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Introduction 

The following text briefly describe the mass balance method from Ague and Van Haren 
(1996) [72] used in our article. The main objective of this method is to calculate the gain and loss 
of elements or species with few samples. This is possible because the method contemplates the 
bootstrap procedure which creates virtual samples (or bootstrap samples) by averaging the real 
samples (i.e., laboratory samples) randomly. In addition, the protolith to altered rock 
transformation is better evaluated by the transformation between the bootstrap samples allowing 
creating a statistical distribution and the probabilities of loss and gain for each element or species. 
However, the reader may follow the Ague and Van Haren (1996) [72] article for a full 
comprehension of the method. 

Gain and Losses of Elements Calculations 
The gain (enrichment) and loss (depletion) of elements during mantle serpentinization and 

fault rock formation were calculated using the method proposed by Ague and Van Haren (1996) 
[72]. This method considers the mass and volume changes in metasomatically altered rock 
relative to the protolith. As a result, one has the time-integrated effect of all metasomatism that a 
given altered rock or suite of altered rock has undergone. The total mass change is given by 
Equation (1)  𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 = ቆ𝐶௜௢𝐶௜ᇱ ቇ − 1 (1)

where C is the concentration of immobile elements (i) in a protolith or original rock (o) and an 
altered rock (‘ ). Volume strain (ε), results from mass gain or loss and changes in bulk density (ρ), 
as shown in Equation (2). 
 𝑓𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 = ቆ𝐶௜௢𝐶௜ᇱ ቇ ቆ𝜌௢𝜌ᇱ ቇ − 1 (2)

From Equations (1) and (2), one has a positive value in case of mass gain or volume increase 
and a negative value for mass loss or volume decrease. 

The total mass change of the mobile elements (j), τ, can be calculated from Equation (3) that 
expresses mass changes for j in terms of rock chemical, physical and volumetric properties.   
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𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 𝑗 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑗𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑗 = ቆ𝜌ᇱ𝜌୭ ቇቆ𝐶௝ᇱ𝐶௝୭ቇ (ϵ + 1) − 1 (3)

This equation can be viewed in terms of the concentration of immobile elements 
substituting the volumetric strain from Equation (2) in Equation (3), as shown in Equation (4). 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 𝑗 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑗𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑗 = ቆ𝐶௜௢𝐶௜ᇱ ቇ ቆ𝐶௝ᇱ𝐶௝୭ቇ − 1 (4)

Two important points that cannot be forgotten when use this method, the concentration of 
an element cannot be zero and the sum of the elements needs to be 100 wt%. This is because zero 
concentration of any element will pose statistical issues, as we describe later. 

Usually, the mass balance analysis assumes that volume strain and mass change have a 
normal distribution (Gaussian), but in reality, these distributions can be highly non-normal. Ague 
and Van Haren (1996) [72] show that assuming a normal distribution for compositional data can 
be misleading, especially when calculating mass balances. These authors use the so-called 
bootstrap method, which is essentially a Monte Carlo analysis that estimates the data distribution 
instead of assuming any a priori distribution. In addition, it can access confidence intervals for 
the results. Let 𝐶௡,௠ be the concentration of the 𝑚-th constituent at the 𝑛-th sample. The bootstrap 
method consists of randomly choosing 𝑁 samples and generating a new synthetic sample by 
averaging the original concentrations. For this, we use the Aitchison (1989) [98] Measure of 
Location (AML), shown in Equation 5, (Cതଵ, Cതଶ, … Cതெ) = (𝑔ଵ,𝑔ଶ, … ,𝑔ெ)0.01∑ 𝑔௠ெ௠ୀଵ  , (5)

 
where 𝑀 is the total number of species and 𝑔௠ is the geometric mean concentration of 

constituent m, 

 𝑔௠ = 𝑒𝑥𝑝 ൥𝑁ିଵ෍ 𝑙𝑛൫𝐶௡,௠൯ே
௡ୀଵ ൩ (6)

 
By repeating this experiment a number of times we can generate many synthetic data. In the 

random sampling, some of the original data can be absent or even appears more than once. 
Taking a dataset with 4 samples as an example, with the bootstrap method one can make 
thousands of simulations calculating the arithmetic mean, S(x), using a random sampling such as 
S(x*1)=(x1+x3+x4+x4)/4;  S(x*2)=(x2+x3+x3+x3)/4 and S(x*n)=(x1+x2+x3+x4)/4, where x*n is the nth 
bootstrap sampling. The S(x*1), S(x*2),…, S(x*n) will be new virtual samples. With this approach, 
one can have a reasonably fair statistical distribution, especially in studies with few samples (see 
Figure 1 from Ague and Van Haren, 1996) [72]. Therefore, the same idea can be applied to 
Equations (1)–(3), but rather than the arithmetic mean, we calculate the AML that is more suitable 
for multivariate compositional data (Aitchison, 1989) [98]. But as mentioned before, as we are 
dealing with the geometric mean, it cannot have zero values. We can now calculate the mass 
change using bootstrap  𝑇෠∗ = ቆCത௜௢Cത௜ᇱ ቇ − 1 (7)
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𝜏̂௝∗ = ቆCത௜௢∗Cത௜ᇱ∗ቇ ቆCത௝ᇱ∗Cത௝୭∗ቇ − 1 (8)

 
where 𝐶̅ is the AML calculated using Equation (5), and * indicates bootstrap samples. Volume 
change strain can be calculated using  𝜀̂∗ = ቆCത௜௢∗Cത௜ᇱ∗ቇ ቆρത௝௢∗ρത௝ᇱ∗ቇ − 1 (9)

 
The bulk density (𝜌̅) is calculated using the arithmetic mean for both protolith and altered 

rock.  
With the result of Equations (7) and (8), one can also have percentiles that is based on the 

data analysis instead of assuming a normal distribution. Therefore, the result can be expressed as 
a probability of mass and volume changes being loss or gain after a reaction.  

The geochemical reference frame is another important point for the mass and volume 
calculations. It is important to know which elements are immobile to considered them as a 
reference. Usually, elements are discarded when they are part of altered minerals and veins, 
when there is a high variation among the samples, and when the results have large uncertainties 
related to analytical problems. Ague and Van Haren (1996) [72] suggest four ways to choose the 
reference frame. Option A: use the elements whose Cത௜௢/Cത௜ᇱ ratio is closest to the mean reference 
ratio  𝑚𝑟ෞ = 𝑔𝑟̂௜ (10)

 
where 𝑔𝑟̂௜ is the estimation of the geometric mean of the assumed immobile species’ ratios. 

Option B: use the sum of the concentration of the chosen immobile species as a new one. For 
example, if one chooses TiO2 and Al2O3, their sum will create a new species. For this option, we 
need to redo the normalization in Eq. 5. Option C: use the species whose Cത௜௢/Cത௜ᇱ  ratio has the 
smallest confidence interval width. Option D: use Equation (9) directly in the mass balance 
equation and replace Cത௜௢/Cത௜ᇱ by 𝑚𝑟ෞ  in Equations (7) and (8). 

MacLean and Barrett (1993) [73] showed that elements such as Al, Ti, and Zr can be used as 
immobile species for many geological processes, including hydrothermal alteration. Immobility 
can be verified if these elements show a good linear correlation between selected protolith and 
altered rocks. This is the case for the samples we are analyzed as shown by Pinto et al. (2015) [4]. 

 


