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Abstract: We report a study using teleseismic P-wave receiver functions to infer the orientation of
the maximum horizontal principal stress from the direction of upper crustal shear-wave velocity
anisotropy. We apply an inverse approach using the Neighborhood Algorithm to conduct a nonlinear
search, attaining a best-fitting crustal model that includes shear velocity anisotropy. Unlike previous
methods reported in the literature, this method is able to distinguish anisotropy in the upper, brittle
crust from that in the lower, ductile crust in certain instances. We apply this method to teleseismically
recorded earthquakes in the Central Valley of California, the Permian Basin, Texas, northern Okla-
homa and sites near the San Andreas Fault in California. Of the forty-one stations to which we apply
this method, twenty have a good apparent signal. A misfit calculation is performed by calculating
a zero-lag cross-correlation coefficient for each modeled receiver function with the data for a given
back azimuth range. While the fast polarization direction in the upper crust of some of these stations
aligns with independent indicators of the direction of the maximum horizontal principal stress, the
fast direction in the upper crust at other stations does not, apparently indicating that the anisotropy
was resulting from a different mechanism.

Keywords: shear-wave velocity anisotropy; SHmax orientation; receiver functions

1. Introduction

Knowledge of stress orientation and relative magnitude in the crust are important
for geo-energy development and geologic carbon storage. These parameters generally
come from four sources of information: wellbore data (principally observations of stress-
induced compressional and tensile failures in relatively deep wellbores), earthquake focal
plane mechanisms (ideally the inversion of multiple high-quality mechanisms in a given
area), relatively recent geologic indicators (volcanic alignments or observations of fault
slip) and shear velocity anisotropy from local earthquakes or anthropogenic sources [1].
As originally demonstrated by [2], the application of stringent quality criteria results in
remarkable consistency among these methods despite the fact that the depths and volumes
of rock sampled vary markedly. Over the past 40 years, there has been considerable
improvement in stress determination methodologies as well as the amount of stress data
available. Nonetheless, considerable gaps in coverage persist both at local and regional
scales in North America and other areas around the world [3–5]. In this paper, we present
a study investigating whether crustal shear velocity anisotropy determined from receiver
functions of teleseismic earthquakes could provide information about stress orientation
where no other stress information is available.

Shear-wave velocity anisotropy in the crust could result from two processes—the
anisotropy could be related to the current stress state or there could be an intrinsic structural
anisotropy due to aligned fractures, fabrics, or foliation. In the former case where the
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tectonic stresses are controlling the anisotropy, if the upper, brittle portion of the crust
contains pre-existing fractures and faults at many orientations, the faults and fractures
oriented roughly perpendicular to the direction of the maximum horizontal principal stress
(SHmax) will close and/or there could be dilation of faults and fractures oriented parallel to
SHmax. Both processes cause the fast polarization direction of the shear-wave anisotropy to
align to the direction of SHmax [6,7]. The degree of anisotropy associated with the closure
and dilation of faults and fractures is on the order of 2–4% [8,9]. The latter phenomenon
that causes shear-wave anisotropy is the structural alignment of rock fabrics, which is
typically greater in the lower crust where ductile flow can align minerals [10]. The degree
of anisotropy associated with structural alignment can be as high as ~20% [11]. Due to the
difference in the magnitudes of anisotropy from the two phenomena, we expect that if the
contribution from fabric-induced anisotropy in the upper crust is slight, then it should be
possible to determine the direction of SHmax from the fast polarization direction. On the
other hand, if there is significant structurally controlled anisotropy, especially in the lower
crust where the effect is amplified by the ductility, we show that the ability to determine
the direction of SHmax can be complicated.

We test the inversion to perform a nonlinear search of parameter space to minimize the
misfit between synthetic data and the recorded receiver function data of forty-one stations.
The remainder of this paper details the methodology of this approach and then analyzes
the results to examine the interplay between lower and upper crustal anisotropy and the
potential for measuring SHmax in such a manner.

2. Materials and Methods

Forty-one stations were analyzed using the Neighborhood Algorithm inversion [12,13]:
four in the Central Valley of California, four in southern California, seventeen in the
Permian Basin, fifteen in Oklahoma and Kansas, and also the Parkfield station overlying
the San Andreas Fault in central California (Figure 1). The southern California stations
were chosen because local earthquake shear-wave splitting measurements were performed
at nearby stations [14,15]. There are also independent indicators of the orientation of
the maximum horizontal principal stress in southern California. The Central Valley and
Oklahoma stations were chosen because they had relatively little sedimentary cover, and
there are independent stress indicators available [14,16]. The Permian Basin Stations were
chosen due to the economic significance of the region. In addition, the number of stations
that we analyzed in each region was dictated largely by the computational costs of the
inversions. These computational costs are related to the high quantity (>10,000) of receiver
functions that were calculated with the total variation deconvolution (Appendix A). The
disparity in the number of stations from the California regions to the stable intraplate
regions is because we anticipated fewer tectonic impacts on the anisotropy in the latter
regions, and thus tested more thoroughly.

