.

The Van Canh granitic rocks contained hornblende and small amounts of titanite,
whereas the Ben Giang‑Que Son granitic rocks did not contain these minerals but were
accompanied by small amounts of muscovite. These facts indicated that the Van Canh
granitic rocks were I‑type and magnetite‑series granitic rock, while the Ben Giang‑Que
Son granitic rocks were I‑ to S‑type and ilmenite‑series granitic rock [48,49].

4.2. Magnetic Susceptibility
The classification of magnetite‑series and ilmenite‑series granitic rocks was first pro‑

posed by Ishihara [31].
Themagnetic susceptibility of samples from both granitic rock suiteswasmeasured at

each outcrop, as shown in Figure 4. Because the averagemagnetic susceptibility of the Van
Canh granitic rocks was higher than 3 × 10−3 SI units, they were classified as magnetite‑
series granitic rocks [48]. However, sample VN307 showed magnetic susceptibility values
lower than 3× 10−3 SI units at several points, which could have been due to theweathering
of the granitic rocks on the ground surface. In contrast, all of the Ben Giang‑Que Son
granitic rocks showed magnetic susceptibility values lower than 3 × 10−3 SI units and
were classified as ilmenite‑series granitic rocks [48].
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4.3. Whole‑Rock Chemical Composition
Thewhole‑rock chemical composition analysis results for theVanCanh andBenGiang‑

Que Son granitic rock samples are summarized in Table 3.

Table 3. Whole‑rock chemical compositions of the Van Canh and Ben Giang‑Que Son granitic
rock samples.

Locality Van Canh Granitic Rock Ben Giang‑Que Son Granitic Rock

Sample
No. VN301 VN303 VN304 VN307 VN308 VN310 VN311 VN312 VN313 VN316 VN302 VN305 VN306 VN309 VN315

SiO2 % 71.46 66.92 73.45 68.22 72.45 72.34 72.34 72.76 60.86 63.65 72.87 70.14 72.56 68.26 73.19
Al2O3 % 13.43 15.22 13.55 14.64 13.14 13.44 14.58 13.21 15.54 16.03 14 14.97 13.55 14.36 13.45

Fe2O3(T) % 2.46 3.22 1.84 3.72 2.09 2.07 1.46 2.06 5.54 4.89 1.37 2.7 2.23 4.68 1.94
MnO % 0.065 0.047 0.049 0.053 0.075 0.032 0.055 0.062 0.082 0.074 0.023 0.037 0.027 0.05 0.061
MgO % 0.49 0.87 0.22 0.81 0.12 0.41 0.45 0.47 3.04 1.81 0.32 0.73 0.3 1.67 0.28
CaO % 1.66 3.19 1.16 3.26 0.65 1.72 1.99 1.66 4.94 4.38 1.37 2.43 1.09 3.01 0.58
Na2O % 3.02 3.59 3.36 3.08 3.43 2.58 3.34 3.18 2.87 3.19 3.15 2.81 2.24 3.38 3.74
K2O % 4.72 4.11 5.1 3.18 5.71 5.01 4.43 4.11 2.49 3.68 4.72 4.78 5.95 1.65 4.82
TiO2 % 0.368 0.43 0.184 0.504 0.228 0.227 0.212 0.267 0.807 0.838 0.24 0.412 0.288 0.525 0.18
P2O5 % 0.08 0.1 0.02 0.12 0.01 0.06 0.04 0.05 0.23 0.17 0.06 0.13 0.09 0.05 0.01
LOI % 1.07 1.66 0.61 1.19 0.9 0.74 1.08 1 1.94 1.28 1.26 0.75 1.18 1.34 1.24

Total % 98.83 99.36 99.55 98.77 98.8 98.63 98.99 98.82 98.34 100 99.39 99.88 99.5 98.98 99.5

