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Abstract: The crude oils from the reservoirs of Mela-01 and Mela-04 wells located in the Kohat
Basin, Pakistan, were geochemically analyzed to evaluate the origin, depositional conditions, and
thermal maturity of the rock units and possible facies from which these oils were sourced. Gas
chromatography-mass spectrometry (GC-MS) was performed on the samples to obtain biomarker
and non-biomarker parameters. Analyzed non-biomarker parameters, including carbon prefer-
ence index (CPI), terrigenous to aquatic ratio (TAR), isoprenoids pristane to phytane (Pr/Ph), and
biomarker parameters, including steranes and dibenzothiophene/phenanthrene (DBT/P) of aromatic
compounds, were utilized in the present study to achieve the objectives. Most of these parameters
suggest a mixed source of organic matter (marine/terrestrial) with sub-oxic conditions in the source
rocks for the analyzed oil samples in the studied wells from Mela oilfield, Kohat Basin. Furthermore,
the CPI and different biomarker parameters such as steranes C29 S/S + R, ββ/αα + ββ), moretane to
hopane (M29/C30H), pentacyclic terpanes C27 (Ts/Ts + Tm), H32 (S/S + R) hopanes, and aromatic
methylphenanthrene index (MPI) indicate that the analyzed oils have originated from thermally
mature rocks falling in the oil window. As the studied Kohat Basin has multiple source rocks and
contributes to the major petroleum production of the country, the present investigations reveal that
its okthe Mela oils were generated by the strata of mixed organic matter that were deposited in
marine sub-oxic conditions. Furthermore, this study suggests that this stratum would also have been
produced in unexplored surrounding areas such as Tirah, Orakzai, and the Bannu Depression.

Keywords: geochemistry; biomarkers; paleodepositional conditions; thermal maturity; hydrocarbon
potential; Mela crude oils; organic matter; source rocks; Kohat Basin

1. Introduction

Reservoir rocks are evaluated for the quantity and quality of petroleum they con-
tain [1]. Source rocks are evaluated for their past, present, or future potential to generate
petroleum. Thermally mature, organic-rich strata are required for the entire petroleum
system, including source, reservoir, and cover rocks [2–6], while organic-rich strata are
likewise important to emergent unconventional resource systems such as gas hydrates [7,8]
The identification of likely hydrocarbon regions in undiscovered sedimentary basins is
heavily dependent on organic geochemical data. Organic geochemical data play a crucial
role in the identification of prospective hydrocarbon-bearing regions in undeveloped sedi-
mentary basins. Organic geochemistry in the field of hydrocarbon exploitation determines
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the origin, depositional conditions, burial history, and alteration of organic matter under
thermal stress, all of which can lead to the formation of hydrocarbons [1,4,9–14].

Biomarkers are compounds preserved in sediments with little or no alteration to their
original structure. Sediments and crude oils contain these complex organic compounds,
which are primarily composed of carbon, hydrogen, and other elements and are derived
from once-living organisms [15]. They have undergone little structural change from their
progenitor organic molecules. The relative abundances and distributions of saturates,
aromatic hydrocarbons, and cyclic geochemical relics in sediments and petroleum oils
are used to determine the deposition environment of the source rock [15–19]. For basin
studies, petroleum geoscientists can use biological markers to learn more about oil’s
origin and dynamics, such as petroleum formation issues, organic matter characteristics,
analysis of thermal maturation, geological age, sedimentary facies, and reconstruction of
the depositional environment [3–5,15,20–30].

The objective of this study is to geochemically analyze the crude oils from the Mela
oilfield in the Kohat Basin in Pakistan and determine the origin, thermal maturity, and
redox conditions of the organic matter in the source rocks that produced these crude oils.
By examining the organic geochemical features of the above crude oils within the context
of thermal maturity and depositional conditions of organic matter, this study will provide
a more holistic understanding of the hydrocarbon potential of the study area, which shares
geological similarities with the surrounding regions containing proven reserves and can be
considered of crucial economic and strategic importance.

