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Abstract: The increase in the concentration of geological gas emissions in the atmosphere and partic-
ularly the increase of methane is considered by the majority of the scientific community as the main
cause of global climate change. The main reasons that place methane at the center of interest, lie in its
high global warming potential (GWP) and its lifetime in the atmosphere. Anthropogenic processes,
like engineering geology ones, highly affect the daily profile of gasses in the atmosphere. Should
direct measures be taken to reduce emissions of methane, immediate global warming mitigation
could be achieved. Due to its significance, methane has been monitored by many space missions
over the years and as of 2017 by the Sentinel-5P mission. Considering the above, we conclude that
monitoring and predicting future methane concentration based on past data is of vital importance for
the course of climate change over the next decades. To that end, we introduce a method exploiting
state-of-the-art recurrent neural networks (RNNs), which have been proven particularly effective in
regression problems, such as time-series forecasting. Aligned with the green artificial intelligence (AI)
initiative, the paper at hand investigates the ability of different RNN architectures to predict future
methane concentration in the most active regions of Texas, Pennsylvania and West Virginia, by using
Sentinel-5P methane data and focusing on computational and complexity efficiency. We conduct
several empirical studies and utilize the obtained results to conclude the most effective architecture
for the specific use case, establishing a competitive prediction performance that reaches up to a
0.7578 mean squared error on the evaluation set. Yet, taking into consideration the overall efficiency
of the investigated models, we conclude that the exploitation of RNN architectures with less number
of layers and a restricted number of units, i.e., one recurrent layer with 8 neurons, is able to better
compensate for competitive prediction performance, meanwhile sustaining lower computational
complexity and execution time. Finally, we compare RNN models against deep neural networks
along with the well-established support vector regression, clearly highlighting the supremacy of the
recurrent ones, as well as discuss future extensions of the introduced work.

Keywords: time-series forecasting; green AI; recurrent neural networks; satellite data; methane;
climate change

1. Introduction

According to the Legacy of the past and future climate change session of the 10th IAEG
Congress of the International Association for Engineering Geology and the Environment
(IAEG), engineering geologists have to address a wide range of further issues related to
climate change. Those issues regard changes like stress conditions and water processing
that highly impact the emissions of greenhouse gasses (GHG), such as carbon and methane,
and require increased research both for understanding the processes and engineering
procedures for mitigation [1]. The term global climate change (GCC) refers to the long-
term, significant change in the global climate. In specific, GCC describes the change in
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the conditions and parameters of the Earth’s climate system extending over a large period
of time, such as the temperature of the atmosphere and the oceans, the level of the sea,
the precipitation, etc. This type of change includes statistically significant fluctuations
in the average state of the climate or its variability, extending over a period of decades
or even more years. The above long-term alteration of climate parameters substantially
differentiates climate change from the natural climate circle, as well as denotes its great
effect on the rapidly advancing alterations of the weather [2]. According to the mechanism
of the Earth’s climate system, GCC is attributed to two main factors. On the one hand, the
planet cools when solar energy is: (a) reflected from the Earth—mainly from clouds and ice-
or (b) released from the atmosphere back into space. On the other hand, the planet warms
in cases where: (a) the Earth absorbs solar energy or (b) the gases of the atmosphere trap
the heat emitted by the Earth—preventing its release into space- and re-emit it to Earth.

The last effect, widely known as the greenhouse effect, constitutes a natural procedure,
also observed on all planets with atmospheres, which provides the Earth with a constant
average surface temperature of around 15 ◦C. Yet, in recent years, when we refer to the
greenhouse effect, we do not focus on the natural process rather than its exacerbation,
which is considered to have been largely caused by human activities and is responsible
for the increase in the average temperature of the Earth’s surface. The GHG in the Earth’s
atmosphere are the ones that absorb and emit energy, causing global warming. GHG are
about 20 and occupy a volume of less than 1% of the total volume of the atmosphere. The
most important ones are: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and
water vapor (H2O), all of which are derived from both natural and human processes as well
as fluorinated gases (F-Gases), derived exclusively from human activities [3]. The level of
impact of each GHG on global warming depends on three key factors: (a) its concentration
in the atmosphere (measured in parts per million—ppm), (b) its lifetime in the atmosphere
and (c) its global warming potential (GWP), which expresses the total energy that can
be absorbed by a given mass (usually 1 tonne) of a GHG over a period of time (usually
100 years), compared against the same mass of CO2 for the same period of time [4].

