
Citation: Moretti, I.; Baby, P.; Alvarez

Zapata, P.; Mendoza, R.V. Subduction

and Hydrogen Release: The Case of

Bolivian Altiplano. Geosciences 2023,

13, 109. https://doi.org/10.3390/

geosciences13040109

Academic Editors: Jesus

Martinez-Frias and Andrea Brogi

Received: 21 February 2023

Revised: 26 March 2023

Accepted: 29 March 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

geosciences

Article

Subduction and Hydrogen Release: The Case of
Bolivian Altiplano
Isabelle Moretti 1,* , Patrice Baby 2 , Paola Alvarez Zapata 3 and Rosmar Villegas Mendoza 3

1 LFCR, UPPA, Avenue de l’Université, 64012 Pau, France
2 GET-UMR CNRS/IRD, University Paul Sabatier, Lima 15048, Miraflores, Peru
3 YPFB, Carretera Cochabamba, Santa Cruz, Bolivia
* Correspondence: isabelle.moretti@univ-pau.fr

Abstract: Natural hydrogen is known to be generated in the crust by water/rock interactions,
especially the oxidation of iron-rich rock or radiolysis. However, other sources, especially deeper
ones, exist. In the context of subduction, the dehydration of the slab, the destabilization of the NH4,
and the hydration of the mantle wedge above the subducting lithosphere may generate H2. We
present here a compilation of the known gases in the central part of the Pacific subduction and the
results of a first field acquisition dedicated to H2 measurements in Bolivia between La Paz and South
Lipez. Various zones have been studied: the emerging thrust faults of the western borders of the
Eastern Cordillera, the Sajama area that corresponds to the western volcanic zone near the Chile
border northward from the Uyuni Salar, and finally, the Altiplano-Puna Volcanic Complex in South
Lipez. Soil gas measurement within and around the Salar itself was not fully conclusive. North of
the Uyuni Salar, the gases are very rich in CO2, enriched in N2 and poor in H2. On the opposite,
southward, all the samples contain some H2; the major gas is nitrogen, which may overpass 90% after
air correction, and the CO2 content is very limited. On the western border of the Cordillera, the δC13
isotope varies between −5 and −13‰, and it is not surprisingly compatible with volcanic gas, as
well as with asthenospheric CO2. The methane content is close to 0, and only a few points reach 1%.
The isotopes (−1‰) indicate an abiotic origin, and it is thus related to deep H2 presence. The high
steam flow in the geothermal area of South Lipez combined with the H2 content in the water results
in at least 1 ton of H2 currently released per day from each well and may deserve an evaluation of its
economic value. The nitrogen content, as in other subduction or paleo-subduction areas, questions
the slab alteration.

Keywords: natural hydrogen; subduction; nitrogen; Bolivia; altiplano

1. Introduction
1.1. Natural H2 Role and Presence

In order to decrease greenhouse gas emissions, especially CO2, many countries are
aiming for a new energy mix that includes dihydrogen (H2) as a fuel. Hydrogen could be
manufactured, but natural hydrogen is potentially a cheaper and cleaner alternative [1–3].
After the discovery of H2 in Mali [4], exploration is now active in various countries such
as Australia [5–7] or the USA [8]. The geological contexts favorable to H2 generation are
numerous, but the accumulation conditions remain poorly constrained. Mantle wedge
hydration above the subducting plates is one of the contexts where H2 generation is
expected [9], and in fact, H2 has been reported above subduction, or paleo-subduction,
zones in Oman, New Caledonia, and the Philippines, among other locations. However,
many authors working on the evolution of the mantle wedge during subduction focused on
methane (CH4) generation and C and H2O cycles. Surprisingly, H2 is often only mentioned
as an intermediary to generate abiotic CH4 [10]. Since, as a fuel, H2 now looks more
desirable than CH4, we will focus on this gas.
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Various research groups are working on defining a proxy to speed up the H2 explo-
ration, but data are still missing in numerous areas since H2 is not systematically measured
in gases, whether in emanations or in subsurface. Revisiting existing data is the mandatory
first step, and large syntheses have been published [11,12]. For the Andes, there are some
data acquired by various teams that were not especially interested in H2 as resources but
confirmed that some H2 is leaking in the Andes (Figure 1a). Helium has also been studied
(Figure 1b), and the 3He/4He ratio shows that the 3He content, i.e., the He uprising from
the mantle, is very large in Bolivia. This attests that deep gases are migrating toward the
overriding plate surface above the subduction. The 3He content remains up to 18% in Peru
above the flat slab segment of the subduction [13]. When it comes to resources and not just
presence, acquiring new data is the next key step to know if an area is prospective.

Through this paper, we will share the data of the first fieldwork dedicated to H2
detection in the Bolivian Altiplano. After a resume of the geological context where H2 is
generated and a presentation of the Altiplano geological setting, the data will be presented,
as well as the journey to a more exhaustive understanding of the H2 system in the described
area. Other authors [14,15] worked in western South Lipez to understand, for instance, the
lake carbonate deposits (Laguna Pastos Grandes) or, more generally, the hot springs that
are numerous on the Altiplano [16]. Their data will be incorporated in the final discussion
as well as the results of the wells drilled by YPFB. Our new dataset contains analyses of
gases from the bubbling springs but also in situ analyses of the soil gas using data that
were not previously available.
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Figure 1. (a) Compilation of known H2 leakages at the scale of the Andes. The highest values reach
5% in Chile. Co—Chanco, F—fumaroles, B—bubbling pool. (b) Helium isotopy along the Andes
showing the importance of the mantellic gases and the difference between the flat slab area and the
dipping slab area (modified from [17]). The highest values are between 20 and 25◦ S.