The method that we used to assess the anisotropy of the crust using receiver functions
is a nonlinear inversion to find a best-fitting model corresponding to the recorded receiver
function data. This method has three distinct advantages over shear-wave splitting of
Moho converted Ps phases, which is also found in the literature [10,17,18]. First, there is no
need to subjectively isolate Ps phases, which despite quality controls, may introduce error
into the shear-wave splitting method. Second, events without clear Ps phases can be used,
which may contain valuable information about other time periods of the receiver function
but may also complicate the stacking. The third advantage of this method is that it could
in principle isolate the anisotropy to just the brittle, upper crust where the stress can be
controlling the anisotropy.
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Figure 1. The four regions analyzed. The black lines are the orientations of SHmax, and the colors are 
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stress regime and 3 corresponds to compressive. 
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Figure 1. The four regions analyzed. The black lines are the orientations of SHmax, and the colors are
the relative stress magnitudes (Aφ) based on [3,4]. An Aφ value of 0 corresponds to an extensional
stress regime and 3 corresponds to compressive.

The method we employed was developed originally by [19] and furthered by [20,21].
The first step in the methodology was to deconvolve the seismograms using the total
variation method outlined in Appendix A. The azimuthal direction from which an earth-
quake arrives at the station (back azimuth) is important in the treatment of anisotropy
because patterns in the amplitudes and arrival times of waveforms with different back
azimuths can be used to calculate the velocity anisotropy beneath the station. Thus, we
binned the receiver functions into 20-degree back azimuth bins and stacked the receiver
functions within each bin after first correcting for the angle of incidence. The 20-degree bin
is subjective and dependent upon the number of events per station. If the bin is too small,
there are not enough events to stack. If it is too large, the sensitivity to back azimuth and
thus anisotropy is lessened.

Once the raw data were processed for each station, the Ps phase was isolated, and all
of the analyses presented below corresponded to inverting for just a narrow window of
2 s before and 2 s after the theoretical Ps arrival, which was acquired from the Earthscope
Automated Receiver Survey for each location. The 2 s window was intended to capture
the full Ps phase, which was anticipated to be most sensitive to crustal anisotropy. Next,
the Neighborhood Algorithm was performed in order to find a best-fitting model for this
nonlinear inversion [12,13]. The idea behind the Neighborhood Algorithm is that a set
of forward models are calculated from an initial batch of models with randomly selected
parameters. Next, a misfit calculation was performed for those initial forward models, and
a Voronoi cell was placed around each model in parameter space such that when the next
step was applied—a random walk from each of the initial models—the new models fell
within the Voronoi cell. The misfit calculation was performed on all the new models. Then,
the x number of models with the best misfits performed a random walk within their new
Voronoi cells to create the next iteration of models. The parameter x was chosen by the user
and was a function of both the desired completeness of search of the parameter space and
the number of free parameters. The process iterated until convergence, which given the
complexity of our model took about 40,000 models and 500 iterations for each station.
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The forward modeling was performed using the software RaySum [22], which uses
a ray theoretical algorithm to calculate synthetic seismograms for various back azimuths,
dipping layers, and anisotropy. The most computationally expensive part of the inversion
was performing the total variation deconvolution on the many thousands of seismograms
generated by RaySum (Appendix A). The misfit calculation was performed by calculating
a zero-lag cross-correlation coefficient between each modeled receiver function and the
data with the corresponding back azimuth range within the four second Ps window. We
used this coefficient averaged over every back azimuth bin to assess the goodness of fit,
but because the Neighborhood Algorithm minimizes misfits, we had to subtract that value
from one in the inversion.

The model we used for the forward calculations has three layers: the mantle, the
lower crust, and the upper crust (Figure 2). The motivation for separating the crust
into the lower and the upper is that the stress-controlled anisotropy is the result of the
closure and dilation of fractures, which would only occur in the upper, brittle portion
of the crust. For our objectives it was necessary to split the crust in this fashion. We
inverted for a model with only seven parameters (Table 1) by prescribing values for the
thicknesses of the upper and lower crust obtained from the Earthscope Automated Receiver
Survey H-k stacking [23]. We used a fixed relation between the P- and S-wave anisotropy
(1.64 AniP = AniS) and an empirical formula for the density of each of the free layers
(ρ = 1.6612VP − 0.4721V2