2. Geological Setting

The studied Kohat Basin, located on the western edge of the Himalayan Belt in northern
Pakistan [31], is one of the most productive basins in Pakistan, containing oil and gas fields
such as Chanda, Nashpa, Mela, Manzali, Maramzai, Makori, and Mami Khel, which contribute
significantly to the nation’s petroleum production. Geologically, the study basin is bounded
by the Main Boundary Thrust (MBT), the Surghar Range Thrust (ST), the Kalabagh Fault, the
Kurram Fault, and the Bannu Depression (Figure 1). The Kohat Basin is a complex, hybrid
terrane with strike-slip and contractile elements [32]. Its structural setup is represented by
north-dipping, low-angle imbricate thrust faults underneath a blind passive-roof thrust [33–35].
It is stratigraphically composed of Jurassic-Pleistocene geological units [36], including multiple
clastic and carbonate source rocks [37–39] and reservoir rocks [35,40–44]. Most of these rocks
crop out in cores of anticlines created as detachment folds and pressure ridges over complicated,
positive flower structures that suggest significant, but ambiguous, north-to-south shortening.
The uplift of the MBT started in the late Miocene, and this deformation affected the rocks of
Kohat Basin as early as the Pleistocene [32,45].
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Figure 1. Tectonic map illustrating structural elements of the northern Pakistan and showing the 
location of the study area. The blue lines indicate the river flow, while the black triangles corre-
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matography into polar (NSO), aromatics, and saturates. The glass column was prepared 
by washing it with dichloromethane and then placing it on glass fiber that had been pre-
treated. Two-thirds of the glass column was filled with silica slurry in n-hexane, followed 
by alumina slurry in n-hexane. Briefly, 100–150 mg of sample was loaded at the top, and 
the saturate fraction of maltenes was eluted with 30 mL of n-hexane; aromatic hydrocar-
bons were eluted with dichloromethane; and the polar fraction (NSO compounds) was 
eluted with 30 mL of ethyl acetate. Following the evaporation of a solvent, three fractions 
were weighed and then analyzed. 

Figure 1. Tectonic map illustrating structural elements of the northern Pakistan and showing the
location of the study area. The blue lines indicate the river flow, while the black triangles corresponds
to thrusting, and red lines to thrust faults, respectively (modified by [46]).
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3. Materials and Methods
3.1. Samples

The two crude oil samples from Mela-01 and Mela-04 wells in the Kohat Basin, Pak-
istan, were collected and utilized in the current research. The study area is shown in
Figure 1.

3.2. Laboratory Work

Alkane distribution and biomarker parameters were determined using an Agilent
6890 series gas chromatograph equipped with a DB-5 fused silica column (30 m × 0.32 mm
× 0.25 µm) with a data station and integrator, and for GC-MS, a Shimadzu GC-2010 gas
chromatograph interfaced with a QP-2010 plus mass spectrometer was used. Prior to
gas chromatography analysis, the sample was fractionalized and separated by column
chromatography into polar (NSO), aromatics, and saturates. The glass column was prepared
by washing it with dichloromethane and then placing it on glass fiber that had been pre-
treated. Two-thirds of the glass column was filled with silica slurry in n-hexane, followed
by alumina slurry in n-hexane. Briefly, 100–150 mg of sample was loaded at the top, and the
saturate fraction of maltenes was eluted with 30 mL of n-hexane; aromatic hydrocarbons
were eluted with dichloromethane; and the polar fraction (NSO compounds) was eluted
with 30 mL of ethyl acetate. Following the evaporation of a solvent, three fractions were
weighed and then analyzed.

The saturates and aromatic fractions were further subjected to GC apparatus equipped
with a data station and integrator using a DB-1 column. One microliter of the sample
fraction (saturated and aromatic hydrocarbon) was injected using a split injection mode
and capillary column, keeping the oven temperature at 100 ◦C for a minute before being
raised to 320 ◦C at 5 ◦C per minute, while the injector and column temperatures were
maintained at 320 ◦C [47]. The carrier gas used was nitrogen, and the performance of
gas chromatography was checked by using a validation standard consisting of saturated
(nC17 and pristane) and blank samples after every 10 samples. The saturated and aromatic
fractions were prepared by dissolution in DCM (6:1 dilution).