1.2. Prospective Geological Settings for H2 Production

The various reactions that lead to the generation of free H2 have now been largely
published and commented on. Syntheses and complete bibliographies can be found
in [6,18,19]. There are different ways to present the reactions: depending on the H2 origin
(water, hydrocarbon, H2S, NH4, mantellic gas.) or depending on the way to liberate the
H2 as a free gas phase (oxidation, radiolysis, pyrolysis, degassing). Some authors have a
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longer list of origins, but it seems to us that it is mainly due to the lack of a synthetic view
in these early years of the understanding of H2 systems. H2 could be generated by

(1) Water reduction, which is usually linked to iron-rich rock oxidation. Olivine serpen-
tinization is the most studied reaction of this type but not the only one.

(2) Late maturation of OM, especially coal.
(3) Water radiolysis in the presence of radiogenic rock.
(4) Others: NH3, H2S destabilization, mechanoradical, degassing of the primordial mantle.

In terms of geological contexts, H2 emanations, or accumulations, have already been
found in:

(1) The Mid-Oceanic Ridge (basalt alteration and serpentinization);
(2) Ophiolitic nappes;
(3) Archean and Neoproterozoique cratons (iron-rich rock, such as BIF, oxidation and

radiolysis);
(4) Volcanic areas.

In addition, the surroundings of granite intrusions, uranium mines, or other radiogenic
rocks are also potentially prospective. Usually, when the data allow for a careful study,
the conclusions indicate more than one source. In Tuscany, for example, which is both a
back-arc system affected by granitic intrusion and a stack of ophiolitic nappes, all these
elements play a role in the presence of H2 at the surface [20].

All along the Andes, the Pacific Plate has been continuously subducting below the
Nazca Plate since the Mesozoic. Non-HC gases have been reported (CO2, N2, H2, He . . .
see Figure 1 for He and H2), so one may wonder if the H2 quantity is large enough to allow
exploitation. As for any natural resources, volumes and/or flows are key data to collect
in order to classify a deposit as exploitable or not. Concerning H2, it is still unclear if the
reservoirs that will allow major production are working as within the HC system, i.e., with
a seal able to prevent leakage, or major leakage, for millions of years [21]. Alternatively, the
reservoirs will be just a buffer where a temporary accumulation is present. This hypothesis
has been proposed for the Mali case since the reservoir is small but apparently continuously
refilled by an H2 flow coming from deeper levels [22]. Today, we do not know if this shallow
reservoir is recharged by a deeper and larger one and/or if it is directly connected to an
H2-producing zone. Similarly, in Kansas, the H2 content in some of the wells that found it
happened to be highly variable and, after an initial rapid decrease (from the initial 91%),
increased again a couple of years later [23,24]. This suggests a recharge of the reservoir at
the human timescale, and so the classical characteristics of reservoir size, porosity, net to
gross, etc., may not be crucial points for H2 production design.

Experience in managing H2 reservoirs is obviously still missing, but the analogues
should perhaps rather be sought in the field of geothermal energy. In that context, hot steam
is continuously generated by the water–rock interactions, and the limiting factor is the
volume/day that could be produced, not the final volume. Continuous water infiltration
allows recharge. Hydrogen content has been found in various hydrothermal areas: in
Iceland, where the Mid Atlantic Ridge outcrops due to the presence of a hot spot [25], in the
northern part of the East African Rift, where the Gulf of Aden ridge extends onshore [26],
and in the Larderello area [20]. In those cases, hydrogen could be a coproduct of the
geothermal activity. In Bolivia, high-temperature geothermal zones are present in the
southern part of the Altiplano, so our focus will be on this region.

1.3. H2 in Subduction Context

Hydration of the oceanic lithosphere, especially the mantellic part, generates hydrogen
in the Mid-Oceanic Ridge [27,28] but also later when the oceanic lithosphere is involved in
obduction and thrusting [9,29]. As already stated, H2 has been reported in subduction zones
such as New Caledonia, Oman, and the Philippines [9] when other authors also noted the
presence of abiotic methane whose formation also first required hydrogen generation [10].
In all these cases, the H2 may be generated in the overriding plate, where sometimes
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peridotites are present, as well as in the subducting plate or paleo-subducting plate. Another
potential origin is the mantellic wedge between the two lithospheres, which could be
hydrated by the water expelled from the subducting plate [30]. In the overriding plate,
the water required to generate the H2 may come from precipitation (or seawater). In
the subducting plate, the water is the connate water present initially in the upper crust
(Figure 2); this water is rapidly consumed and integrated into altered material. At a deeper
level, within a context of higher temperatures and higher pressures, the hydrated rocks
suffer a new process of dehydration, and the upward water flow induces the hydration of
the mantle wedge [31].
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Figure 2. Schematic view of the Pacific subduction below the Andes at about 20◦ S and of its gas and
water budget. Water, CO2, and N2, among others, are pushed down with the sediments covering
the subducting oceanic crust. Part of this water is incorporated within the serpentine that forms
during the burial of this oceanic lithosphere (1). At a deeper level, the mantle lithosphere of the
overriding plate is also hydrated (2). The serpentinites remain stable for a while, but when the
temperatures surpass 1000 ◦C, the water is released and hydrates the hot asthenospheric mantle
wedge that melts (3). In this cross-section, the overriding plate corresponds to the Andes in Bolivia
(modified from [32,33]).