Amongst the above gases, CH4 constitutes the second most abundant anthropogenic
GHG after CO2, accounting for 17% of the world’s GHG emissions from human activities,
as measured in the last report of the Intergovernmental Panel on Climate Change (IPCC) [5]
and depicted in Figure 1. Along with natural gas, it constitutes the product of biological
and geological processes and is trapped naturally under the ground or at the seabed. For
instance, wetlands are natural sources of CH4. Although it sometimes escapes to the surface
and is naturally released into the atmosphere, 50 to 65% of global CH4 emissions come
from human activities. These include: (a) the production and transport of coal, natural
gas and oil, (b) livestock, (c) agriculture, (d) land use, (e) the decomposition of organic
waste in solid waste landfills and (f) leaks from gas systems and mining areas. Hence, it is
emphasized that a significant reduction of CH4 emissions can be achieved, by repairing
leaks in pipelines and installations in oil and gas extraction areas, old mines, etc. It is
estimated that between 1750 and 2011, atmospheric concentrations of CH4 have increased
by 150%. The above raises major concerns, given that CH4, compared against CO2, is much
more efficient at trapping radiation and heat as its characteristic GWP is 25 times that of CO2
over a period of 100 years [4,6]. The impact of CH4 is highlighted by the IPCC, as well as
the European Space Agency (ESA) and the National Aeronautics and Space Administration
(NASA) which have launched joined initiatives for its monitoring. Thus, CH4 has been
monitored by many space missions over the years, with the Sentinel-5 Precursor (Sentinel-
5P) mission being the most recent one [7]. Such kind of satellite data displays representation
capabilities that can be efficiently combined with ground-level data [8]. Moreover, CH4
and CO2, forming the two anthropogenic GHGs with the most abundance, have been
coupled in an introduced model to investigate new simulation results, exhibiting the spatial
distribution of the soil-plant formations and oceanic ecosystems [9] as well as the effect
of several activities, like aviation, in their emissions and global warming forecast [10].
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Keeping alignment with the above actions, methane is selected as the GHG of interest in
the proposed work.

74.1%

17.3%

6.22%

2.37%

CO2
CH4
N2O
F-Gas

Figure 1. GHG emissions distribution recorded in 2019 IPCC report [5].

The recent Green AI initiative focuses on the exploitation of cutting-edge technologies,
such as deep learning, in order to monitor environmental data and provide processes for
the development of more sustainable AI solutions [11]. To that end, climate parameters’
monitoring can be considerably benefited by the advent of recurrent neural networks
(RNNs), given their proven efficacy in recent time-series estimation challenges [12,13].
More specifically, recurrent architectures have been proposed in order to add a recursive
structure to the conventional deep neural network (DNN) models [14,15]. Hence, RNNs
benefitted from their cumulative property that emerges from the observation of previous
inputs. However, the common RNNs suffered from the vanishing gradient problem [16],
which led to the development of more sophisticated recurrent cells introducing internal
memory with gated structures. Amongst the proposed cells, the long short-term memory
(LSTM) [17] and the gated recurrent unit (GRU) [18] form two of the most widespread
ones given their proven efficacy in a wide range of challenging applications, including
natural language processing [19], speech recognition [20], emotion estimation [21], anomaly
detection [22], as well as environmental data processing [23–27]. To that end, internal
memory’s gates learn to combine, forget and/or pass received information to the following
layers. The LSTM cell includes more gates than the GRU one, a fact that usually renders
it more efficient in complex and long sequences but, at the same time, they are more
computationally expensive [28]. Given the advent of RNNs, their exploitation in the field
of environmental forecasting is already visible. LSTM models have been investigated for
the prediction of marine environmental information from publicly available industrial
databases [24]. Similar architectures have been utilized for the prediction of noise in urban
environments [25], as well as GHG emissions prediction in smart homes [26] and, recently,
emission of CO2 in specific regions [27].

However, the contemporary data collected from the Sentinel-5P mission provide
descriptive and accurate measurements regarding the daily profile of GHG around the
globe and can be exploited with cutting-edge technologies to provide enhanced forecasting
performances. Until now, forecasting of GHG concentration can be conducted only on a
local scale due to the limited available measurements of a commons sensory system, thus
rendering it difficult to compare against different regions around the globe, constituting
an open research gap. As an example, methane concentration forecasting constitutes an
active field of research that has been already investigated at a smaller scale [29,30]. Bearing
that in mind, a recent work has turned its focus to NO2 concentration to monitor the
pollution profile of Europe during the Coronavirus outbreak [31]. Hence, our motivation
originates from such interest, driven also by the urging need to limit methane emissions
at a global scale, in order to reduce the anthropogenic GHGs effect. To achieve that, we
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exploit the most recent measuring system, viz., the Copernicus Sentinel-5P, which, to the
best of our knowledge, constitutes the only satellite providing methane measurements
daily and at a global scale. Meanwhile, we investigate the optimal data-driven architecture
that can compensate for competitive forecasting performance and realistic execution time
and complexity. The main advantage of such an approach focuses on the concise property
of the measurement system along different regions, which enables the development of
a unified model for estimating methane concentrations. To that end, the paper at hand
contributes to the aforementioned attempt, introducing a complete solution that:

• exploits contemporary data from Sentinel-5P mission, capturing CH4 concentration
in the most active regions, viz., the areas of Texas, Pennsylvania and West Virginia,
through an introduced data acquisition scheme;

• develops a handy tool for processing the extracted data for further analysis;
• provides an efficient algorithm for CH4 concentration forecasting using recent history

measurements and RNN architectures;
• assesses the performance and the computational complexity of the introduced solution

and demonstrates its superiority against other machine learning models.