4. Results

The different parameters and ratios of n-alkanes and isoprenoids (m/z 57), steranes
and diasteranes (m/z 217 and 218), terpanes (m/z 191), and aromatic hydrocarbons (m/z
178, 184, and 192) were measured and calculated here to evaluate the nature, level of
thermal maturity, and depositional conditions of organic matter that have sourced these
oils. The chromatograms of the analyzed oils have been shown in Figures 2–5.

The n-alkane (m/z 57) distribution pattern of the studied oils from Mela-01 and Mela-
04 wells indicates that short-chain alkanes predominate, followed by heavier hydrocarbons,
as illustrated in Figure 2a,b. The long-chain n-alkanes are comparatively abundant in
Mela-01 relative to Mela-04 (Figure 2a,b).

The CPI and terrigenous-aquatic ratio (TAR) of n-alkanes have values of 1.04 and 0.43,
respectively, in Mela-01, whereas 1 and 0.13, respectively, in Mela-04 (Table 1), well indicate
an almost mixed odd and even n-alkanes distribution [48].
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Figure 2. m/z 57 chromatograms representing n-alkanes and isoprenoids in Mela oils in the study 
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analyzed oil samples (Figure 2a,b) with the former dominating over the latter, i.e., Pr/Ph 
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values are 0.39 and 0.55, and phytane/n-C18 values are 0.48 and 0.45 in Mela-01 and Mela-
04, respectively (Table 1). 
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(m/z 217 and 218) of the analyzed oil samples (Figure 3a,b). The measured C27 sterane value 
is 30.26% and the measured C29 sterane value is 38.39% in Mela-01, whereas in Mela-04 the 
C27 is 34.81% and the C29 is 35.5%, respectively (Table 1). Comparatively, the C29 land plant-
related sterane is higher in Mela-01 relative to Mela-04. 

Figure 2. m/z 57 chromatograms representing n-alkanes and isoprenoids in Mela oils in the study
area. (a) Mela-01, and (b) Mela-04 wells, respectively.

A significant concentration of pristane and phytane isoprenoids is present in both
the analyzed oil samples (Figure 2a,b) with the former dominating over the latter, i.e.,
Pr/Ph = 1.04 and 1.52 for Mela-01 and Mela-04, respectively (Table 1). The calculated
Pr/n-C17 values are 0.39 and 0.55, and phytane/n-C18 values are 0.48 and 0.45 in Mela-01
and Mela-04, respectively (Table 1).

The steranes and diasteranes biomarkers were also observed in the chromatograms
(m/z 217 and 218) of the analyzed oil samples (Figure 3a,b). The measured C27 sterane value
is 30.26% and the measured C29 sterane value is 38.39% in Mela-01, whereas in Mela-04
the C27 is 34.81% and the C29 is 35.5%, respectively (Table 1). Comparatively, the C29 land
plant-related sterane is higher in Mela-01 relative to Mela-04.
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cate significant amounts of C31RH, oleanane, and gammacerane (Figure 4a,b). 

Figure 3. (a,b) Chromatograms showing distribution of C27, C28, and C29 steranes in the studied
Mela oils from Kohat Basin.