This water incorporation in the mantle wedge between the slab and the overriding
plate in the subduction zone has been largely studied in order to understand the weakening
of the mantle, its melting, and the back-arc opening [31,34]. Globally, the serpentinization
takes place at 3 levels (Figure 2): a shallow one within the slab when its temperature
increases due to the increasing depth, then at an intermediary depth, around 50 km, at
the contact between the slab and the overriding lithospheric mantle in the fore-arc. At
the deepest level, and so at higher temperatures, the hydrated elements of the subducting
oceanic crust will interact with the overriding asthenosphere in the back-arc position. A
melting front develops where percolating hydrous fluid encounters mantle material hot
enough to melt [34]. As illustrated in Figure 2, the mantle wedge is indeed much warmer
than the subducting lithosphere, and the hydrated facies are unstable when the temperature
surpass about 1000 ◦C or even around 700 ◦C if we refer to the antigorite stability [35].

There are a large number of publications and thermomechanical modeling dealing
with the roles of CO2 and H2O within slab evolution. However, the possibility for the deep
processes to result in economic resources has been poorly, if at all, studied. The best-studied
areas related to hydrogen in the subduction context, Oman and New Caledonia, show the
presence of H2, but in those cases, obduction is taking place, and the late serpentinization
of the ophiolites is proposed as the main process, with the water being rain water. The
full system is, however, more complex. The presence of N2 and the gas seepage content
variations (N2/CH4/H2) across a cross-section in New Caledonia suggest that more than
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one source is active and that the main one varies across the area. The role of the mantellic
wedge within H2 generation was proposed by [30] and in part confirmed in the Pyrenean
case [36]. In this double vergence chain, H2 has been found in the two forelands and along
the thrust faults that border the reliefs [37]. The existence of a mantle wedge rather near
the surface is proven by the seismic data, and the presence of a seismic swarm on the
upper part of this wedge suggests ongoing serpentinization. The hydration process of the
olivine, which allows the serpentinization, results in a decrease in density and an increase
in volume [38] and so likely causes the recorded microseismicity.

Active subductions usually involve a rather old oceanic lithosphere plunging below a
continental one, as along the Andes; however, other settings may exist: oceanic/oceanic,
and even as in Oman and New Caledonia, a continental lithosphere plunging below an
oceanic one [30,39]. In that case, the subduction ends quickly and is blocked, and obduction
takes place. The serpentinization, and so the H2 generation, may, however, continue within
the crust as within the hydrated mantle wedge.

As already stated, in this paper, we focus on the central Andes, where an oceanic
lithosphere is plunging below a continent, and we study the gas emanations in Bolivia that
correspond to the back-arc position in the section of Figure 2. The initial data compilation
has already confirmed that H2 is present in the fore-arc zone (Figure 1), even though the
data are still scarce.

2. Geological Setting

The Andes developed on the western edge of the South American continent during the
Mesozoic–Cenozoic Pacific lithosphere subduction. Between lat. 15◦ S and 23◦ S (Central
Andes), they are characterized by the Bolivian Orocline (elbow-shaped mountain range),
high relief (several summits above 6000 m), and the Altiplano high plateau basin. This
enigmatic intermontane plateau basin has an average altitude of 3650 m a.s.l. and overlies
a thick crust (60–65 km) and an anomalous thin and heterogeneous mantle lithosphere,
leaving the place in some regions to a mantle asthenosphere wedge (Figure 2). The Altiplano
basin formed between the Western Cordillera magmatic arc and the Eastern Cordillera fold
and thrust belt beginning in the late Oligocene. Paleoelevation studies based on multiple
proxies show that a rapid uplift of the Altiplano occurred in the late Miocene [40]. This
uplift is synchronous with the Sub-Andean Zone’s eastward propagation and a major
increase in the crustal shortening [32]. It also corresponds to an intense period of back-arc
volcanism (10 to 1 Ma), with eruptions of large volumes of ignimbrites [41] concentered
in the southern Altiplano (Altiplano-Puna Volcanic Complex) and the western border of
the Eastern Cordillera (Los Frailes Volcanic Complex, Morococala Volcanic Complex, see
Figure 3). Deep seismic data [42] show that these ignimbrites are located above areas of
thin lithosphere [43].

Most authors agree that crustal shortening alone cannot explain the uplift of the
Altiplano high plateau basin. On the basis of the deep seismic data and the presence of
the late Miocene–Pliocene anomalous back-arc volcanism, they suggest that the Altiplano
uplift is mainly related to an orogen-wide lithosphere thinning, whose mechanism, related
to the abnormal hot mantle, is still under debate [43–47].

In Bolivia, the Altiplano basin is characterized by a thick Cenozoic synorogenic conti-
nental filling (4–10 km) deformed by north-south-elongated partially inverted half grabens
and by the west-vergent thrust system of the Eastern Cordillera fold and thrust belt [33,48].
The Altiplano compressive structures have been partially explored by YPFB and are imaged
by seismic reflection and reached by some wells, such as the Salinas de Garcia Mendoza,
Colchani, and Vilque wells considered in this study (Figure 3). The west-verging thrust
system of the Eastern Cordillera, the so-called Huarina fold and thrust belt, involved
Paleozoic and Mesozoic series and controlled the deformation and sedimentation of the
Neogene synorogenic deposits of the Altiplano. It has been active at least since the late
Oligocene. During the late Miocene and Pliocene, voluminous ignimbrites (Los Frailes
Volcanic Complex, Morococala Volcanic Complex) were generated along the Huarina fold
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and thrust belt [43,49]. The mean tin-producing province of Bolivia is located in the Huar-
ina fold and thrust belt near the Morococala Volcanic Complex, and tin mineralization is
genetically related to lower Miocene magmatism [49]. In the South Lipez region (south of
21◦ S latitude), the Altiplano is formed by the Altiplano-Puna Volcanic Complex, a major
magmatic province, which produced eruptions of large-volume ignimbrites during the last
10 Ma [41,50].