P + 0.0671V3
P − 0.0043V4

P + 0.000106V5
P) [24], and by assuming

the VP =
√

3VS ≈ 1.73VS, which is the case for a Poisson solid. For a detailed argument
on why fixing the P-wave anisotropy to the S-wave anisotropy is valid, see Appendix B.
In this design, we assumed averaged mechanical properties for the entire crust, and the
brittle/ductile transition mattered only for the anisotropy. Although eighteen parameters
were used in the forward modeling, only the fast polarization direction of the upper crust
(φ), the anisotropy percentage of the S-waves of each of the lower and upper crust (αs),
the trend and plunge of the anisotropy of the lower crust, and the shear velocity of the
averaged crust and uppermost mantle (Vs) were inverted for, because the other parameters
were either calculated from those seven or obtained from a reference. The Neighborhood
Algorithm only searches over user-prescribed ranges of values for each free parameter.
Those ranges are given in Table 1. The output of each inversion is tens of thousands
of models with corresponding misfits. These were ordered by ascending misfit and the
lowest-misfit model was assessed for the brittle fast polarization direction.
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Figure 2. The three-layered model used for the forward modeling. Note that seven of the parameters
were either derived from the other parameters (blue) or fixed based on a reference (black). The red
parameters are the free parameters. H = crustal thickness. Φ = fast polarization direction. αp and
αs = the anisotropy percentages of the P- and S-waves; one set of values for the upper crust and a
second for the lower crust. ρ = the crustal density and the mantle density. Vp and vs. = the P- and
S-wave velocity; one set for the crust, one for the mantle.
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Table 1. Ranges of values searched for each free parameter.

Parameter Upper Crust Lower Crust Mantle

Anisotropy Trend 0–180 Degree - -

Anisotropy (S) 0–10 % 0–20 %

Shear velocity Vs 3000–4000 m/s 3000–4000 m/s 4200–5200 m/s

Lower Crustal Anisotropy Trend - 0–360 degree -

Lower Crustal Anisotropy Plunge - 0–90 degree -

Testing the Inverse Algorithm

We tested the inverse algorithm using the deconvolution scheme for the receiver
functions described in Appendix A against data from a synthetic model. For the purposes
of the synthetic test, we used a model with anisotropy in both the upper and the lower
crust, such that the successful results lend credence to the ability to differentiate between
anisotropy in the two layers. The inputs and inverted parameters are shown in Table 2.
We chose to plot the model parameters in pairs of similar physical significance (e.g., Vs
crustal and Vs mantle), color-coded by the lowest-misfit model in each region of parameter
space (Figure 3). These plots allow for the quick assessment of where in the user-prescribed
parameter space the best models reside. That is, in the dark squares in Figure 3, the misfit
is low and there are good models. In the bright green squares, the misfit is high, and the
Neighborhood Algorithm will avoid these regions. The four plots corresponding to the
seven parameters can be seen in Figure 3 (the % S-wave anisotropy is plotted twice for
visualization purposes—there are an odd number of parameters). The inversion captures
all the parameters, and the waveforms were recovered effectively (Figure 4). In nearly
every parameter, an almost perfect fit was observed between the best-fitting model and the
known input. Thus, for this test, the inversions performed effectively.
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Figure 3. Results from the synthetic test of the Neighborhood Algorithm inversion. (a) Fast direction
(azimuth) versus shear-wave anisotropy in the upper crust (%). (b) Shear-wave anisotropy in the
upper crust (%) versus shear-wave anisotropy in the lower crust (%). (c) Trend (degree) versus plunge
(degree) of lower crustal anisotropy. (d) Crustal versus mantle shear-wave velocity (m/s). Note that
the agreement between the synthetic model and the best-fitting model is nearly indistinguishable in
all cases.
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Table 2. Results from the synthetic test.

Average
Cross-
Correlation
Coefficient
[Unitless]

Upper
Crustal Fast
Polarization
Direction
[Degrees]

%S
Anisotropy
Upper
Crustal
[Percentage]

Vs Crustal
[m/s]

Vs Mantle
[m/s]

%S
Anisotropy
Lower Crust
[Percentage]

Anisotropy
Trend Lower
Crust
[Degree]

Anisotropy
Plunge
Lower Crust
[Degree]

Synthetic
Model n/a 65 4.0 3222 4915 16.5 117 76

Inverted
Model 0.97 64 4.0 3205 5192 17.2 116 76
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Figure 4. The radial and transverse receiver functions, binned by back azimuth, created from
the synthetic model (a,b) and by the best-fitting model in the inversion (c,d); (a,b) the radial and
transverse synthetic data. (c,d) the radial and transverse receiver functions from the best-fitting model.
The solid, horizontal black lines indicate the four second Ps window, and the dashed horizontal
gray lines are the interpretation of the top of the lower crust and the Moho. The average zero-lag
cross-correlation coefficient between corresponding traces is 0.99. The 0◦ and the 360◦ traces are
identical; data are only displayed in the 360◦ trace after the inversion.