Sc ppm 6 6 7 7 10 3 4 6 13 11 3 5 6 9 6
Be ppm 3 2 2 2 3 2 2 4 2 2 3 3 2 3 3
V ppm 20 51 11 40 <5 20 18 22 110 88 14 26 9 61 6
Ba ppm 378 714 317 694 93 491 964 334 840 961 860 624 423 86 690
Sr ppm 159 326 95 278 15 244 245 125 785 424 243 297 129 191 97
Y ppm 26 20 24 15 36 12 10 39 17 35 11 11 18 8 43
Zr ppm 191 166 173 211 335 136 94 158 192 327 149 224 221 237 275
Cr ppm <20 <20 <20 <20 <20 <20 <20 <20 60 20 <20 <20 <20 40 <20
Ni ppm <20 <20 <20 <20 <20 <20 <20 <20 20 <20 <20 <20 <20 20 <20
Cu ppm <10 <10 <10 <10 <10 <10 <10 <10 < 10 10 <10 <10 <10 30 <10
Zn ppm 40 30 50 <30 50 <30 <30 <30 60 50 <30 40 50 60 40
Ga ppm 16 21 17 18 17 15 13 16 19 18 19 19 18 19 18
Ge ppm 1 2 2 1 2 1 1 2 1 1 1 2 2 1 2
As ppm <5 <5 < 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5
Rb ppm 220 179 195 109 194 188 109 248 78 137 247 185 270 141 210
Nb ppm 11 14 8 7 13 5 4 13 9 15 8 8 13 16 16
Mo ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Ag ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
In ppm <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Sn ppm 3 2 2 1 2 1 1 3 1 2 5 3 4 3 3
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Table 3. Cont.

Locality Van Canh Granitic Rock Ben Giang‑Que Son Granitic Rock

Sample
No. VN301 VN303 VN304 VN307 VN308 VN310 VN311 VN312 VN313 VN316 VN302 VN305 VN306 VN309 VN315

Sb ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Cs ppm 3.7 1.8 2.4 2.2 2.8 3.5 1.3 7.2 1.7 2.4 8.4 5.7 3.8 6.9 2.4
La ppm 48.8 38.5 62.8 44.4 134 47.8 19.4 42.3 39.7 60.1 46 75.2 122 33 61.5
Ce ppm 99.5 75.3 126 85.5 250 89.7 32.9 83.4 78.7 118 81.9 147 223 63.6 128
Pr ppm 11.3 8.35 14.1 9.22 26.6 9.31 3.35 8.99 9.13 13.2 8.29 16.5 28.8 6.81 14.6
Nd ppm 40.2 30.1 49.8 32.3 93.5 30.9 11.4 32.3 34.8 49.7 27.4 58.8 101 24.1 53
Sm ppm 7.2 5.8 9.2 5.4 14.2 5.1 2.1 6.2 6.2 9.3 4.4 9.2 17.9 4.6 10.4
Eu ppm 0.98 1.1 0.47 1.12 0.95 0.73 0.83 0.7 1.39 1.39 0.59 1.02 1.18 0.66 1.11
Gd ppm 5.5 4.5 6.9 4 10 3.3 1.8 5.3 4.6 7.3 3 5.3 11.2 3.4 8.2
Tb ppm 0.8 0.7 0.9 0.5 1.3 0.4 0.3 0.9 0.6 1.1 0.4 0.6 1.2 0.4 1.3
Dy ppm 4.4 3.8 5 2.8 7 2.2 1.6 5.4 3.1 6.3 2.1 2.6 4.9 1.9 7.7
Ho ppm 0.9 0.7 0.9 0.5 1.3 0.4 0.3 1.2 0.6 1.2 0.4 0.4 0.7 0.3 1.5
Er ppm 2.6 2 2.5 1.4 3.6 1.1 0.9 3.8 1.6 3.4 1 1.1 1.6 0.8 4.3
Tm ppm 0.38 0.3 0.35 0.19 0.51 0.16 0.14 0.63 0.24 0.49 0.15 0.14 0.2 0.12 0.66
Yb ppm 2.3 1.9 2.2 1.1 3.3 1.1 0.9 4.3 1.5 3.1 0.9 0.8 1.1 0.8 4.8
Lu ppm 0.34 0.29 0.34 0.16 0.5 0.16 0.14 0.7 0.22 0.47 0.14 0.11 0.17 0.12 0.78
Hf ppm 4.9 4.4 4.7 4.8 7.7 3.3 2.2 4.3 4.4 7.5 3.6 5.4 5.6 5.8 8.5
Ta ppm 1.6 1.8 1 0.8 1.4 1 0.8 2.1 0.8 1.3 1.7 1 1.3 1.9 3
Tl ppm 1.1 0.9 1 0.6 0.9 0.9 0.5 1.1 0.5 0.6 1.4 1 1.5 0.9 1
Pb ppm 20 24 22 14 27 25 16 21 17 15 45 25 42 16 24
Bi ppm <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 0.6 1 <0.4 <0.4 <0.4
Th ppm 28.6 13.8 25.2 12.7 26 37.7 11.5 33.8 9.7 18.7 29.9 28.3 64.6 16.6 29.3
U ppm 4.7 1.8 3.7 1.9 3.9 10.2 1.3 10.2 1.7 2.7 7.9 3.7 4.7 4.6 4.9