Geosciences 2023, 13, 109  6  of  18 
 

 

In Bolivia, the Altiplano basin is characterized by a thick Cenozoic synorogenic con-

tinental filling (4–10 km) deformed by north-south-elongated partially inverted half gra-

bens and by the west-vergent thrust system of the Eastern Cordillera fold and thrust belt 

[33,48]. The Altiplano compressive structures have been partially explored by YPFB and 

are imaged by seismic reflection and reached by some wells, such as the Salinas de Garcia 

Mendoza, Colchani, and Vilque wells considered in this study (Figure 3). The west-verg-

ing  thrust system of  the Eastern Cordillera,  the so-called Huarina  fold and  thrust belt, 

involved Paleozoic and Mesozoic series and controlled the deformation and sedimenta-

tion of the Neogene synorogenic deposits of the Altiplano. It has been active at least since 

the late Oligocene. During the late Miocene and Pliocene, voluminous ignimbrites (Los 

Frailes  Volcanic  Complex, Morococala  Volcanic  Complex) were  generated  along  the 

Huarina fold and thrust belt [43,49]. The mean tin-producing province of Bolivia is located 

in the Huarina fold and thrust belt near the Morococala Volcanic Complex, and tin min-

eralization  is genetically related  to  lower Miocene magmatism  [49].  In  the South Lipez 

region (south of 21° S latitude), the Altiplano is formed by the Altiplano-Puna Volcanic 

Complex, a major magmatic province, which produced eruptions of large-volume ignim-

brites during the last 10 Ma [41,50]. 

 

Figure 3. Simplified map of the Altiplano with the major faults, the well locations, and the studied 

area. Wells: CPQ, Coipasa; CNI, Colchani; SGM, Salinas de Garcia Mendoza; VLQ, Vilque. 

3. Gas Emanations, Oil Seeps, and Deep Wells in the Altiplano 

3.1. HC Seeps 

Oil seeps or gas seeps are proxies for exploration in the oil and gas (O&G) industry, 

as  in  this case study,  it seems reasonable  to start  the H2 exploration with a basin-scale 

Figure 3. Simplified map of the Altiplano with the major faults, the well locations, and the studied
area. Wells: CPQ, Coipasa; CNI, Colchani; SGM, Salinas de Garcia Mendoza; VLQ, Vilque.

3. Gas Emanations, Oil Seeps, and Deep Wells in the Altiplano
3.1. HC Seeps

Oil seeps or gas seeps are proxies for exploration in the oil and gas (O&G) industry, as
in this case study, it seems reasonable to start the H2 exploration with a basin-scale study of
the H2 surface emanations. Potentially, surface or near-surface acquisition and monitoring
will also help to better define the transport mode of the H2 in the subsurface [51].

Oil seeps were found mainly in the Central (Uyuni Salar) and Southern Altiplano,
along the Uyuni-Khenayani fault system (Figure 3). In this area, the presence of Late
Cretaceous source rock such as the El Molino Fm is recognized. The current TOC is rather
low, as it does not exceed 2.2%, but for all the samples being mature (Tmax > 440 ◦C), the
initial one was larger [51]. The Permian and Carboniferous, present in the North around
Lake Titicaca, do not extend southward.

3.2. Deep Wells

In the Altiplano region, O&G exploration studies were carried out led by YPFB,
the Bolivian national oil company. The expected main source rock was Late Cretaceous
(Maastrichtian) from the former back-arc system [51], whereas the petroleum system is
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mainly Paleozoic in the prolific Sub-Andean Zone [52,53]. Early Silurian and Ordovician
have been reached below the Mesozoic in the drilled wells, and so an early Paleozoic source
rock cannot be precluded. Eight exploratory wells were drilled between the 1970s and
1990s, none of them with proven HC reserves, and the main results are as follows:

• Vilque-X1 was drilled by YPFB in 1972, initially as a stratigraphic well. Below about
3000 m of Tertiary, 108 m of Late Cretaceous (El Molino Fm.) was found that directly
overlie the early Silurian. In the Eocene-Oligocene Potoco Fm and El Molino Fm, small
amounts of C1 + C2 were detected when the major gas was nitrogen in the contact
between the Potoco Fm and a saline body at 782 m. The well was completed in the
undifferentiated Ordovician at TD 3559.5 mbbp. Methane was detected [54], but the
well was abandoned as dry since the flow was low (1.4–1.9 mmcf/day in the tested
interval below the salt of the San Vicente Formation (Miocene) and because the gas
was at 80% nitrogen [55].

• Copaquila-X1 was drilled by YPFB in 1973 south of the Poopó Lake on a surface
structure. A 600 m thick Cretaceous sequence of sands and shales was drilled before
reaching a very thick salt diapir (up to 2900 m). The well was rated dry and abandoned
at TD 4065 mbbp. At about 800 m, gas traces of H2 (2.5%) and CH4 (1%), as well as
apparently N2, were detected [56].

• Salinas de Garcia Mendoza was drilled by YPFB in 1975. The targeted structure was
an anticline, but the well did not confirm any reservoir or HC indices. The Tambillo
Basalt was found at 2015 m, and the well was abandoned at 2641 m depth, still in
the Miocene.