3. Results

It is instructive to assess the signal quality of the processed data. There is often poor
signal-to-noise ratio in the data, so the results for most of these stations could not be
used (Table 3). Therefore, we both qualitatively assessed the signal-to-noise ratio of the
stacked data (Figure 5), differentiated by back-azimuth, for each station, and measured
the average zero-lag cross-correlation coefficient for each of the best-fitting models relative
to the data. The qualitative assessment of signal-to-noise ratio was quality control, in
which we checked for the presence of distinct P and Ps phases in the receiver functions.
We discarded any results where there were not distinct P and Ps phases or there was an
average cross-correlation coefficient value below 0.30.
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Table 3. The qualitative signal-to-noise ratio and zero-lag cross-correlation coefficient for each station
used in this study. The ×marks indicate stations with insufficient signal quality.

Region Station Average Zero-Lag
Cross-Correlation Coefficient

Assessment of
Signal Quality

Central Valley, CA

S05C 0.51
√

T05C - ×
T06C - ×
U05C - ×
PKD 0.74

√

Oklahoma

T33A 0.68
√

T34A 0.72
√

U33A - ×
U34A
U35A
V32A
V33A
V34A
V35A
W32A
W33A
W34A
X32A
X33A
X35A

0.71
0.71
-
-
-
0.66
0.81
-
-
-
-
0.72

√
√

×
×
×√
√

×
×
×
×√

Southern California

DEC - ×
BFS 0.63

√

BBR 0.74
√

PLM 0.81
√

Permian Basin, TX

128A - ×
129A
130A
131A
227A
228A

-
0.72
-
0.49
0.48

×√

×√
√

229A 0.65
√

230A
231A
326A
327A
328A
329A
330A
331A
428A
429A

-
-
-
0.52
-
0.48
0.60
-
-
0.55

×
×
×√

×√
√

×
×√

The average zero-lag cross-correlation coefficients of Table 3 are an indication of the
quality of the inversion, yet it is helpful as well to visualize the results. Figure 6 shows
the raw data as well as the waveforms from the best-fitting model for the PLM station
in southern California. According to the cross-correlation coefficient, this is the highest
quality of all of the twenty inversions, although station W32A in Oklahoma has nearly the
same cross-correlation coefficient. Visual inspection also corroborates that the inversion
was successful. While the waveforms from the data are not captured perfectly, the match is
sufficient to validate the efficacy of our methodology. Table 4 shows the parameters of the
best-fitting model for all twenty stations tested.
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Figure 5. Comparison of data from two stations in the Central Valley, California where the S05C
station has a clear signal, yet the T05C station does not. (a,b) radial and transverse data from the
S05C station. (c,d) radial and transverse data from the T05C station. The horizontal black, solid lines
indicate the four second Ps window, and the horizontal dashed gray lines represent the interpretation
of the top of the lower crust and the Moho. For every station, the qualitative assessment was
similarly straightforward.

The results detail a comparison of the direction of the maximum horizontal principal
stress, as understood from previous studies, to the fast polarization directions obtained from
our inversions. The previous studies on maximum horizontal principal stress directions
rely on several methods. First, there are earthquake focal plane mechanism inversions,
which take regional data on the radiation patterns from earthquakes to invert for the state
of stress that best describes the data [3]. Second, wellbore data, whether drilling-induced
tensile fractures or wellbore breakouts, are used to provide this measurement [3]. Third,
the alignment of hydraulic fractures, typically determined from microseismicity, is used [3].
Finally, shear-wave splitting measurements from local earthquakes constrain the direction
of crustal anisotropy [14,15]. These measurements from previous studies are referred to
here as independent measurements of SHmax.

We hypothesize that there are four separate phenomena represented by the fast po-
larization directions of our inversion. First, the stresses are acting on quasi-randomly
oriented fractures and faults, inducing a stress-controlled shear-wave velocity anisotropy.
Second, there are some stations that lie close to large, crustal-scale discontinuities such as
the San Andreas or Elsinore faults, and as was shown in [9], these features tend to align
the shear-wave velocity anisotropy to the strike of the discontinuity. Third, the dip of the
Moho can often cause effects on receiver functions that are nearly indistinguishable from
anisotropy [25]. Finally, the inversion has been observed to be less accurate at high values
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of lower crustal anisotropy (Appendix C). Therefore, we see the combination of the first
three factors in each of the fast polarization directions, and we see the fourth factor in the
subset of the polarization directions that have high lower crustal anisotropy.
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dashed gray lines represent the interpretations of the top of the lower crust and the Moho. The
average zero-lag cross-correlation coefficient between corresponding traces is 0.81.