The terpanes chromatograms of the analyzed oils contain tricyclic, tetracyclic, and
pentacyclic terpanes biomarkers. The C19/C23 tricyclic values are 0.26 and 0.33, the C20/C23
tricyclic values are 0.68 and 0.81, and the C23/C24 tricyclic values are 0.82 and 0.81 in Mela-
01 and Mela-04, respectively (Table 1). The tetracyclic terpanes are also present in significant
amounts, indicating relatively higher concentrations than C23 tricyclic terpanes in both
wells, with C24TeT/C23 tricyclic being 0.99 and 0.69 and C24TeT/C30 H being 0.11 and 0.2
(Table 1). Figure 4a,b also depicts the presence of hopanes and homohopnaes, including
Ts, Tm, C29 norhopane, C30 hopane, C35 and C34 HH, C31RH, oleanane, and gammacerane.
The C35 homohopane is higher than the C34 HH in Mela-01, with a C35/C34 HH value of
0.89, and is absent in Mela-04. Oleanane has also significantly contributed to both oils,
with O/C30H values of 0.28 and 0.24 in Mela-01 and Mela-04, respectively. Others include
moretane with M29/C30H at 0.4 in both wells, G/C30H at 0.18 and 0.14, and C31RH/C30H
at 0.23 and 0.16 in Mela-01 and 04 wells, respectively, as listed in Table 1. These values
indicate significant amounts of C31RH, oleanane, and gammacerane (Figure 4a,b).
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Figure 4. (a,b). Terpanes (m/z 19) distribution in the analyzed oils from Mela oilfield. 

The aromatic compound dibenzothiophene (DBT) is sulfur containing, which is rela-
tively abundant in marine carbonate and marl, while high phenanthrene results from pre-
cursors inherited from land plants [49]. Both the analyzed oil samples contain these aro-
matics in substantial amounts, with DPT/P 0.55 in Mela-01 and 0.31 in Mela-04 (Figure 5). 

Figure 4. (a,b) Terpanes (m/z 19) distribution in the analyzed oils from Mela oilfield.

The aromatic compound dibenzothiophene (DBT) is sulfur containing, which is rel-
atively abundant in marine carbonate and marl, while high phenanthrene results from
precursors inherited from land plants [49]. Both the analyzed oil samples contain these aro-
matics in substantial amounts, with DPT/P 0.55 in Mela-01 and 0.31 in Mela-04 (Figure 5).
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Table 1. n-alkanes, isoprenoids, terpanes, and aromatics ratios in oils from Mela oilfield wells, Kohat
Basin.

Short-Chain N-Alkanes Steranes Terpanes

W
ell

Sam
ple

C
PI

TA
R

O
EP

Pr/nC
17

Ph/n-C
18

Pr/Ph

C
27 %

C
28 %

C
29 %

C
19 /C

19
+

C
23

C
20 /C

23

C
22 /C

21

C
24 /C

23

C
26 /C

25

C
29 /C

30 H

H
31 R

/C
30 H

M
ela-01

Oil 1.04 0.43 1.09 0.39 0.48 1.04 30.26 31.34 38.39 0.26 0.68 0.26 0.82 0.74 0.42 0.23

M
ela-04

Oil 1 0.13 1.05 0.55 0.45 1.52 34.81 28.69 35.5 0.33 0.81 0.24 0.81 1.48 0.42 0.16
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Table 1. Cont.

Thermal Maturity Parameters

Steranes C29 Terpanes Aromatics

S/S
+

R

β
β

/α
α

+
β
β

M
29 /C

30 H

Ts/Ts
+

T
m

H
32

(S/S
+

R
)

C
31

H
(S/S

+
R

)

MPI

M
ela-01

Oil 0.5 0.5 0.12 0.73 0.58 0.58 0.99

M
ela-04

Oil 0.57 0.52 0.08 0.76 0.54 0.6 0.81

5. Discussion
5.1. Source and Depositional Condition

In the present study, several biomarker parameters were utilized for the evaluation of
the nature and redox conditions of the organic input at the time of deposition. Details of
these biomarkers are discussed below.

5.1.1. Short Chain N-Alkanes and Isoprenoids

The distribution pattern of n-alkanes on m/z 57 chromatograms in the analyzed oils
from the studied wells indicates that short-chain alkanes predominate, followed by heavier
hydrocarbons, reflecting a mixed source of organic matter received by the source units
at the time of deposition. Figure 2a,b clearly shows that heavier and medium n-alkanes
are relatively higher in Mela-01 than in Mela-04. Peters et al. [15] suggested that high
concentrations of short-chain n-alkanes are either due to marine organic source input or
sometimes due to higher thermal maturation. The appreciable concentration of short-chain
n-alkanes and their unimodal pattern suggest that the oils have not experienced secondary
alterations (biodegradations). The commonly used source-related n-alkane parameters CPI
and TAR (1.04, 0.43), respectively, in Mela-01 and 1 and 0.13 values in Mela-04 wells (Table 1)
indicate mixed organic matter, which is comparatively higher in the case of Mela-01 oil.
High terrestrial input results in high TAR values; however, the CPI may also be influenced
by thermal maturity, where sometimes high thermal stress results in a CPI~1 [15,50].