• Toledo-X1 was drilled by Exxon in 1995. Upper Paleogene sediments were found at
the top of Palaeozoic rocks. The targets were Oligocene and Cretaceous (El Molino
unit). The well was classified dry and abandoned in the upper Ordovician with TD
3974.8 mbbp without finding hydrocarbon manifestations. A wireline formation test
in the Upper Miocene recovered gas having a composition of over 89% nitrogen and
10.3% CH4. The δ13C of the CH4 was −36‰, which is compatible with a thermogenic
gas. Surprisingly the initial report also mentions a drill stem test, which should have
recovered mainly CO2 with traces of CH4, H2S and N2 [57], though the depth of this
DST is not indicated.

• Colchani-X1A was drilled by YPFB in 1995. It is located near Uyuni, and the targeted
structure was an anticline [51]. It was abandoned at a depth of 2636.3 mbbp in the Sil-
urian and classified as dry, although it showed the existence of traces of hydrocarbons
(C1 and C2) in Cenozoic and Cretaceous rocks. A first well, Colchani-X1, detected H2S
from 12 m and, for this reason, was rapidly sealed.

To summarize, although oil and gas seeps exist in the Altiplano, as well as struc-
tures due to the ongoing compression, none of these wells proved an economic accumu-
lation of HC. The majority demonstrated large proportions, and sometimes potentially
large quantities considering their structure size, of N2. H2 has only been reported in the
Copaquila well.

4. Methods

Two methods were used to analyze the gases bubbling in the water sources and the
gases present in the soil and the fumaroles: direct measurements on the field with a GA5000
and, later, in the laboratory, GC analyses for sampled gases. The GA5000 is a gas analyzer
that may detect the gases present in the fumaroles and in the soil; it has an integrated pump.
The one we used measures 6 gases: CH4, CO2, and O2 in % and H2, H2S, and CO in ppm.
The GA installation protocol for soil and fumaroles can be found in more detail in [26]. A
one-meter-long tube, perforated at its end, was installed in the soil to pump the air present
in its porosity when there was no bubbling or fumaroles.

The accuracy of the GA5000 is good, around 1ppm, and our own tests in the laboratory
with a known gas have always been conclusive. However, we have to note that the weather
in the southern part of the Bolivian Altiplano, the South Lipez, is rather extreme. The day
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we went in the south, between Laguna Colorada and Laguna Verde (see Figure 3), the
external temperature was below −15 ◦C, and the fumaroles were over 80 ◦C; it is unknown
to us if these unusual temperatures may affect the cells. The company, Geotech, considers
that these low temperatures will not affect the measure accuracy, and indeed, the data
found in the laboratory was on the same order of magnitude. Our experience is that the
H2 content in the fumaroles [20,26] or in the soil [22,58,59] are variable with time, and so
the values have to be considered as a range of values and cannot be taken as constant. For
the soil gas content, months of monitoring are required to obtain average representative
values [22,58].

When the gas flow was large enough, several samples were collected in exetainers for
further gas analysis. The sampling was systematically triplicated. Classical gas chromato-
graph (GC) analyses were carried out at Isolab (Holland), and a plasma GC was used for a
better characterization of hydrogen. The Isolab GC has a minimum threshold of 300 ppm
for the H2, while the plasma GC has a 1 ppm minimum. However, it only measures H2,
while the classical GC measures CO2, CH4, C2H6, and O2.

When possible, isotopes (δ13C) have been obtained for CH4 and CO2. However, due
to the small sample quantity, it was impossible to realize a full set of isotope measurements.
The majority of the values that will be discussed later on are issued from the literature.

5. Data Recollection

The exact position of the sampling and the GA5000 dataset, can be found in the
Supplementary Materials.

5.1. Gas in the Huarina Fold and Thrust Belt of the Eastern Cordillera (Oruro-Uyuni)

The first studied site (Site 1 Figure 4) is located near the Morococala Volcanic Complex.
The area with hot water sources is about 12,000 m2 large. It is located below a tin mine and
along a small transfer zone between two N 170◦, east-dipping thrusts that correspond to
the last emerging ones of the Eastern Cordillera. Various pools allow the inhabitants to
take baths and/or wash clothes. The temperatures ranged from 24 to 34 ◦C depending on
the pools when we measured them (23 June 2022). Bubbling is active. The gas content is
about 1/3 of CO2 and is low in methane and hydrogen.

The other sites, Poopó (Site 2) and Pazña (Site 3), are located in similar structural con-
texts along the border faults (Figure 4). Often, the water flow is high, and the temperatures
range from 44 to 66 ◦C. In many villages, to enjoy it, the surrounding areas have been
converted into swimming pools and spas. The initial sources are usually still accessible
behind the buildings, which is where we carried out our measurements and sampling. In
the Poopó village (site 2 Figure 4), there are many swimming pools, and hot water leaks
everywhere. Along the river, at 2 km eastward of the village, the sources are also numerous;
the temperature was 66 ◦C, and the whole river was hot. This was where we sampled the
gas, which was bubbling in many places. Site 4 is also on a fault zone, but a few kilometers
eastward in the Cordillera, the temperature of the bubbling source is around 40 ◦C, and the
hot water is also used for recreative purposes even if the place, named Malliri, is rather
remote. Site 5 is a strongly bubbling source, a little bit warmer at 56 ◦C, and with water
that is also used for a public swimming pool. The place is known as Castilla Una, and the
water also leaks along an N140◦ inverse fault.
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The data from the GA in the field or in the laboratory from the samples all show a
mixture of N2 and CO2 in variable proportions, and the methane content is always low. At
Sites 2 and 3, the H2 content was around 100 ppm.