A total alkali versus SiO2 (TAS) diagram for the granitic rock samples, based on the
analytical results, is shown in Figure 5 [50,51]. On the basis of these results, many of the
VanCanh granitic rockswere classified as granite, but therewere some rocks showing dior‑
ite (VN313) to granodiorite (VN303, VN307, and VN316) compositions. In contrast, most
of the Ben Giang‑Que Son granitic rocks were classified as granite and only one sample
(VN309) was classified as granodiorite.
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diorite (VN313) to granodiorite (VN303, VN307, and VN316) compositions. In contrast, 
most of the Ben Giang-Que Son granitic rocks were classified as granite and only one 
sample (VN309) was classified as granodiorite. 

 
Figure 5. Classification of the Van Canh and Ben Giang-Que Son granitic rock samples, on the basis 
of a total alkali versus SiO2 (TAS) diagram. The classification boundaries are from Cox et al. [50] and 
Wilson [51]. The dashed line is a boundary between alkalic and non-alkalic rocks. 

On the Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) (A/NK versus A/CNK) 
diagram [52] (Figure 6), the Van Canh granitic rocks were plo ed in the metaluminous to 
peraluminous region with Al2O3/(CaO + Na2O + K2O) molar ratios <1.1, so they were 
classified as I-type granitic rocks [52]. The Ben Giang-Que Son granitic rocks were all 

Figure 5. Classification of the Van Canh and Ben Giang‑Que Son granitic rock samples, on the basis
of a total alkali versus SiO2 (TAS) diagram. The classification boundaries are from Cox et al. [50] and
Wilson [51]. The dashed line is a boundary between alkalic and non‑alkalic rocks.

On theAl2O3/(Na2O+K2O) versusAl2O3/(CaO +Na2O+K2O) (A/NKversusA/CNK)
diagram [52] (Figure 6), the Van Canh granitic rocks were plotted in the metaluminous
to peraluminous region with Al2O3/(CaO + Na2O + K2O) molar ratios <1.1, so they were
classified as I‑type granitic rocks [52]. The Ben Giang‑Que Son granitic rocks were all plot‑
ted in the peraluminous region and were classified as I‑type to S‑type granitic rocks, with
Al2O3/(CaO + Na2O + K2O) molar ratios of around 1.1.
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On the Zr versus 10,000 × Ga/Al diagram [53] (Figure 7), two Van Canh and one Ben 
Giang-Que Son granitic rock samples were plo ed in the A-type region, while the others 
were plo ed in the I- and S-type regions. Combined with the data from the Al2O3/(Na2O 
+ K2O) versus Al2O3/(CaO + Na2O + K2O) diagram, the Van Canh samples were classified 
as I-type granitic rocks, while the Ben Giang-Que Son samples were classified as I- to S-
type granitic rocks. 

 
Figure 7. Zr versus 10000 × Ga/Al diagram for the Van Canh and Ben Giang-Que Son granitic rock 
samples, showing the classification of I-, S-, and A-type granitic rocks [53]. 

On the basis of the Rb versus (Yb + Ta) tectonic classification diagram of Pearce [54] 
(Figure 8), the Van Canh granitic rocks were classified as volcanic arc to syn-collisional 

Figure 6. Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) (A/NK versus A/CNK) diagram
for the VanCanh and BenGiang‑Que Son granitic rock samples, showing the classification of I‑ and S‑
type granitic rocks and the classification of metaluminous and peraluminous rocks [52]. The dashed
line is a boundary between I‑type and S‑type granitic rocks.