Pristane and phytane isoprenoids are the sources and best indicators of oxicity [15,51].
The calculated values of the isoprenoids Pr/Ph are 1.04 and 1.54 for Mela-01 and Mela-04,
respectively, which indicate mixed sources of organic materials and sub-oxic conditions, as
their values >3.0 represent oxic terrestrial organic matter, <0.6 anoxic, and the values in
the range from 1–3 indicate sub-oxic conditions during deposition of sediments. However,
Pr and Ph can also be influenced by thermal maturity [52–56]. The high concentration
of phytane represents either marine input and/or reducing conditions or thermal matu-
rity because phytane is generated more rapidly than pristane during maturation [15,53].
Both pristane/n-C17 versus phytane/n-C18 and Pr/Ph vs. CPI plots proposed by Shan-
mugam [57] and Peters and Moldowan [52], respectively, indicate a mixed source of organic
input in Mela-04 but comparatively more algal input in Mela-01 deposited in sub-oxic
conditions (Figure 6a,b).
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(a) Pr/n-C17 vs. Ph/nC18 and (b) Pr/Ph vs. CPI cross plots.

5.1.2. Steranes and Diasteranes

Among sterane biomarkers, the C27 steranes are mainly linked with algae, and the C29
steranes are associated with terrestrial organic materials [58,59]. The chromatograms of
normal steranes and rearranged diasteranes of the analyzed oils (Figure 3) depict that mixed
organic matter (marine/terrestrial) was deposited in the rocks from which the analyzed
oils were sourced [15,52]. This interpretation is consistent with the distribution pattern
of n-alkanes and isoprenoids in the present study. Furthermore, a comparatively high
terrestrial input has been observed in the case of Mela-04 relative to Mela-01 based on
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the relative abundance of C29 steranes, as indicated by the plot between C27, C28, and C29
regular steranes (Figure 7).
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5.1.3. Terpanes

The terpene biomarkers of the examined oils contain tricyclic, tetracyclic, and pen-
tacyclic biomarkers. The chromatograms of the examined oils also revealed the presence
of homohopanes (C31–C35), C30-hopanes, C29-norhopanes, 17a (H)-trisnorhopanes (Tm),
and 18 (H)-trisnorneohopanes (Ts). Different ratios were calculated from biomarker peaks
and were used in the present investigations to assess the source and depositional setting of
the analyzed oil samples. The tricyclic terpane ratios C19/C23 and C20/C23 further suggest
that the source units have received significant terrestrial input from marine organic matter,
as reported in Table 1, because the C23 tricyclic terpanes are dominant in marine organic
materials, while the C19 and C20 tricyclic terpanes originate from terrestrial materials [15].
As seen in Figure 4a,b and Table 1 with C24Tet/C23TCT, the oil samples in both of the
examined wells also have a considerable quantity of C24 tetracyclic, which further indi-
cates a substantial quantity of continental organic matter combined with marine organic
materials [60–62].

The relative lower concentration of C29-norhopane than C30-hopane (C29/C30 17a
H) with values of 0.48 and 0.78 (Table 1 and Figure 5a,b) reflects the shale facies of the
source rocks from which the oils originated, as clay-rich source rocks contain relatively high
concentrations of C30-hopane (C29/C30 H < 1) [14]. Furthermore, the C25 tricyclic terpanes
are marine-related, and the C26 tricyclics are associated with lacustrine clay/carbonate
facies [15], so these clay-rich facies were deposited in marine environments, as indicated
by the low values of this ratio (0.74 and 1.48) (Figure 8a and Table 1). As a result, the
C26/C25 tricyclic vs. C29/C30 H confirms clay-rich facies deposited in marine settings for
the investigated oils (Figure 8a).
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In addition to thermal maturity and depositional environmental assessment, the
Ts/Ts + Tm and C35/C34 HH also provide information about the lithology of the source
units [15]. The ratios of Ts/Ts + Tm (>0.5) and C35/C34 HH (<1) also support the shale
lithology of the source rocks for the oils, as shown in Figure 8b.