5.2. Around the Salar (Altiplano Basin)

Various measurements were carried out around Uyuni Salar (see the location in
Figure 3) in the Altiplano plateau basin where some thrusts related to the Huarina FTB are
still present. We also sampled the soil near the Colchani well heads (the two wells were
very close) and in the area where the Salinas de Garcia Mendosa well had been drilled. We
found no trace of this well drilled almost 50 years ago. The soil gas was mainly air enriched
in N2 (with about 15% O2), except near the Colchani well, where CO2 was found (about
25%). The CH4 remained low, around 0.2% from the GA5000 (Table 1). There is no fumarole
nor gas bubbling source in this area, so gas sampling of these sources was not carried out.

Table 1. Soil gas in situ measurement around the Uyuni Salar.

Name Sample CH4 (%) CO2 (%) O2 (%) H2 (ppm) CO (ppm) H2S (ppm) BALANCE (%)

Colchani
Well

7_1 0.3 25.7 13.3 0 2 0 61.2
7_2 0.3 25.8 12.1 1 2 0 61.8
7_3 0.3 28.5 11.7 1 0 0 59.5
7_4 0.3 8.3 14.1 87 2 0 77.4
7_5 0.3 6.2 14.4 0 0 0 79
7_6 0.3 0.6 15 41 0 0 84.1

Seep, East
Salar

8_1 0.3 0.2 15.5 14 0 0 84
8_2 0.3 0.2 15.5 0 0 0 84.1
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5.3. In South Lipez (Altiplano-Puna Volcanic Complex)

The hot water sources and fumaroles are rather numerous in this area; we analyzed
and sampled 12 of them located around the main road between the Salar de Uyuni and the
Lagunas Blanca y Verde southward (see location Figures 3 and 5). Soil gas contents were
also measured. The field data are presented in Table 2, and the GC analyses of the Sol de
Mañana samples are presented in Table 3.
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Figure 5. Altiplano Puma volcanic zone: (a) satellite view from Laguna Colorada to the Lagunas
Blanca y Verde, the yellow line is the border between Chile and Bolivia; (b) Sol del Mañana area with
its high fumaroles.

Table 2. Soil gas in situ measurement around the South Lipez.

Name Sample CH4 (%) CO2 (%) O2 (%) H2 (ppm) CO (ppm) H2S (ppm) BALANCE (%)

Laguna
Cachi

10_1 0.4 0.2 15.3 5 0 0 84.1
10_2 0.4 0.2 15.3 11 0 0 84.1

Laguna
Kara

11_1 0.4 0.4 15.2 0 0 0 84
11_2 0.4 0.2 15.2 0 0 0 84.2
11_3 0.4 0.2 15.2 0 0 0 84.2

Sol del
Mañana,

hot steam

12_1 0.7 4.1 14.8 32 0 214 84
12_2 0.5 1.1 15.6 0 0 74 82.6
12_3 0.5 1.6 15.6 8 0 300 80.4
12_4 only sampling

Laguna
Chalvari

13_1 0.4 0.5 15.3 87 3 7 83.8
13_2 0.4 0.3 15.5 20 0 5 83.8
13_3 0.3 0.3 15.4 23 0 4 83.9
13_4 0.4 0.4 15.1 150 1 5 84.1
13_5 0.4 0.3 15.3 14 0 4 84
13_6 0.4 0.3 15.4 8 0 4 84
13_7 0.4 0.3 15.4 0 0 0 84



Geosciences 2023, 13, 109 11 of 18

Table 2. Cont.

Name Sample CH4 (%) CO2 (%) O2 (%) H2 (ppm) CO (ppm) H2S (ppm) BALANCE (%)

Laguna
Blanca

14_1 0.4 0.4 15.3 76 1 3 83.9
14_2 0.4 0.3 15.4 4 0 3 83.9
15_1 0.4 0.2 14.9 0 0 12 84.5
15_2 0.4 0.2 15 0 0 4 84.5
15_3 0.3 0.2 15 0 0 4 84.4
16_1 0.5 0.3 15.4 121 0 3 83.7
16_2 0.5 0.3 15.5 118 0 3 83.6
16_3 0.5 0.3 15.9 82 0 3 83.3
16_4 0.5 0.3 15.9 83 0 3 83.2

Laguna
Horda

17_1 0.4 0.4 15.1 43 1 1 84.1
17_2 0.4 0.3 15.2 0 0 1 84.2
17_3 0.4 0.7 15.1 0 0 1 83.9
17_4 0.4 0.3 15.2 0 0 1 84.1
17_5 0.4 0.3 15.2 2 0 1 84.1
18_1 0.4 0.5 15.5 42 0 1 83.8
18_2 0.4 0.3 15.5 10 0 1 83.9
18_3 0.4 0.2 15.5 0 0 1 83.9
18_4 0.4 0.3 15.4 70 0 1 83.9
18_5 0.4 0.2 15.5 0 0 1 83.9

Table 3. H2 from GC in the fumaroles of Sol de Mañana.

Samples H2 (ppm)
S 12-1 161
S 12-4 371
S 12-5 106

S 12b-1 1050
S 12b-3 1335

The gas within the soil, as in the fumaroles, was completely different from what
we measured northward; the CO2 content is very low, and the N2 is high, even without
air correction (Table 2). The methane content also remains low, around 0.5%. H2S is
present in the fumaroles of the Sol de Mañana area but remains quite low or absent in the
other locations.