To the best of our knowledge, this is the first method that exploits Sentinel-5P atmo-
spheric data to provide future estimations with RNNs regarding existing trends in the CH4
concentration patterns. At this point, we would like to highlight that the proposed work
focuses on the prediction of methane concentration and not its emission. Hence, no specific
study regarding the processes that control such measurements is conducted.

The remainder of the paper is structured as follows. Section 2, lists the utilized materi-
als and methods of the system, namely the data acquisition and processing as well as the
forecasting model adopted for the experimental studies. In Section 3, we display the valida-
tion strategy as well as the experimental and comparative studies conducted to conclude
an efficient CH4 forecasting system and the validation procedure followed to assess its final
performance. Section 4 provides an extensive discussion regarding the application of the
proposed system and its computational complexity for real applications, while Section 5
displays the final outcomes of the work and discusses directions for future work.

2. Materials and Methods

The current section describes the case study of this work. It provides general informa-
tion about the Sentinel-5P mission, its instruments, the monitored atmospheric data as well
as the data acquired and exploited by the introduced approach. As stated above, the paper
at hand introduces a complete solution for CH4 concentration acquisition and forecasting
from Sentinel-5P data. Hence, in the current section, we proceed with the description of the
individual tools that form this final solution. Firstly, a data processing tool is provided for
transforming the satellite data into a time-series format. Then, deep learning techniques
are applied to accurately predict future CH4 concentration through RNN architectures.

2.1. Sentinel-5P Mission

The Sentinel-5P mission is a result of cooperation between ESA, the European Commis-
sion (EC), the Netherlands Space Office (NSO), the industry and the scientific community, con-
sisting of a satellite that carries the tropospheric monitoring instrument (TROPOMI) [32,33].
The main purpose of this mission is to perform atmospheric measurements with a high
spatial-temporal resolution concerning air quality, ozone, UV radiation and climate monitor-
ing and forecasting. The Sentinel-5P mission also intends to reduce the gaps in worldwide
atmospheric measurements between the SCIAMACHY/Envisat mission (concluded in April
2012), the OMI/AURA mission (estimated to be operational until 2022) and the future Coper-
nicus Sentinel-4 and Sentinel-5 missions. The Sentinel-5P was launched on 13 October 2017
and is the first Copernicus mission dedicated to the monitoring of the atmosphere [7].

It constitutes a low Earth-orbit satellite with a high inclination of approximately
98.7◦ and is designed for a seven-year operational lifetime. Its sun-synchronous, near-
polar orbit ensures that the surface is always illuminated at the same sun angle. The
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TROPOMI instrument is the only payload of the Sentinel-5P mission [34]. It constitutes a
spectrometer sensing ultraviolet (UV: 270–320 nm), visible (VIS: 310–500 nm), near-infrared
(NIR: 675–775 nm) and short-wave infrared (SWIR: 2305–2385 nm) radiation. Hence, it
is able to monitor ozone (O3), methane (CH4), formaldehyde (CH2O), aerosol, carbon
monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the atmosphere. It
combines state-of-the-art technologies with the strengths of the SCIAMACHY and OMI
instruments to provide observations with performances that remain unsatisfied by current
space instruments in terms of sensitivity, spectral, spatial and temporal resolution. It
maps the global atmosphere with an initial spatial resolution of 7× 7 km2, which has been
changed to 5.5× 7 km2 since August 2019. A wide swath of approximately 2600 km on the
earth’s surface provides a typical pixel size of 7× 3.5 km2 for all spectral bands, except for
the UV1 (7× 28 km2) and the SWIR bands (7× 27 km2) [32–34].

2.2. Data Acquisition

For the experimental study of the introduced method, we make use of the CH4 Sentinel-
5P dataset, containing the daily concentration of CH4 from 6 August 2019 to 31 December
2020. Daily measurements are provided by the NASA Earth Data (GES DISC) platform,
thus, ensuring that our case study is developed and tested on real-world data. Each file
of the dataset corresponds to a specific date in a common file format, called network
common data form (netCDF). NetCDF files are often adopted for storing multi-dimensional
scientific variables, such as concentration, humidity, temperature and pressure. Before
the acquisition, the regions of interest have to be defined through their corresponding
geographic latitude and longitude values. We have decided to investigate the three States
of the USA with the highest levels of CH4 concentration, viz., Texas, Pennsylvania and
West Virginia. The above selection was driven by recent studies regarding the regions
that constitute the center of active research on CH4 emission treatment [35,36]. In order
to end up with regions of a relatively constant area, Texas has been split into eight equal
contiguous sub-regions, leading to ten final regions of interest. This was achieved by
setting the latitude and longitude values, for the ten aforementioned regions. After data
acquisition, an appropriate processing scheme has been developed to convert netCDF files
into time-series for data forecasting (discussed in Section 2.3).