In Figure 7, we see the effect of the data quality wherein only two out of the five
stations were able to be analyzed. Indeed, the S05C fast polarization direction aligns
poorly with the independent measurement of SHmas, as noted by [3]. In contrast, the data
from the PKD station along the San Andreas fault do not align to the known independent
stress indicators, which means that that anisotropy is not stress controlled. The PKD
inversion result does align with the strike of the San Andreas Fault, however, which may
mean that the inversion has identified structural anisotropy. The blue arrow indicates an
interpretation of the dip of the Moho [26]. The reason for the small number of stations
tested (five) is due to the computational cost of these inversions, and we decided to use the
majority of our resources in Texas and Oklahoma where there is not expected to be strong
structural anisotropy.
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Table 4. Full results from the best-fitting model for each of the twenty stations.

Station Fast Pol Dir % Upper Vs Crustal Vs Mantle % Lower Trend Plunge Ave-Cross-Corr

Central
Valley PKD 159.54 2.18 3040.97 4472.89 9.61 347.20 83.28 0.74

S05C 107.27 9.94 3000.08 4371.23 7.43 200.61 22.52 0.52

Oklahoma T33A 118.50 9.98 3001.45 4828.87 9.11 15.78 65.60 0.68

T34A 104.07 8.26 3412.47 4842.84 16.75 238.28 49.24 0.72

U34A 176.66 0.05 3186.66 4629.48 14.04 97.76 88.50 0.71

U35A 111.94 9.96 3384.27 4278.47 8.08 36.73 14.15 0.71

V35A 154.90 7.46 3877.31 4718.13 19.43 87.80 2.24 0.66

W32A 41.57 9.99 3251.72 4301.47 7.77 37.33 11.62 0.81

X35A 141.06 9.96 3109.19 4914.64 10.74 141.25 78.14 0.72

Permian
Basin 130A 104.56 9.99 3197.42 4855.14 10.44 43.87 61.75 0.72

227A 73.67 6.32 3000.45 5134.44 7.95 137.68 30.88 0.49

228A 99.32 2.85 3000.39 5117.56 5.34 277.19 61.70 0.48

229A 79.15 0.34 3711.20 4306.89 13.37 60.85 19.23 0.65

327A 166.59 0.13 3256.53 4217.36 19.76 113.42 48.72 0.52

330A 170.92 4.97 3573.39 4794.87 19.99 271.13 21.01 0.60

429A 12.22 3.46 3368.83 5141.99 18.75 219.87 31.95 0.55

Southern
California BBR 173.63 0.58 3967.05 4646.42 11.49 66.11 86.46 0.74

BFS 125.60 10.00 3990.80 4896.44 17.77 79.87 61.96 0.63

PLM 130.38 9.01 3983.57 4434.02 8.91 40.00 55.89 0.81

In Figure 8, there are three fast polarization directions that disagree not only with the
regional independent measurements of SHmax but also indicators of the regional upper
crustal anisotropy [14,15]. This means that the inversion is not obtaining the upper crustal
anisotropy for this region, which could be the result of the other three factors influencing
the inversion: structural anisotropy, Moho dip, and the limitations of the inversion at
high degrees of lower crustal anisotropy. The blue arrow indicates an interpretation of the
Moho dip from [27,28], and there is a correlation between that direction of dip and the
anisotropy indicators of stations BFS and BBR. The PLM station overlies the Elsinore Fault
and aligns well to the strike, which could be an indication of structural anisotropy. Once
again, computational cost was the primary impediment to analyzing more stations.

In Figure 9, there are eight out of seventeen stations that had both a qualitatively
significant signal-to-noise ratio, and an average zero-lag cross-correlation coefficient greater
than 0.30. The average of those coefficients is 0.56. Five of the seven fast polarization
directions agree well with the known stress field. The other two (330A and 429A) seem to
align at least partially with the Moho dip, and furthermore have lower crustal anisotropy
values greater than 18% (see Table 4 for the full best-fitting model results). This mixture of
Moho dip, high lower crustal anisotropy, and stress alignment may indicate that in certain
subregions the effects from the upper crustal anisotropy might be more pronounced and
lead to the good agreement with the stress field, while in other subregions the other three
factors are dominant. The Moho dip is interpreted for the Permian basin from Shen and
Ritzwoller (2016) [29].
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Figure 10 shows some of the complexities of using teleseismic waves to determine the
upper crustal stress orientation. Of the fifteen stations analyzed here, seven have sufficient
signal. On average, the average zero-lag cross-correlation coefficient is 0.72, which is
considerably higher than that of the Permian basin, most likely due to reverberations in
the Permian basin sedimentary layers decreasing the signal-to-noise ratio of the receiver
functions. Three of the stations in the northern portion of the study region (T33A, T34A,
and U35A) exhibit a fast polarization direction that is relatively close to the independent
measurements of SHmax. The degree of lower crustal anisotropy according to the best-fitting
model for the V35A station is significant (>19%), but the rest of the stations do not have
extreme values for the lower crustal anisotropy. We posit that either complicated structural
anisotropy due to faulting in the region or fabrics in the lower crust that have been uplifted
into the upper crust are the most likely explanations for the moderate performance of
the inversion. The Moho dip is not strong or systematic in this region and has thus been
omitted from the map [29].
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4. Discussion