On the Zr versus 10,000 × Ga/Al diagram [53] (Figure 7), two Van Canh and one Ben
Giang‑Que Son granitic rock samples were plotted in the A‑type region, while the others
were plotted in the I‑ and S‑type regions. Combined with the data from the Al2O3/(Na2O +
K2O) versus Al2O3/(CaO +Na2O +K2O) diagram, the Van Canh samples were classified as
I‑type granitic rocks, while the Ben Giang‑Que Son samples were classified as I‑ to S‑type
granitic rocks.
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Figure 7. Zr versus 10,000 × Ga/Al diagram for the Van Canh and Ben Giang‑Que Son granitic rock
samples, showing the classification of I‑, S‑, and A‑type granitic rocks [53].

On the basis of the Rb versus (Yb + Ta) tectonic classification diagram of Pearce [54]
(Figure 8), the Van Canh granitic rocks were classified as volcanic arc to syn‑collisional
granitic rocks, while most of the Ben Giang‑Que Son granitic rocks were classified as syn‑
collisional granitic rocks.
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Figure 9. Classification of adakitic and non-adakitic rocks in the Van Canh and Ben Giang-Que Son 
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Chondrite-normalized rare earth element (REE) pa erns [56] were constructed using 
the values from MaDonough and Sun [57] (Figure 10). The results revealed that all of the 
Ben Giang-Que Son granitic rocks exhibited negative Eu anomalies. While many of the 
Van Canh granitic rock samples also exhibited negative Eu anomalies, these anomalies 

Figure 8. Tectonic setting classification diagram for the Van Canh and Ben Giang‑Que Son granitic
rock samples (from Pearce et al. [54]). Abbreviations: VAG, volcanic arc granite; syn‑COLG, syn‑
collision granite; WPG, within plate granite; ORG, ocean ridge granite.

On the Sr/Y versus Y diagram [55], which distinguishes adakitic and non‑adakitic
rocks (Figure 9), some of the Van Canh and Ben Giang‑Que Son granitic rocks were plot‑
ted in the adakitic field. Overall, they also exhibited slightly higher Sr/Y ratios than those
found in typical non‑adakitic rocks. This indicated the higher or lower degrees of involve‑
ment of adakitic magma in both granitic rock suites.
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Figure 9. Classification of adakitic and non‑adakitic rocks in the Van Canh and Ben Giang‑Que Son
granitic rock samples using the Sr/Y versus Y diagram (Defant and Drummond [55]).

Chondrite‑normalized rare earth element (REE) patterns [56] were constructed using
the values from MaDonough and Sun [57] (Figure 10). The results revealed that all of the
BenGiang‑Que Son granitic rocks exhibited negative Eu anomalies. Whilemany of theVan
Canh granitic rock samples also exhibited negative Eu anomalies, these anomalies were
smaller in some samples, such as VN307 and VN311, whereas one sample VN313 showed
a slightly positive Eu anomaly, which may indicate an accumulation of plagioclase.
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Figure 10. Chondrite‑normalized rare earth element (REE) patterns [56] of the Van Canh and Ben
Giang‑Que Son granitic rock samples. The chemical compositions of the chondrite were taken from
McDonough and Sun [57].

4.4. Chemical Compositions of Biotite
The biotite in the Ben Giang‑Que Son granitic rocks, except for one point, exhibited

high total Al contents (2.6–3.4; on the basis of O = 22) and low Mg/(Mg + Fe) molar ratios
(0.2–0.45) (Figure 11). In contrast, the biotite in the Van Canh granitic rocks tended to
have low total Al contents (2.25–2.95; on the basis of O = 22) and high Mg/(Mg + Fe) molar
ratios (0.3–0.65).
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4.5. Nd–Sr Isotope Ratios
The results of the Nd–Sr isotope ratio analysis are summarized in Table 4. In addition,

using the zirconU‑Pb ages of ca. 240Ma for theVanCanh granitic rocks [29] and ca. 270Ma
for the BenGiang‑Que Son granitic rocks [28], the calculated initialNd, (143Nd/144Nd)i, and
Sr, (87Sr/86Sr)i isotope ratios are shown in Figure 12. The (143Nd/144Nd)i ratios of the Van
Canh andBenGiang‑Que Songranitic rockswere 0.511872–0.512216 and 0.511820–0.511984,
respectively, showing that therewere no significant differences. In contrast, the (87Sr/86Sr)i
ratios of the Van Canh and Ben Giang‑Que Son granitic rocks were 0.706821–0.716976 and
0.709143–0.729246, respectively, showing that the Ben Giang‑Que Son granitic rocks evi‑
dently had higher initial values.