Marine carbonate source rocks can be differentiated from other lithologies by con-
taining high C22/C21 and low C24/C23 tricyclic terpane values, so the calculated values
of C22/C21 (0.24–0.26) and C24/C23 (0.81–0.82) indicate that the analyzed oils have not
originated from other than carbonate lithologies, as suggested by Peters et al. [15]. The C35
HH is associated with a reducing environment, so the 0.89 value of C35/C34 HH for Mela-01
indicates a reducing depositional environment at the time of organic matter accumulation
in the sediments, while its absence in Mela-04 may reflect oxidizing conditions [54].

In paleoenvironmental studies, the C31R/C30 hopane ratio distinguishes marine and
lacustrine depositional environments. The value of this ratio in a marine environment is
generally >0.25 and lower for lacustrine depositional settings [15]. In addition, the C31R
homohopane/C30H (Table 1), accompanied by C35/C34 HH and C31 R H/C30 H vs. Pr/Ph
plots, also suggest a marine depositional environment for Mela oils.

The pentacyclic homohopane oleanane is usually associated with extracts and oils
originating from terrigenous Cretaceous and younger rocks [63–65]. The oleanane index
(O/C30 H) >30% indicates high terrigenous organic material, and <10% indicates insignifi-
cant terrigenous input [66]. The oleanane index calculated from terpane chromatograms
for the analyzed oils ranged from 0.24–0.28, as listed in Table 1, indicating a substantial
contribution by terrestrial organic matter (intermediate between marine and terrestrial) [15].
The presence of gammacerane, a salinity (redox conditions) indicator, in quantities ranging
from 0.14–0.18 in the examined oils (Table 1; Figure 4a,b) indicates that deposition of organic
matter and facies was not in freshwater conditions [52,67,68]. The sub-oxic conditions were
also supported by calculated values of Pr/Ph (1.04–1.52) for these oils.

5.1.4. Aromatics

The aromatic compound dibenzothiophene (DBTs) is a sulfur-containing aromatic com-
pound that is relatively abundant in marine carbonate and marl, while high phenanthrene
results from precursors inherited from land plants [49]. A relatively high concentration of
phenanthrene (P) in crude oils and source sediments compared to dibenzofuran (DBF) and
dibenzothiophene (DBT) is related to a high concentration of type III kerogen [69–71]. In the
present study, the dibenzothiophene/phenanthrene ratios (0.5 and 0.31) in oil samples in
Mela-01 and Mela-04 wells, respectively, indicate a significant contribution of both aromatic
compounds, and by using the plot of DBT/P versus Pr/Ph proposed by Hughes et al. [49],
the oil samples fall within the mixed shale/carbonates zone (Figure 8c).

5.2. Thermal Maturity

In the present study, the thermal maturity of the analyzed oil samples from selected
wells in the Mela oilfield, Kohat Basin, was assessed using parameters of n-alkanes and
ratios of terpanes and steranes as biomarkers. The relative abundance of short-chain
alkanes in the analyzed oil samples followed by CPI values indicates an oil window, as
CPI~1 is sometimes also due to thermal maturity, and >1.5 shows immaturity. Similarly, the
abundance of short-chain alkanes is either contributed by marine organic matter or may be
caused by thermal maturity, where higher molecules crack into lower molecules [15,21,52].