Refs. [19,21] successfully apply techniques similar to the nonlinear inversion method
of this paper to regions in the Tibetan Plateau and Parkfield, California, respectively. In
both studies, the authors were interested in anisotropy of the lower crust. Indeed, the
potential degree of anisotropy due to mineral alignment may be as high as 20% [11], which
is significantly greater than the 2–4% reported for stress-controlled anisotropy in the upper
crust [8,9]. Therefore, the upper crustal signature that we want to discern is smaller than
the lower crustal and mantle anisotropy wherein there is a greater potential for mineral
alignment due to ductile flow. Even though the nonlinear inversion allows us to search
for just the brittle crustal anisotropy, the significant contribution from the lower crust still
had the potential to obfuscate the results (Appendix C). This is evidenced in our results by
the fact that our measurement at the BFS station (Figure 8) did not align to the anisotropy
of [14,15]. From this result, it seems clear that the inversion only sometimes successfully
differentiated anisotropy between the upper and the lower crust. The other factor that
appears to play a role in the results from the nonlinear inversion is the direction and
magnitude of the Moho dip. In Southern California (Figure 8), the BFS and BBR stations
both seem to align to a steeply dipping Moho, while in the Central Valley (Figure 7) there
is no alignment to the Moho dip at roughly 3◦. In the Permian Basin, where the dip
magnitude is only roughly 1.5◦, there are only potentially two stations influenced by the
Moho dip (330A and 429A). We must emphasize, however, that the Moho dip depicted in
Figures 7–9 is only an interpretation of published data, and the true nature of the dip is
likely more complicated.

Even in regions where the interplay of lower crustal anisotropy may be too significant
to deduce a reliable upper crustal signal, as is seen in many of the measurements of
this study, there is still information about the crust contained in these inversions. The
measurements that do not align to the direction of the maximum horizontal principal
stress may indicate that the structure of the crust is complicated and may be modeled with
more sophisticated methods that rely on plunging-axis anisotropy [30]. The results that
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differ may also represent locations where fabric from the lower crust has been uplifted
into the upper crust. The validity of the results that align to the direction of the maximum
horizontal principal stress is enhanced by those results that indicate a more complicated
structure, in that both reveal different, yet interrelated, properties of the crust. A challenge
of this technique is that it may not be possible to discern between complicated structure
and stress without prior knowledge of the stress state or crustal structure.

One of the potential problems that our algorithm faces is that the anisotropy is only
allowed to have a tilted axis in the lower crust and not the upper crust. The reason for this
is that we are interested in the component of anisotropy that lies in the horizontal plane
and may be the result of tectonic stresses. Furthermore, it has been shown that often the
strongest signal in a receiver function is the two-lobed pattern with back azimuth as a result
of tilted-axis anisotropy [31–33], yet it is unclear whether our synthetic receiver functions
exhibit this behavior. In addition, our model has significant constraints placed on it, such
as the two-layered system in the crust, which cannot incorporate multiple, thin anisotropic
layers [32]. These constraints also limit the ability to analyze fabrics developed in the lower
crust that are later uplifted into the upper crust. The result of the incomplete coverage of
tilted-axis anisotropy as well as the constraints on the model means that our algorithm,
while it likely resolves a portion of stress-induced anisotropy, does not address the full
range of realistic crustal anisotropy.

There are several high values of crustal shear-wave velocity in southern California
from our inversion results (Table 4). These may be the result of the restrictions on the
model. It is also possible that the difference in the values correspond to different depths
sampled by the modeled Ps phase. In a previous study in southern California, with a depth
of investigation of 10 km, similar values to our inversion were seen [34]. Furthermore, high
S-wave velocities are seen in locations throughout the North American crust [35].

There is a discrepancy in the average zero-lag cross-correlation coefficient values
between the Permian Basin and Oklahoma (Table 3). That is, the Permian Basin values are
on average smaller than those of Oklahoma. This is likely evidence for basin multiples
interfering with the receiver functions in the Permian Basin, but the relatively less sedimen-
tary cover in Oklahoma is allowing for a cleaner, lower misfit inversion. Therefore, when
using the nonlinear inversion method, basin multiples could play an important role in the
quality of the results.