Table 4. Results of Sr and Nd isotope ratio measurements for the Van Canh and Ben Giang‑Que Son
granitic rock samples.

Sample
No.

U‑Pb Age
(Ma)

87Sr/86Sr ±1σ 87Rb/86Sr (87Sr/86Sr)i 143Nd/144Nd ±1σ 147Sm/144Nd (143Nd/144Nd)i

Van Canh
granitic rock

VN301

240

0.722798 0.000007 3.91085 0.709447 0.512147 0.000007 0.112944 0.511969
VN303 0.720207 0.000009 3.92101 0.706821 0.512063 0.000006 0.121509 0.511872
VN304 0.729589 0.000008 36.7688 0.709770 0.512135 0.000005 0.116497 0.511952
VN307 0.718747 0.000007 1.25699 0.714456 0.512057 0.000005 0.105424 0.511892
VN310 0.723084 0.000008 1.78920 0.716976 0.512073 0.000007 0.104079 0.511910
VN311 0.710642 0.000004 1.10690 0.706863 0.512398 0.000007 0.116171 0.512216
VN312 0.729153 0.000010 5.61124 0.709998 0.512211 0.000007 0.121047 0.512021
VN313 0.710342 0.000008 0.280503 0.709385 0.512204 0.000006 0.112351 0.512028
VN316 0.712022 0.000009 0.912302 0.708907 0.512244 0.000005 0.118003 0.512059

Ben
Giang‑Que
Son granitic

rock

VN302

270

0.721474 0.000008 2.87263 0.710439 0.512163 0.000005 0.101265 0.511984
VN305 0.720205 0.000008 2.73699 0.709691 0.512037 0.000004 0.098663 0.511862
VN306 0.741282 0.000012 3.13335 0.729246 0.512017 0.000004 0.111757 0.511820
VN309 0.727150 0.000009 4.19688 0.711028 0.512073 0.000005 0.120362 0.511860
VN315 0.732672 0.000011 6.12512 0.709143 0.512140 0.000007 0.123741 0.511921
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5. Discussion
The Ben Giang‑Que Son granitic rocks had intermediate compositions between I‑type