In terms of H2, at all the visited sites, some H2 was measured in the field, either
directly from soil gas measurements or in the fumaroles for the geothermal area. We have
to note that the soil was very difficult to drill, and some of the measures were not made at
80 cm depth as usual but at just 20 or 30 cm, which, from our experience, always results in
smaller values. The highest H2 content was found in the geothermal area where, at ground
level, the water steam reaches 95 ◦C, which indicates a rapid ascent of the gas to the surface.
Table 3 lists the H2 content measured in the laboratory from the samples taken in the steam.
One may notice that the values are higher than those given by the GA5000 in the field. The
H2 content is sometimes variable, even in the steam, which could be an explanation for this.
Alternatively, the GA sensor may have difficulties with the extreme conditions of the area;
as already noted, the outside temperature was −18 ◦C the morning we did the sampling,
and the steam was very hot. One may consider the GC values as more representative.

5.4. Near the Sajama Volcano (Western Cordillera Magmatic Arc)

The bubbling hot water sources and fumaroles are numerous in the Sajama area near
the Chilean border. Some are used for spas and swimming pools, while some remain remote
(Figure 6). The temperature was between 60 and 86 ◦C. The CO2 content reached 41%
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(Table 4, without air correction) and surpassed 80% with air correction, with the remaining
10 to 20% consisting mainly of nitrogen (12 to 14% Figure 7). In the field, the hydrogen
content was null.
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Figure 6. Sajama area: (a) satellite view of the zone with the location of the studied areas. (b) Details
of one of the bubbling pools on the site Saj_1. There are numerous hot springs that lead to green
vegetation growth in this high, about 4160 m, and desertic area. The gas is a blend of CO2/N2 and is
very CO2 rich.
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Table 4. Field and GC values in the Sajama area.

Name T◦C CH4 (%) CO2 (%) O2 (%) H2 (ppm) CO (ppm) H2S (ppm) BALANCE
(%)

Saj_1_1 74 0.5 33 12.6 0 0 0 54

Saj_1_2 61 0.5 45 14 0 0 0 45

Saj_1_3 80 0.4 48 10 0 0 2 40
GC values CH4 (%) CO2 (%) O2 (%) H2 (ppm) CO (ppm) H2S (ppm) N2 (%)

Saj_1_2 0.007 41.7 12.8 nd nd nd 44.9

6. Discussion

Due to sampling difficulty and air circulation in the upper crust, all our samples
are air contaminated. “Air correction” on gas samples refers to the process of removing
the component gases that are present in the atmosphere (such as nitrogen, oxygen, and
argon) from the gas sample being analyzed. This correction is necessary to obtain accurate
measurements of the trace gases in the sample, such as methane or hydrogen, as the
atmospheric gases can interfere with the analysis. We executed a simple correction based
on the oxygen content, and the resulting CO2/N2/CH4 is presented in Figure 7. In the
Sajama area, CO2 is clearly the dominant gas, while in the eastern border of the Altiplano,
the ratio of CO2/N2 is variable but closer to one. The methane is always negligible, and the
N2 is dominant south of the Uyuni Salar in the Altiplano Puma Volcanic Complex.

6.1. Huarina Fold and Thrust Belt, Central Altiplano Eastern Border

In the west-verging thrusts of the Huarina FTB, our results are coherent with the
measurements made by previous authors, which also showed CO2- and N2-rich gas with a
very low methane content [60]. For instance, in Pazña, the authors of one study found 64%
CO2 and 36% N2. They measured about 0.6% H2 content, and our values were even lower.
The higher values were found eastward of the area we sampled, along other thrust faults
parallel to the ones studied in this work.

The isotopes measurement done by [60], δ18O(SMOWV) − 14.89‰ and δ2H − 108‰,
suggest that the water is from meteoric origin, recharged in the Eastern Cordillera with a
small contribution, less than 10% of deep water. The neutral pH, between 6.36 in Pazña and
6.98 in Poopó, is in agreement with this shallow water circulation; other authors measured
close values, respectively, 6.57 and 7.24 [61]. In terms of shallow water circulation cells,
similarly, in the Sub Andean Zone, the faulted anticlinal and syncline succession, linked
with sharp relief variations, induce water flow between the western and eastern borders
of the anticlines. The high permeability of the damaged fault zones channels the flow,
and all the sources and oil seeps, in the SAZ case, are located along the thrusts [62,63]. In
the current study, the hot water springs are also located on the thrust fault zones; tritium
content shows that the circulating meteoric waters are young, less than 70 years, in the
Altiplano [60], as in the Sub-Andean Zone [63]. This rather shallow water circulation
through the Paleozoic and Cretaceous series that are involved in the thrusts in the western
border of the Eastern Cordillera does not suggest large H2 potential for the area. Locally,
it should be better to have additional data to completely disregard a local production
hypothesis in the proximity of the tin mines.

In the Uyuni and Copaisa Salar area, none of the surface data allow us to localize the
upward flow of H2.