2.3. Data Processing Tool

The CH4 measurements of a given date are given in a 2-dimensional matrix called
methane_mixing_ratio, each cell of which corresponds to a small sampling area defined by
the resolution of the measuring instrument. Furthermore, each cell is accompanied by a set
of values, including the corresponding latitude and longitude values of the geographical
area that it describes, as well as several metadata. Firstly, we employ a common search algo-
rithm to keep all the non-NaN values of the methane_mixing_ratio array that lie inside the
region of interest r, where r ∈ N and r < nr with nr ∈ N∗ the number of regions. To achieve
that, by checking the latitude and longitude values, we store the methane_mixing_ratio
estimation of a sampling area, in case this lies inside the r-th region of interest, as shown in
Figure 2. Subsequently, the entire set of measurements within the r-th region of interest is
exploited to calculate its mean CH4 concentration for the t-th day, where t ∈ N a number
indicating the index of the day in the sequence. The above procedure is repeated for each
day within the range of the sampling period stated in Section 2.2. Thus, we end up with a
time-series sr describing the daily mean CH4 concentration in the r-th region. An indicative
example of the time-series representation is illustrated in Figure 3. We work similarly for
each of the ten areas of interest, i.e., the eight sub-regions of Texas for r = {0, 1, . . . , 7}, West
Virginia with r = 8 and Pennsylvania with r = 9.
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Figure 2. Data processing tool for the region selection, NaN values discarding and mean value
estimation (µt) for the t-th day of measurement.

Figure 3. Time-series representation of daily mean CH4 concentration in Texas (r = 1) for 474 days.

Then, the sequence of each region is standardized so as to display zero mean value and
standard deviation equal to 1, a data pre-processing step that leads to proven improvement
of the performance in data-driven techniques [37,38]. More specifically, we exploit the
common Gaussian normalization equation for each time-series sr:

ŝr =
sr − µsr

σsr
, ∀r ∈ N, r < 10, (1)

where ŝr the standardized time-series, sr the initial one, µsr the mean value of sr and σsr

the standard deviation of sr. After the extraction of the time-series for each area, we
proceed with the creation of smaller sequences of constant length l ∈ R∗ to be fed into
RNN architectures for prediction. To that end, the initial time-series sr of the r-th region is
sampled acquiring 51 successive values with a step of 25 until the end of the sequence. At
each step, the first l = 50 values correspond to the sequence that will be fed into the RNN
model, while the last one constitutes the value to be predicted. With that having been said,
we store the values 0–49 of sr in the 1-st row of the features matrix F and the 50-th value in
the 1-st row of the ground truth one G, as depicted in Figure 4. Accordingly, values 25–74
and 75 are stored in the 2-nd row of F and G, respectively. Following the above policy we
gradually store all the sub-sequences of sr in the sequence dataset Ds, while we similarly



Geosciences 2023, 13, 183 7 of 16

split all nr regions of interest. It should be mentioned that except for NaN values, we have
avoided removing any other values, due to the time-dependent nature of the data.

Figure 4. Time-series division policy: Blue color indicates the input features of the forecasting model
while the red one represents the corresponding ground truth labels.

2.4. Methane Concentration Forecasting Model

We propose an efficient methane concentration forecasting model (MCFM) to provide
us with the CH4 concentration prediction of each extracted sub-sequence, described in
Section 2.3. For this purpose, the extracted sub-sequences are fed into an RNN architecture
RN with N ∈ N∗ denoting the number of its hidden layers, namely excluding the input and
the output layers. The two well-established cell types of RNNs are investigated, viz., LSTM
and GRU cells, as well as a wide range of architectural designs, testing different numbers
of hidden layers and neurons. Each layer can display a distinct number of hidden units
Hn ∈ N∗, where n ∈ [1, 2, . . . , N] represents the number of the hidden layer. Considering
the above, an RNN architecture is written asRN{H1, H2, . . . , HN}. The input space of the
first hidden layer and, as a result, the input space of the entire model is a single estimation of
the daily CH4 concentration, while the sequence length is l = 50. Similarly, the output layer
constitutes a fully connected (FC) layer with only 1 neuron since the desired estimation
is a real value y ∈ R, referring to the CH4 concentration of the forthcoming day. The rest
hidden layers can present different numbers and types of neurons, leading to a wide variety
of possible architecturesRN{H1, H2, . . . , HN}. The parameters N and Hn, n ∈ [1, 2, . . . , N]
along with the cell type are empirically defined, as described in Section 3.3. During training,
we attempt to minimize the Mean Squared Error (MSE) loss function, described by the
common equation:

MSE =
1
ns

ns

∑
i=1

(yi − ŷi)
2, (2)

where yi the predicted value, ŷi the ground truth and ns the number of samples. The same
MSE metric is utilized to assess the performance of the investigated models.