and S‑type granitic rocks and were classified as ilmenite‑series granitic rocks. Their ini‑
tial Sr isotope ratio values indicated that they incorporated large quantities of continental
crustal materials (Figure 12) [46,58]. Continental crustal materials, such as clastic sedimen‑
tary rocks, usually contain carbon or graphite [48,49]. Jiang et al. [33] demonstrated that
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the KontumMassif basement consists mainly of different units of metasedimentary rocks,
which were derived from clastic sedimentary rocks deposited in five periods. Magma be‑
comes reductive when these continental crustal materials are incorporated. In magma that
has become reductive due to the incorporation of carbon or graphite, Eu3+ is reduced to
Eu2+ and is incorporated into plagioclase. As plagioclase is removed from the magma by
differentiation, Eu3+ in themagma becomes relatively low, resulting in negative Eu anoma‑
lies in chondrite‑normalized REE patterns. In addition, the incorporation of peraluminous
continental crustal materials, such as clastic sedimentary rocks, increases A/CNK ratios
and total Al contents in biotite. Reflecting these facts, the Ben Giang‑Que Son granitic
rocks were classified as syn‑collision granite in our tectonic setting classification diagram
(Figure 8) [54]. Some of the Ben Giang‑Que Son granitic rocks could also be classified as
adakitic rocks (Figure 9). Adakite is thought to be formed by the subduction of young
oceanic crusts or ridges under relatively high temperatures [55]. The combined data sug‑
gested that the magma of the Ben Giang‑Que Son granitic rocks was formed by the sub‑
duction of the Song Ma Ocean beneath the Indochina Block, then the magma separated
and ascended through the mantle to reach the continental crust (Figure 13). The initial Sr
isotope ratio values indicated that high proportions of continental crustal materials were
incorporated at this time. Adakiticmagma tends to produce I‑type andmagnetite‑series ig‑
neous rocks [3,19,59]; however, the subsequent incorporation of Al‑rich continental crustal
materials and the reduction by carbon or graphite housed within these materials, such as
clastic sedimentary rocks, produces I‑ to S‑type and ilmenite‑series granitic rocks. Most
of the granitic rocks in the Loei Fold Belt, formed by the subduction of the Paleo‑Tethys
Ocean between the Sibumasu Block and the Indochina Block beneath the Indochina Block,
are classified as adakitic rocks [11,19,59].
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On the other hand, theVanCanhgranitic rockswere classified as I‑type andmagnetite‑
series granitic rocks. Hung et al. [28] considered the Van Canh granitic rocks to be S‑type
granite; however, this was an error. The incorporation of continental crustal materials was
evident from their high initial Sr isotope ratios, but the amounts incorporated were rela‑
tively low compared to those in the Ben Giang‑Que Son granitic rocks (Figure 12). This
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was also reflected in the low A/CNK ratios and low total Al contents in the biotite in the
Van Canh granitic rocks (Figure 11). Some of the Van Canh granitic rocks, as with the Ben
Giang‑Que Son granitic rocks, were formed from adakitic magma. However, the quan‑
tities of continental crustal materials incorporated into the Van Canh granitic rocks were
smaller than those in the Ben Giang‑Que Son granitic rocks. Adakitic magmatism has
been reported in the Truong Son Fold Belt in Laos [3]. In addition, the Ben Giang‑Que Son
granitic rocks (ca. 280–260Ma) [29], which intruded before the Van Canh granitic rocks (ca.
251–229 Ma) [28], caused high‑temperature metamorphism within the continental crust
(Figure 13). Hence, carbon or graphite in the surrounding continental crustal materials
is thought to have been decomposed, to some extent, owing to the intrusion of the Ben
Giang‑Que Son granitic rocks. The later‑intruding Van Canh granitic rocks, which incor‑
porated continental crustal materials with less amount of carbon or graphite, were less
reducing than the Ben Giang‑Que Son granitic rocks. This was reflected by their ability
to maintain the magnetic susceptibility of magnetite‑series granitic rocks (Figure 12) [48].
These differences in petrogenesis and tectonic history ultimately led to the differences in
geochemical signatures and magnetic susceptibility between the Ben Giang‑Que Son and
Van Canh granitic rocks.

6. Conclusions
Ben Giang‑Que Son and Van Canh granitic rocks are widely distributed across the

southern Kontum Massif. Their zircon U–Pb ages indicate that the Ben Giang‑Que Son
granitic rocks were formed during the Permian period (280–260 Ma) and that the Van
Canh granitic rocks were formed during the Triassic period (251–229 Ma). Both the Ben
Giang‑Que Son and Van Canh granitic rocks were derived from magma of oceanic crust
origin, generated by the subduction of the Song Ma Ocean, which is part of the Paleo‑
Tethys Ocean, beneath the Indochina Block. The Ben Giang‑Que Son granitic magma
was originallymetaluminous but subsequently incorporated a large quantity of carbon or
graphite‑rich continental crustal materials, which chemically transformed the Ben Giang‑
Que Son granitic rocks from I‑type and magnetite‑series granitic rocks into I‑ to S‑type
and ilmenite‑series granitic rocks. The Ben Giang‑Que Son granitic rocks have high
A/CNK ratios and high total Al contents in their biotite due to the incorporation of conti‑
nental crustal materials. The intrusion of the Ben Giang‑Que Son granitic rocks into the
continental crust resulted in high‑temperature metamorphic alterations, which decom‑
posed some of the carbon or graphite contained in the surrounding continental crustal
materials. The later‑formed Van Canh granitic rocks were also derived from adakitic
magma and incorporated continental crustalmaterials, but in smaller amounts compared
to those in the Ben Giang‑Que Son granitic rocks. As a result, the Van Canh granitic rocks
have relatively low A/CNK ratios and low total Al contents in their biotite. In addition,
much of the carbon or graphite in the continental crustal materials was already decom‑
posed by the high‑temperature metamorphism associated with the intrusion of the Ben
Giang‑Que Son granitic rocks; hence, the Van Canh granitic rocks retained I‑type and
magnetite‑series signatures.
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