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Abstract: Continuous monitoring of water resources is essential for ensuring sustainable urban water
supply. Remote sensing techniques have proven to be valuable in monitoring certain qualitative
parameters of water with optical characteristics. This survey was conducted in the Marateca reservoir
located in central inland Portugal, after a major event that killed a considerable number of fish. The
objectives of the study were as follows: (1) to define a pollution spectral signature specific to the
Marateca reservoir that could shed light on the event; (2) to validate the spectral water’s quality
characteristics using the data collected in five gauging points; and (3) to model the characteristics
of the reservoir water, including its depth, trophic state, and turbidity. The parameters considered
for analysis were total phosphorus, total nitrogen, and chlorophyll-a, which were used to calculate
a trophic level index. Sentinel-2 imagery was employed to calculate spectral indices and image
ratios for specific bands, aiming at the definition of spectral signatures, and to model the water
characteristics in the reservoir. The trophic level index acquired from each of the five gauging points
was used for validation purposes. The reservoir’s trophic level was classified as hypereutrophic and
eutrophic, indicating its sensitivity to contamination. The developed methodological approach can
be easily applied to other reservoirs and serves as a crucial decision-making tool for policymakers.

Keywords: trophic level index; spectral indices change; spectral signatures; random forest algorithm

1. Introduction

The need for sustainable urban water supplies necessitates continuous monitoring of
the quality of available water resources and their watersheds. Trophic classifications are
important tools for aquatic research, as they allow for a deeper understanding of surface
water’s ecosystems functioning. Aquatic pollution is a pressing environmental concern
that has garnered significant attention in scientific research and in the literature [1–7]. The
delicate balance of our water ecosystems is under threat due to various human activities,
leading to the emergence of numerous pollutants that endanger aquatic life and ecosystem
health. In this context, some indicators of aquatic pollution have become prominent subjects
of study and discourse in the scientific community [3,6,7]. Thus, it is essential to continually
monitor and assess these indicators to gauge the extent of aquatic pollution and implement
effective remediation strategies.

Common qualitative parameters of water measured using remote sensing include
chlorophyll-a (Chl-a), colored dissolved organic matters (CDOMs), Secchi disk depth (SDD),
turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP),
sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD),
and chemical oxygen demand (COD). Many of these parameters are correlated with each
other [8–12].
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The use of spectral information for automated pollution recognition is increasing
in the literature [13–15]. In recent years, advances in remote sensing technology and
data analysis have paved the way for innovative approaches to identify and track pol-
lution sources. One such promising technique is the utilization of spectral information
for automated pollution recognition. Spectral information refers to the measurement of
electromagnetic radiation across various wavelengths. Different materials and substances
have unique spectral signatures, which can be detected and analyzed using specialized
sensors, such as spectrometers and hyperspectral imagers. These devices capture data in
multiple narrow and contiguous bands, providing a comprehensive view of the reflected
or emitted light from a target area [13–15]. The benefits of using spectral information for
automated pollution recognition are numerous. First and foremost, it enables real-time or
near-real-time monitoring, allowing for timely interventions to prevent further environ-
mental degradation. Additionally, this approach covers vast geographic areas, providing a
comprehensive understanding of pollution patterns and their sources. However, challenges
do exist. Proper calibration, atmospheric correction, and data interpretation are essential to
ensure the accuracy and reliability of spectral information [13–15]. Additionally, integrating
spectral data into existing pollution monitoring systems and decision-making processes
requires collaboration between environmental scientists, engineers, and policymakers. The
use of spectral information for automated pollution recognition represents a significant step
forward in environmental monitoring and management. By leveraging the power of remote
sensing and spectral analysis, it is possible to enhance the ability to detect pollution sources
promptly, take informed actions, and work towards a cleaner and healthier planet [16].

Efficient models have already been developed for chlorophyll-a (Ch-a), turbidity,
dissolved oxygen (DO), and total phosphorus (TP) using single spectral bands, water
spectral indices, and ratios derived from remote sensing imagery [9]. For instance, the
Sentinel-2 Multispectral Imager (MSI) imagery and the corresponding Sentinel-3 Ocean
and Land Color Instrument (OLCI) products have been employed in aquatic applications
to assess chlorophyll-a (Chl-a) turbidity [10]. Spatial regression was used to map Chl-a
using Sentinel-2 MSI imagery [11]. Other studies have use machine learning algorithms
and several water spectral indices as explanatory variables to model a water quality index
that combines nine non-correlated water quality parameters [12].

Climate change projections for Portugal indicate a notable rise in average air tempera-
ture, especially during the summer and in inland regions. However, precipitation forecasts
remain uncertain, with most predictions suggesting a decrease in average rainfall and a
shorter rainy season [17]. Official climate bulletins from IPMA (Portuguese Institute for the
Sea and Atmosphere—IPMA) report a decline in precipitation since the early 21st century
compared to the average precipitation between 1971 and 2000. The hydrological year of
2021/2022 was particularly dry, raising concerns about the water quality in reservoirs
utilized for urban water supply.