A summary of the entire methodology is provided in Figure 5, where all the described
processes are illustrated in a unified block diagram. As the reader can observe, it is divided
into three main pillars, viz., the data acquisition, the data processing tool and the MCFM.
Regarding the MCFM pillar, the last process includes the training and assessment of all
the machine learning models studied in the scope of the current work and extensively
described in Section 3.

Figure 5. Method overview: the scheme of the introduced methodology is depicted, including all the
main processes of the: (a) Data acquisition, (b) Data Processing Tool and (c) Methane Concentration
Forecasting Model.
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3. Results

In the current section, we describe the entire experimental study conducted, in order
to credibly evaluate our method, given that it constitutes the first forecasting model of CH4
concentration from the Sentinel-5P data. Firstly, the validation strategy is explained, includ-
ing the division of the dataset into training and validation data. Then, the experimental
setup as well as the parameters to be empirically defined are presented along with the
produced experimental results. Finally, we display the performance results of the models
of interest derived from our experimental studies and the prediction estimations of the best
one compared against the ground-truth curves.

3.1. Validation Strategy

According to Section 2.2, the acquired dataset comprises ten regions, i.e., eight sub-
regions of Texas, Pennsylvania and West Virginia. Aiming to investigate the generalization
capacities of the forecasting model, we split the dataset into training and evaluation sets,
considering in the last set the two most difficult cases. The most common thought would
constitute to exploit Texas sub-regions for training and keep the rest two regions for
evaluation. Hence, we proceed with an assessment study to quantify the above argument.
To achieve that, we pairwise calculate the signal cross-correlation ρc between the regions’
time-series. Thus, the two time-series that present the weakest cross-correlation with the
rest ones constitute the most uncorrelated sets of the dataset and will be included in the
evaluation set. The obtained results are summarized in Table 1. The reader can verify
the anticipated argument that the correlation between the mean inter-correlation of Texas
sub-regions is stronger compared against their correlation with Pennsylvania and West
Virginia regions. Therefore, we establish the above-mentioned division of the dataset,
keeping the regions of Pennsylvania and West Virginia for evaluation purposes.

Table 1. Obtained cross-correlation values between the sub-regions’ time-series.

Sub-Regions Mean (Texas-Texas) Texas-Pennsylvania Texas-West Virginia

Cross-correlation, ρc 0.489 0.232 0.156

3.2. Experimental Setup

As stated in Section 2.4, we investigated several RNN architectures and experimental
setups to end up with an efficient prediction model. Besides, the number of hidden layers
and neurons are some parameters that can not be optimally defined a priori [39]. For this
purpose, we performed a grid search [40] among the several values of the investigated
parameters tracking at each step the best evaluation MSE value obtained through the
training procedure. The configuration parameters along with their exploration values
are the following: (a) learning rate from {10−2, 10−3, 10−4}, (b) cell types {LSTM, GRU},
(c) number of hidden layers from {1, 2, 3, 4, 5} and (d) number of hidden neurons from
{1, 2, 4, 16, 32, 64, 128}. Given that we keep the best MSE value obtained through a training
procedure, we have set a constant number of epochs at 1000 and batch size at 64. The
grid search is performed using LSTM layers, while in the case of GRU fewer tests have
been conducted since it led to inferior results, stated in Section 3.3. Finally, we employ
the broadly known Adam optimizer [41] and the Xavier Glorot weight initialization [42],
thanks to their proven efficacy in similar estimation tasks [43,44]. The experiments were
conducted on a computer device with an i7 CPU processor and an Nvidia GeForce MX250,
4 GB GPU.

3.3. Model Configuration

Our initial evaluation concerns the definition of the learning rate since it holds a vital
role in the efficient convergence of the model. In Figure 6 we observe the curves of the
evaluation loss for all three investigated values of the learning rate, keeping the same RNN
architecture. The reader can observe the slower but better convergence for lr = 10−4 in
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means of achieved MSE values. Although we display the curves of an individual RNN
architecture, the same applies to different models, as well. Hence, we excluded the learning
rate from the grid search, keeping it constantly at 10−4. Subsequently, we proceed with the
grid search for the rest three parameters, viz., cell type, number of layers and number of
neurons, keeping the best MSE value obtained for each parameters’ configuration during
the training procedure. Due to the huge amount of experiments and obtained results,
for visualization purposes, we selected to present only seven models of special interest
summarized in Table 2, where CELL is either LSTM or GRU. More specifically, we chose
to include the top-4 models in terms of performance and three more versions that exhibit
results worthy of discussion.

Figure 6. Loss curves of the forecasting model for different values of the learning rate parameter.

Table 2. Architectural design of the 7 models selected for discussion with CELL = {LSTM, GRU}.