5. Conclusions

The interplay between the upper and lower crustal anisotropy proved to cause a
clean, solely upper crustal signal to be difficult to discern. The upper crustal signal in the
nonlinear inversion method was obfuscated by lower crustal anisotropy, as is evidenced by
the misalignment between the inversion results and the previously published upper crustal
anisotropy from shear-wave splitting measurements on local earthquakes in southern
California. In the Permian Basin, five out of the seven stations that could be tested aligned
to the stress field, which may indicate that the structural complexity and the interference
from the lower crustal anisotropy is less than, for instance, in Oklahoma, where the majority
of the stations show upper crustal anisotropy that is misaligned to the stress field. The data
quality was an issue in this study, where only twenty of the forty-one stations analyzed had
both a good signal quality and a high average zero-lag cross-correlation coefficient. Those
stations that did indeed align to the independent measurements of SHmax lend credence
that perhaps if the lower crustal anisotropy is weak, and the upper crustal anisotropy is
both appreciable and the result of stress, the nonlinear inversion method could be used to
determine the direction of SHmax. Finally, a new method of receiver function deconvolution
was developed, which creates more impulsive receiver functions, but whose impact on this
study was difficult to discern.
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Appendix A

To create receiver functions, we must deconvolve the seismograms. We develop a
new deconvolution method to create more sparse receiver functions. To explain this new
deconvolution method, let us examine the discrete matrix formulation of deconvolution,
Gm = d, where m is the receiver function (either radial or transverse component), d is the
corresponding radial or transverse seismogram, and G is a matrix composed of the vertical
component of the seismogram (v with n elements) in the following way,

G =



v1 0
... . . . . . . 0

... v1 0
...

...
...

vn
... v1 0

...
...

0 vn
...

. . . 0
...

... 0 vn
... v1

...
...

... 0
. . .

... v1
...

...
... 0 vn

...

0 . . . . . .
... 0 vn



. (A1)

The number of rows in G corresponds to the length of d, and the number of columns
corresponds to the desired length of m. In this system, G and d are known components
of the seismogram, and we must invert G to solve for m. The analytic solution for over-
determined problems to Gm = d is

m =
(

GTG
)−1

GTd, (A2)

but due to near linear dependencies in GTG, the system is ill-conditioned and must be
regularized. We choose a total variation scheme that minimizes the L1 norm of the re-
ceiver function in the regularization. The L1 norm is chosen because it is less sensitive to
outliers than the L2 norm, hence since we expect discontinuities at the interfaces causing
seismic conversions, the L1 norm will avoid smoothing those like the water-level decon-
volution and an L2 norm would. To apply this regularization, we solved a second linear
system simultaneously:

α2
n

∑
i=1
|mi| = 0 (A3)

where α is an empirically determined weighting parameter. A larger value of α creates a
smaller model norm while a smaller value of α creates a smaller misfit, and α was chosen

www.IRIS.edu
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using an L-curve to balance these competing effects. The equation Gm = d and Equation
(A3) are solved simultaneously in the following manner,
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. (A4)

This system is solved with the same analytical solution in Equation (A2), but the
process was iterated such that, [

G
W

]
mk+1 =

[
d
0n

]
(A5)

where

W =
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
(A6)

and k is the iteration of the solution. Each time Equation (A5) is solved, the solution is
inserted into W and the next iteration is performed. We iterate until the reciprocal of
the condition number of the inverted matrix falls below 10−15 to ensure accuracy of the
inversion. The number of iterations is thus assessed empirically for each deconvolution.
The receiver functions calculated with this total variation regularization are certainly more
impulsive than their iterative time-domain counterparts, and they also tend to stay at zero
amplitude for longer periods of time, which is a desired effect since the P-to-S conversions
are largely expected to be sparse (Figure A1).
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We make the further assumption of fixing the P and S anisotropies to be equal. This 
is a common assumption in the literature (see e.g., [39]) due to limitations of noisy real 
data. An illustration of this is shown in Figure A2, which shows low-pass filtered radial 
and transverse model impulse responses for a 360° spread of back azimuths at a fixed ray 
parameter (0.05 s/km, corresponding to a source-receiver arc of about 78°). The model 
used contains two crustal layers (15 and 25 km thick, with P velocities of 5.2 and 5.7 km/s, 
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(trending N and NE); anisotropies of 0 and 5% in P and S in both layers are tested. The 
basic back-azimuthal patterns of polarity are essentially the same for all anisotropic 
scenarios, though there are subtle differences between the P-only and S-only anisotropic 
patterns that would require very high-quality data to differentiate; the pattern for dual P 
and S anisotropy is essentially the same as for S-only anisotropy. This similarity of 
patterns explains why P and S anisotropy are difficult to recover independently through 
inversion (see e.g., [19]). For realistic lower crustal lithologies, P and S anisotropies are not 
independent of each other and are typically of the same order [40] and therefore fixing the 
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Figure A1. Radial and Transverse components of receiver functions generated with a time domain
iterative deconvolution (red) and a time-domain total variation deconvolution (blue).