The C29 20S/(20S + 20R) sterane value increases from 0 to 0.5 with increasing thermal
maturation of organic matter and attains equilibrium from 0.52–0.55, while at a 0.4 value,
the onset of petroleum generation occurs, but Seifert et al. [72] have noted lower values
ranging from 0.23–0.29 in low-maturity oils. The present oils yield a value of this ratio
ranging from 0.5–0.57, reflecting the oil stage of the source rocks (Figure 9b). This parameter
is affected by the mineral contents of the source rocks too [52,73]. The C29 ββ/αα + ββ in
another index of thermal maturity that is valid up to the peak oil window [74] increases
from 0–~0.7 and equilibrium is established at 0.67–0.7 and is not affected by the nature of
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organic matter as suggested by Seifert and Moldowan [74], Welte and Tissot [21], and Peters
et al. [15]. This ratio found in the analyzed oils in the study area ranged from 0.5–0.52,
indicating an early mature stage (Figure 9a,b).
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In addition to n-alkanes and steranes, terpanes parameters, including C32 22S/(22S +
22R), were also utilized in the thermal maturity analysis of the investigated oils. This value
increases from 0–0.6 with thermal maturation and reaches equilibrium at 0.57–0.62. The
values of this ratio of 0.58 and 0.54 for Mela-01 and Mela-04, respectively, indicate the oil
generation stages, whereas in Mela-04, the thermal maturity of the source unit is relatively
higher (Figure 9a).
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The Tm/Ts (stereoisomers of C27 hopanes) are also used to determine the level of
thermal maturity, which is applicable up to the postmature level but dependent on the
depositional environment and source of organic materials. Oils from carbonate lithologies
will have a low value compared to those from shale facies [75–77]. During the maturation
process, the stability of Tm is less than that of Ts [78]. So, Ts/Tm increases with thermal
maturity as well as with reducing depositional environments [52]. This value has been
calculated for the analyzed oils and ranges between 0.73–0.76 for Mela-01 and Mela-04,
respectively, also indicating a mature stage for hydrocarbon generation. The same status
of thermal maturity is also supported by M29/C30H having values of 0.12 and 0.08 for the
analyzed oils, respectively. Moreover, moretanes are thermally less stable than hopanes
and range from about 0.8 in immature to 0.15–0.05 in mature organic matter [15,74,79]. The
methylphenanthrene index values range from 0.81 to 0.99 and indicate the oil window of
the source rocks for oils (Table 1).

6. Conclusions

Detailed geochemical analyses were conducted on two oil samples from two wells in
the Mela oilfield in the Kohat Basin to determine the redox conditions and nature of organic
matter that have generated these oils. By applying GC and GC-MS techniques, various
biomarker parameters were obtained and used.

• The short-chain alkane distribution patterns along with their standard ratios, includ-
ing CPI, TAR, and isoprenoids (Pr/Ph), indicate a mixed source of organic matter
deposition in sub-oxic conditions in marine depositional environments. The CPI and
OEP further indicate that source units that have generated the analyzed oils fall into
the oil window.

• The steranes parameters such as C29 and C27, which are commonly used source
indicators, also support the mixed source of organic matter, while maturity-related
parameters from the steranes group also indicate maturity for the oil of the source
units.

• The organic input and facies of the source units were also determined by terpanes
(C20/C23, C19/C23), oleanane index, C29/C30H, Ts/Tm, C35/C34 HH, C26/C25 tri-
cyclic, and C31 R H/C30 H, and DBT/P, where most of the parameters indicate shale
lithologies containing mixed organic matter deposited in sub-oxic marine conditions.

• Most of the maturity-related biomarkers and non-biomarker parameters, such as CPI,
C29 S/S + R, ββ/αα + ββ), moretane to hopane (M29/C30H), pentacyclic terpanes C27
(Ts/Ts + Tm), H32 (S/S + R) hopanes, and aromatic methylphenanthrene index (MPI),
agree that the analyzed oils from the selected wells in the Mela oilfield have originated
from thermally mature rocks falling in the oil window.

• As in the study basin, proven source rocks are Paleocene and Cretaceous shales, which
are shallow marine deposits having marine organic matter, but this study reveals that
the oils in the Mela wells have been generated by the strata of mixed organic matter,
which may be deltaic, so these strata can increase the hydrocarbon potentiality in the
area and can be expected in the surrounding non-explored areas of the basin too.
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