R1{1} R1{4} R1{8} R1{16} R2{2, 2} R3{8, 4, 4} R1{128}

Input [l × 1] [l × 1] [l × 1] [l × 1] [l × 1] [l × 1] [l × 1]
H1 CELL(1) CELL(4) CELL(8) CELL(16) CELL(2) CELL(8) CELL(128)
H2 − − − − CELL(2) CELL(4) −
H3 − − − − − CELL(4) −

Output layer FC(1) FC(1) FC(1) FC(1) FC(1) FC(1) FC(1)

In Table 3, lstm-{2, 3, 4, 6} achieve the top-4 MSE values with the last one constituting
the best of all. Comparing LSTM models against the corresponding GRU ones, the reader
can observe the inferior performance of the latter, which is suggested in all conducted
experiments. Hence, after several indicative experiments conducted on GRUs, we decided
to perform a grid search only for LSTM models. Lstm-1 depicts a vanilla experiment with
only one recurrent hidden neuron to form a baseline for our method. Keeping that in
mind, lstm-{5, 7} form two versions that failed to improve baseline results on the evaluation
set. On the one hand, lstm-5 appears to lack the capacity to efficiently learn the training
data, shaping an indicative instance of under-fitting. On the other hand, lstm-7 consists
of one hidden layer with 128 neurons. Paying attention to the noteworthy gap between
the training and evaluation loss, we can easily conclude that the model has over-fitted the
training data, failing to efficiently generalize. Finally, we indicatively depict the estimation
performance of lstm-3 and lstm-6 in Figure 7, shaping the two best solutions. Blue color
corresponds to the predictions of lstm-6 and green to the ones of lstm-3. Orange is employed
to present the respective ground truth values. Hence, the reader can visually perceive the
capacity of each model to predict the actual values of a forthcoming measurement, as well
as several inabilities that they display.
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Table 3. Best MSE values obtained from 7 models of interest.

R1{1} R1{4} R1{8} R1{16} R2{2, 2} R3{8, 4, 4} R1{128}

LSTM lstm-1 lstm-2 lstm-3 lstm-4 lstm-5 lstm-6 lstm-7

Training loss 0.5894 0.4868 0.4764 0.4679 0.7349 0.4992 0.3754
Evaluation loss 0.8190 0.7888 0.7734 0.7974 1.156 0.7578 0.8199

GRU gru-2 gru-3 gru-4 gru-7

Training loss − 0.4744 0.4733 0.4634 − − 0.3699
Evaluation loss − 0.7981 0.8365 0.8159 − − 0.8550

Figure 7. Predictions of CH4 concentration estimated on the evaluation set by the best two forecasting
models, i.e., lstm-3 (green) and lstm-6 (blue).

3.4. Comparative Study

Since the Sentinel-5P CH4 concentration data have not been exploited yet, we chose to
assess our method by comparing it against other state-of-the-art models on the same dataset.
In this section, we provide details regarding the conducted comparative study and the
obtained results. In particular, we tested several Support Vector Regression (SVR) [45] and
DNN architectures and discussed their performance on the CH4 concentration forecasting
challenge. Similar to the experimental study of the RNNs, the eight regions of Texas were
employed for training, while the regions of Pennsylvania and West Virginia were exploited
only for evaluation.

As far as the SVR approach is concerned, four different kernels have been tested, viz.,
linear, polynomial, radial basis function (RBF) and sigmoid. The obtained training and
evaluation MSE values are summarized in Table 4. We observe that the best evaluation
performance is achieved with the RBF kernel, which is still inferior to the MSE values
obtained from the top models of RNNs. Paying attention to the training MSE values, the
reader can ascertain that the SVR manages to learn the training data but fails to generalize
on the evaluation set. The only exception is the SVR with the sigmoid kernel that seems
incapable to solve even the training distribution.

Table 4. MSE values obtained from SVR utilizing 4 distinct kernels.

SVR

Linear Polynomial RBF Sigmoid

Training MSE values 0.4345 0.4233 0.3636 1.0183
Evaluation MSE values 1.7777 0.9577 0.8743 1.0450
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Moving to the DNN architectures, we assessed several DNN architectures for dif-
ferent values of hidden layers, N = {1, 2, 3}, hidden units, Hn = {4, 8, 16, 64, 128} with
n ∈ [1, 2, . . . , N], as well as dropout rates, rd = {0.1, 0.2, 0.3} [46]. Similarly to RNNs, a
DNN architecture is denoted as DN{H1, H2, . . . , HN}rd with rd forming the only addition
referring to the utilized dropout rate. Each hidden FC layer is followed by a ReLU acti-
vation function and a batch normalization (BN) layer with trainable mean and standard
deviation values [47]. During training, we exploited the same experimental configurations
with the RNNs, i.e., we employed the Adam optimizer with a learning rate at 10−4, batch
size equal to 64. The networks’ weights were initialized adopting the Xavier Glorot initial-
ization method and they were trained for 1000 epochs measuring the obtained training
and evaluation MSE values. For each experiment, we kept the best evaluation loss and
the corresponding training loss. In Table 5, the top-6 DNN architectures are displayed.
Their corresponding evaluation and training best MSE values are summarized in Table 6,
where the reader can clearly observe that neither of the presented DNN models achieves
competitive results compared against the evaluation MSE values obtained by the RNNs.
Moreover, one can discern the quite high training MSE values corresponding to the best
evaluation ones. The above indicates that DNNs tend to overfit the training data quite
earlier than the RNN ones since for lower training MSE values from the ones presented in
Table 6 the evaluation results become worse.