Appendix B

In formulations of anisotropy that assume an axis of symmetry, the number of in-
dependent anisotropic parameters is reduced to seven: five elastic moduli, along with
the trend and plunge of the anisotropic axis [36,37]. These moduli may be expressed as
isotropic P and S velocities, percentages of P and S anisotropy, and an additional parameter
controlling the shape of the velocity surface (η in our formulation, which is fixed at 1.03 as
per [36]). A sensitivity analysis by [38] found that at the small ray parameters typical for
receiver-function analysis, the number of recoverable anisotropic parameters from the P
coda is reduced to four. Thus, it is not possible to constrain fully anisotropic media using
Ps conversions, and a simplifying assumption such as hexagonal symmetry must be made.

We make the further assumption of fixing the P and S anisotropies to be equal. This
is a common assumption in the literature (see e.g., [39]) due to limitations of noisy real
data. An illustration of this is shown in Figure A2, which shows low-pass filtered radial
and transverse model impulse responses for a 360◦ spread of back azimuths at a fixed ray
parameter (0.05 s/km, corresponding to a source-receiver arc of about 78◦). The model used
contains two crustal layers (15 and 25 km thick, with P velocities of 5.2 and 5.7 km/s, and S
velocities of 3.1 and 3.4 km/s) whose horizontal anisotropic axes are 45◦ apart (trending
N and NE); anisotropies of 0 and 5% in P and S in both layers are tested. The basic back-
azimuthal patterns of polarity are essentially the same for all anisotropic scenarios, though
there are subtle differences between the P-only and S-only anisotropic patterns that would
require very high-quality data to differentiate; the pattern for dual P and S anisotropy is
essentially the same as for S-only anisotropy. This similarity of patterns explains why P
and S anisotropy are difficult to recover independently through inversion (see e.g., [19]).
For realistic lower crustal lithologies, P and S anisotropies are not independent of each
other and are typically of the same order [40] and therefore fixing the two to be equal is a
reasonable procedure in the absence of sufficient constraints to resolve them separately.
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Figure A2. An example of how the results are not highly dependent on the % P anisotropy.
(a) Isotropic model. (b) Only P-wave anisotropy in the model. (c) Only S-wave anisotropy in
the model. (d) Both P- and S-wave anisotropy in the model. The difference between (c,d) is minimal.

To test whether the low P anisotropy sensitivity holds when the anisotropic axes are
not horizontal, we repeated the synthetic test with a 30◦ plunge applied to the axes in both
layers. Even with this significant plunge, the back-azimuth pattern of polarities remains
very similar between the S-only and P+S anisotropies; the pattern is also very similar to
what is seen in the horizontal case, though the pattern of transverse polarities of the P
arrival becomes two-lobed. For the particular converted arrivals considered in this work,
the data are more sensitive to the horizontal component of anisotropy than to its plunge,
and more sensitive to the S anisotropy than the P, justifying our focus on the horizontal-axis
case with equal P and S anisotropy.
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Appendix C

The Neighborhood Algorithm inversion has been shown to perform less accurately
when the lower crustal shear-wave velocity anisotropy is increased. We present results of
a synthetic test where the lower crustal anisotropy is increased to 19.5% from 16.5%—as
was the case in the original synthetic test (Figure A3). We are still relatively far removed
from the maximum allowable anisotropy in our code (20%), yet areas of high lower crustal
anisotropy will obfuscate the result of the upper crustal fast polarization direction. Indeed,
in the inversion with the higher lower crustal anisotropy, the fast polarization direction of
the upper crust rotates by 26 degrees.
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Figure A3. Results from the synthetic test of higher lower crustal anisotropy. (a) Fast direction
(azimuth) versus shear-wave anisotropy in the upper crust (%). (b) Shear-wave anisotropy in the
upper crust (%) versus shear-wave anisotropy in the lower crust (%). (c) Trend (degree) versus plunge
(degree) of lower crustal anisotropy. (d) Crustal versus mantle shear-wave velocity (m/s). Note that
the agreement between the synthetic model and the best-fitting model was noticeably worse than the
first synthetic test.

As further evidence for the better performance of the inversion at intermediate values
of lower crustal anisotropy, Figure A4 shows the average cross-correlation coefficients,
which are an indication of the robustness of the inversion, as a function of the lower crustal
anisotropy percentage. In this figure, we can see for all twenty stations analyzed that
at the extremes of low and high lower crustal anisotropy values, the inversion performs
less accurately.
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