6.2. Western Cordillera Magmatic Arc, Central Altiplano Western Border

In the Sajama area, our data do not indicate a noticeable H2 presence. The gas is a blend
of N2/CO2 with more than 80% CO2 after air correction (Figure 7). The δ18O(SMOWV) isotope
values indicate −12.87 for Saj_1 and −16 to −62 for Saj_2—called Kasilla in Morteani et al.’s
paper. The δ2H values are, respectively, −90 and −121‰.
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The very large geothermal gradient (200 ◦C at 1800 m, [60]) indicates a rather shallow
magma chamber. The proposed fluid circulations are similar to what has been sketched
for Iceland and the Republic of Djibouti [26,64] with meteoric cold water experiencing a
downward flow and hot steam experiencing an upward flow; however, in other provinces,
the H2 content is higher. In Bolivia, the material is basaltic [65], and thus, it is not likely that
there are iron- or olivine-rich facies that may allow H2 generation by fluid–rock interactions.
The melting of the thick crust may also play a role that remains to be studied.

6.3. South Lipez, Altiplano-Puna Volcanic Complex

In South Lipez, the geological context and the gas content are different: the CO2
content of all our data is low. In the geothermal zone of Sol de Mañana, values were
between 1 and 4% in the fumaroles—all the points where only soil gas measurements were
possible, indicating values lower than 0.3%. The GC analysis of the collected samples
confirmed the low CO2 content (from 0.07 to 2.4%; see Complementary Material). This CO2
content is drastically lower than the values found northward and may look surprising for a
volcanic area. However, these data are completely consistent with the results of the Vilque
well that tested a gas with more than 80% N2.

What has been measured in the soil is mainly air but enriched in N2 and some hy-
drogen. H2S was also present, up to 300 ppm. CO was absent. In the sol de Mañana area,
the fumaroles are at 99% water. This absence of gas has already been noted by previous
authors [66] and is clearly a positive point for the geothermal exploitation of the resources.
There are almost no toxic or corrosive gases in the steam.

Along this western border (see location Figure 3), the area of Pastos Grandes Laguna
studied by other authors [14,15] displays a similar fluid flow pattern. These authors, who
studied the freshwater carbonate of this laguna, sampled the various bubbling gases in the
hot springs that border the seasonal lake. They did not measure H2 or CH4 but did measure
CO2 (up to 86%) and N2. They also studied the water of the springs. They concluded that
the water is mainly meteoric and heated by the magma chamber that is close to the surface.
The CO2 is mantellic, and the large proportion of mantellic helium versus crustal helium,
about 47% [17], confirms the upward migration of deep gases.

7. Conclusions
7.1. H2 Resources in the Altiplano

The H2 content is globally rather low in the measured points of the Altiplano. The
main gases are CO2 and N2. In the sources bordering the Eastern Cordillera, the maximum
H2 content is always lower than 1%, and the CH4 content is also always small. The existing
data do not indicate an active H2 generation in that zone or the upward migration of H2
from the surrounding mantle.

Moving westward, the volcanic area of the Sajama exhibits a high heat flow, and deep
gases reach the surface. At more than 80%, this gas is CO2, and the data showed no H2 or
methane content. This area does not look prospective for H2 exploration.

In contrast, in the Laguna Colorada geothermal area, the gases are different. The
N2 content is very large, ranging between 80 and 90% after air correction, and the strong
steam flow may compensate for the relatively low H2 content. Several wells have been
drilled in this area down to 1700 m by ENDE; they were all productive and confirm its
HT geothermal potential [66]. An excellent energy resource of about 300MW has been
confirmed, but the area is 4900m above sea level, in a desertic and windy zone, 340 km
south of Uyuni city. This resource has been known since 1994, but the activity is very
slow to start, and, meanwhile, different larger projects have been elaborated. Only a small
5MW pilot project was under construction in 2022. The average production rate in the
wells was 350 t/h. The temperature in the reservoir is about 265 ◦C, and the pressure is
55 bars. Considering the fact that the steam contains 99% H2O and that we measure about
1000 ppm of H2 within, 39 kg of H2 is released per hour, or 936 kg/day.
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A co-production of this resource deserves to be evaluated for the Iceland power
plans [25] or in the Republic of Djibouti [26]. Gas separation from steam is an industrial
process that does not require innovation. The economy of the geothermal power plants is
often challenging, and any co-production that can increase revenue is typically welcome.

7.2. Gases from the Mantle Wedge

Previous studies have already highlighted the upward gas flow from the mantle in the
Central Andes [16]. The 3He/4He ratio, expressed as R/RA, reaches 5.5 in the volcanic arc
of the Western Cordillera between 22◦ and 19◦ S (Figure 1b). In the Laguna Colorado and
Sol de Mañana area, the R/RA is around 2.3, which means that a little bit more than 27% of
the helium is mantellic; the value reaches 44% mantle He in the Laguna Pastos Grandes. In
comparison, in the Eastern Cordillera, the values are lower. This helium signature has been
interpreted as the mark of the degassing of volatiles from mantle-derived magma. The
Altiplano and the Eastern Cordillera are behind the current volcanic arc, but convective cells
are proposed in the mantle; the extreme thinning of the mantellic lithosphere is considered
to be due to this convection. Within that general frame, the sharp variation between the
CO2-dominated area and the N2-dominated area southward remains to be understood. The
relationship of this gas content evolution and the north-to-south variation (topographic,
Bouguer anomaly and surface wave dispersion) from 21◦ S to 24◦ S highlighted by [44]
deserves attention.

We may also note that above the flat subduction zone in Peru, the high 3He/4He ratio
has been explained as derived from the subcontinental lithospheric mantle, mobilized by
the slab-derived fluids [17]. We have not yet collected new H2 data from the area of the
flat slab, but the database suggests that the values could be higher than in the Altiplano
(Figure 1a).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/geosciences13040109/s1, Table S1: Site coordinates; Table S2: GA5000
raw data, B gas from bubbling water, soil gas soil measurement, F Fumaroles.
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