Table 5. Architectural design of the top-6 DNN models.

D2{64, 64}0.2 D2{64, 64}0.1 D2{16, 8}0.1 D2{64, 8}0.3 D2{64, 32}0.2 D2{16, 8}0.2

Input l l l l l l
H1 FC(64) FC(64) FC(16) FC(64) FC(64) FC(16)
ReLU + BN X X X X X X
Dropout rate 0.2 0.1 0.1 0.3 0.2 0.2
H2 FC(64) FC(64) FC(8) FC(8) FC(32) FC(8)
ReLU + BN X X X X X X
Dropout rate 0.2 0.1 0.1 0.3 0.2 0.2

Output layer FC(1) FC(1) FC(1) FC(1) FC(1) FC(1)

Table 6. Best MSE values obtained from the top-6 DNN models.

D2{64, 64}0.2 D2{64, 64}0.1 D2{16, 8}0.1 D2{64, 8}0.3 D2{64, 32}0.2 D2{16, 8}0.2

DNN dnn-1 dnn-2 dnn-3 dnn-4 dnn-5 dnn-6

Training loss 1.0717 0.7726 1.0752 0.8506 0.7601 0.7987
Evaluation loss 0.8524 0.8619 0.8650 0.8651 0.8734 0.8810

4. Discussion

In this section, we discuss the findings of our experimental study and proceed to an
extensive description of the efficacy of the investigated models in terms of computational
cost and execution time. To begin with, by paying close attention to the results of the
LSTM models in Table 3, we found out that more than one architecture can provide
us with a quite similar prediction performance. Hence, the initial question regarding
the selection of the optimal solution remains open. In fact, it is reasonable to conclude
that since more architectures provide satisfactory results, such a selection should include
more parameters apart from the prediction performance. The parameters, which mainly
bother the community of data scientists and machine learning engineers regarding optimal
selection, focus on the complexity and the time efficacy of the designed models.

Bearing in mind the above, we measured the complexity and the execution time of
our top RNN and DNN architectures so as to form a well-rounded opinion about the
advantages and drawbacks of the developed models. Operational complexity has been
measured through the well-established multiply-accumulate (MAC) metric by employing
the corresponding function in PyTorch library [48]. At the same time, we also measured the
total number of the trainable parameters (Params) of the network. As far as the execution
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time is concerned, we run ten distinct simple inference tests for each model on our CPU
and measured the execution time of each repetition. Finally, we kept the mean value from
the ten different execution times of each model. In Tables 7 and 8, we present the obtained
results of the RNN and the DNN models, respectively. Note that, complexity is displayed
in KMAC = 103MAC and execution time in ms = 10−3 s.

Table 7. Complexity and time efficiency metrics for the 7 RNN models of interest.

R1{1} R1{4} R1{8} R1{16} R2{2, 2} R3{8, 4, 4} R1{128}

LSTM lstm-1 lstm-2 lstm-3 lstm-4 lstm-5 lstm-6 lstm-7

KMAC 1.35 7.80 22.00 69.60 6.50 45.00 3420.00
Parameters 67 313 753 2017 189 937 73,473
Exec. time (ms) 3.733 4.687 5.007 5.254 8.096 14.158 13.911

GRU gru-2 gru-3 gru-4 gru-7

KMAC − 5.80 16.40 52.00 − − 2570.00
Parameters − 285 665 1710 − − 56,700
Exec. time (ms) − 4.622 5.294 5.265 − − 12.977

Table 8. Complexity and time efficiency metrics for the top-6 DNN models.

D2{64, 64}0.2 D2{64, 64}0.1 D2{16, 8}0.1 D2{64, 8}0.3 D2{64, 32}0.2 D2{16, 8}0.2

DNN dnn-1 dnn-2 dnn-3 dnn-4 dnn-5 dnn-6

KMAC 7.75 7.75 1.01 3.94 5.57 1.01
Parameters 7745 7745 1009 3.937 5569 1009
Exec. time (ms) 2.217 2.217 1.984 1.984 2.075 1.984

In Table 7, we can initially observe that LSTM architectures display a little higher
MAC and Params values compared against the corresponding GRU ones, which is highly
anticipated given the more complicated structure of the LSTM cell. However, the execution
times are quite similar. Paying closer attention to the LSTM models, we discover that the
addition of more hidden units in a single recurrent layer gradually increases the MAC and
Param values of the network. On the other side, in the case that a deeper RNN is structured
with the same amount of total hidden units, the aforementioned complexity metrics can
be maintained relatively lower. As an instance, the above fact can be observed in the case
ofR1{16} andR3{8, 4, 4}, where the latter displays about the half number of parameters
and MAC value, although they have the same amount of hidden neurons. Yet, a drawback
of deeper recurrent networks constitutes the relatively higher execution time required. In
DNNs the above metrics are quite similar for most of the architectures, as shown in Table 8.
By comparing against the RNN ones, we obviously discern the more lightweight nature
of the DNNs, succeeding 3× or 4× lower complexity and execution time rates. Despite
that, specific architectures, such asR1{4} andR1{8}, achieve top-end performance and,
simultaneously, present similar or quite near complexity values to the top-6 DNN models.

Moving one step further, we chose to visually illustrate the summarized behavior of
each model so as to better comprehend their advantages and disadvantages. In particular,
we display in a common graph the complexity metrics MAC and Params, the execution time,
as well as the best evaluation MSE achieved by each model. Due to the high imbalances of
the obtained values by each metric both in terms of range and order of magnitude and in
order to equally weigh all of the above properties, we standardized the obtained values
of each metric. To that end, the obtained results of all the models for a given metric were
grouped as a 1-D vector and, then, we applied the Gaussian normalization described in
Equation (1). We repeated the same procedure for each one of the four metrics. As a result,
we ended up with the graphs in Figure 8, where each sub-figure includes a distinct group
of models, viz., LSTM, GRU and DNN architectures. Since all four metrics are inversely
proportional to the best performance, models with smaller areas in Figure 8 correspond to
the more efficient ones in all four aspects.
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Figure 8. Visual illustration depicting the summarized performance, complexity and time efficiency of
the top RNN and DNN models. (a) top-6 LSTM models; (b) top-3 GRU models; (c) top-6 DNN models.

5. Conclusions

To sum up, the paper at hand constitutes the first attempt to exploit Sentinel-5P data
to track and estimate future concentrations of CH4 in several geographical regions of
interest. Hence, the mitigation of GHG emissions due to anthropogenic processes, like
engineering geology ones, can be established. To achieve that, we introduce a handy data
processing tool that transforms geographical data provided from the GES DISC platform to
region-specific time-series. After several processing steps, we fed the extracted data into an
efficient methane concentration forecasting model utilizing RNNs with LSTM and GRU
cells. Extensive experimental studies are conducted to conclude the optimal architecture in
terms of prediction performance, by measuring the obtained MSE value of each experiment
on the evaluation set. In addition, a comparison against other contemporary machine learn-
ing models, i.e., SVR and classic DNN architectures, is performed to place the performance
of our model within the state-of-the-art. The demonstrated results clearly explain the final
selection of the forecasting model design and indicate the promising estimation results
achieved, while an illustrative and quantitative discussion regarding the complexity and
time efficiency of the examined models is conducted.

The above experimental study designates several key principles regarding the defi-
nition of an optimal model that allows data-driven methane concentration forecasting in
real and practical scenarios through the available Sentinel-5P products. In particular, the
comparison of recurrent architectures against SVR and DNNs highlights the suitability of
the first to recognize patterns from sequential data, like daily CH4 concentration, and pro-
vide accurate future estimations. Furthermore, the specific architecture of the forecasting
model is required to be carefully designed based on the needs of the task. To that end, it
has been shown that deeper LSTM models are able to enhance prediction performance,
yet they tend to highly increase the required execution time. Meanwhile, a larger amount
of hidden neurons in a specific recurrent layer increase complexity without benefiting
the overall performance. Considering all the above-mentioned principles, the optimal
model is defined following the combination of several properties through an aggregated
multi-variable performance.

The introduced method turns its focus on the analysis of the daily concentration of
CH4 and not the processes and human activities that control methane emissions and lead to
such concentration values. Anthropogenic methane emissions analysis constitutes a distinct
and quite extensive research field attempting to define and forecast the environmental
footprint and economic impact of human activities, such as livestock, coal mining, oil and
gas production, gas transmission and distribution networks, agricultural waste, wastewater,
rice cultivation, etc. [49,50]. On the other hand, our motivation constitutes to treat methane
concentration prediction as a time-series forecasting challenge, exploiting the recent sensory
capabilities provided by Sentinel-5P.
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As part of future work, we aim to further explore the estimation capacities on the
Sentinel-5P database, including more regions and/or NO2 concentration forecasting. Fur-
thermore, a user-friendly graphical user interface can be developed that projects forthcom-
ing concentration estimations directly on the map of each region of interest, simulating a
weather forecast platform.
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