The Marateca reservoir, situated in central inland Portugal, serves as the water source
for the municipality of Castelo Branco and was chosen for a pilot survey to define pollution
spectral signatures. A significant event occurred in April 2022, which spurred the purpose
of this study—to define a pollution spectral signature specific to the Marateca reservoir that
could shed light on the event. To ensure the validity of the findings, five gauging stations
were used for validation purposes. Thus, the objectives of the study were as follows:
(1) to define a pollution spectral signature specific to the Marateca reservoir that could shed
light on the event; (2) to validate the spectral water’s quality characteristics using the data
collected in five gauging points; and (3) to model the characteristics of the reservoir water,
including its depth, trophic state, and turbidity. The parameters considered for analysis
were total phosphorus, total nitrogen, and chlorophyll-a, which were used to calculate a
trophic level index. Sentinel-2 imagery was employed to calculate spectral indices and
image ratios for specific bands, aiming at the definition of spectral signatures, and to model
the water characteristics in the reservoir. The trophic level index acquired from each of the
five gauging points was used for validation purposes.
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2. Materials and Methods
2.1. Study Area

The Marateca reservoir is situated in the municipality of Castelo Branco, Portugal
(Figure 1a,b). It is an embankment dam that was constructed in 1982 on the Ocreza River
and became operational in 1991. The dam has a height of 25 m above its foundation
(24 m above the natural terrain) and a crest length of 1054 m (with a width of 7.6 m).
Its total storage capacity is 43.5 million m3. The dam has a bottom discharge capacity
of 15.25 m3s−1 and a flood discharge capacity of 60 m3s−1. At the full storage level, the
reservoir covers an area of 6.34 km2, and its total capacity is 37.2 million m3 (with a useful
capacity of 32.7 million m3). The water levels in the reservoir are as follows: 385 m at full
storage level (FSL), 385.5 m at maximum flood level, and 375.5 m at minimum exploration
level [18]. According to the Portuguese Land Cover and Land Use (LCLU) thematic map of
2018 (COS2018) [19,20], the Marateca reservoir is predominantly surrounded by agricultural
areas and grasslands (Figure 1c).

Geosciences 2023, 13, 259 3 of 21 
 

 

spectral indices and image ratios for specific bands, aiming at the definition of spectral 
signatures, and to model the water characteristics in the reservoir. The trophic level index 
acquired from each of the five gauging points was used for validation purposes. 

2. Materials and Methods 
2.1. Study Area 

The Marateca reservoir is situated in the municipality of Castelo Branco, Portugal 
(Figure 1a,b). It is an embankment dam that was constructed in 1982 on the Ocreza River 
and became operational in 1991. The dam has a height of 25 m above its foundation (24 m 
above the natural terrain) and a crest length of 1054 m (with a width of 7.6 m). Its total 
storage capacity is 43.5 million m3. The dam has a bottom discharge capacity of 15.25 m3s−1 
and a flood discharge capacity of 60 m3s−1. At the full storage level, the reservoir covers an 
area of 6.34 km2, and its total capacity is 37.2 million m3 (with a useful capacity of 32.7 
million m3). The water levels in the reservoir are as follows: 385 m at full storage level 
(FSL), 385.5 m at maximum flood level, and 375.5 m at minimum exploration level [18]. 
According to the Portuguese Land Cover and Land Use (LCLU) thematic map of 2018 
(COS2018) [19,20], the Marateca reservoir is predominantly surrounded by agricultural 
areas and grasslands (Figure 1c). 

 
Figure 1. Study area: (a) Portugal and the Sentinel2A imagery tile (29 May 2022); (b) Marateca res-
ervoir’s limit from the LCLU (COS 2018), and the monitoring points (Capt, P1, P2, P3, P4, and P5); 
and (c) LCLU (COS 2018) around the Marateca reservoir. 

Figure 1. Study area: (a) Portugal and the Sentinel2A imagery tile (29 May 2022); (b) Marateca
reservoir’s limit from the LCLU (COS 2018), and the monitoring points (Capt, P1, P2, P3, P4, and P5);
and (c) LCLU (COS 2018) around the Marateca reservoir.

2.2. Data
2.2.1. Climatological Data—Local Station

The climatological data were collected from the nearest local climate station to the
study area in Castelo Branco, which is approximately 40 km away from the town. The



Geosciences 2023, 13, 259 4 of 20

monthly climatological reports were downloaded from the official national portal of the
Instituto Português do Mar e da Atmosfera (IPMA) [21].

For this study, climatological data from the hydrological years of 2021/2022 and
2022/2023 (spanning from October 2021 to January 2023) were used to analyze the monthly
average temperatures (minimum and maximum, ◦C) and total monthly precipitation (in
mm). These data were used to understand the observed changes in the study area during
the aforementioned hydrological years (Figure 2).
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Figure 2. Study area: (a) Castelo Branco climatological station (October 2021–January 2023)
data—monthly, average, minimum, and maximum temperatures and total monthly precipitation [21];
and (b) Marateca reservoir‘s monthly total capacity (million m3) (https://snirh.apambiente.pt/index.
php?idMain=2&idItem=3, accessed on 22 March 2023).

2.2.2. Sentinel2A Imagery Data

The Sentinel-2A imagery data were obtained from the Copernicus program, the Euro-
pean Union’s earth observation initiative. The data can be accessed through the program’s
website at https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2, accessed
on 22 March 2023. Sentinel-2 is one of the missions under the Copernicus program. It
currently operates two twin satellites, Sentinel-2A and Sentinel-2B, which provide high
spatial resolution coverage (up to 10 m) and temporal resolution (every 5 days) [22]. The
Sentinel-2 Multispectral Imager (MSI) imagery consists of 13 spectral bands, covering a
range of 440 to 2180 nm, with spatial resolutions of 10, 20, and 60 m (Table 1).

Table 1. Sentinel-2 MSI—spectral bands and spatial resolution [23].

Band Name Central Wavelength (nm) Spatial Resolution (m)

1 Coastal aerosol 443 60
2 Blue 490 10 and 20
3 Green 560 10 and 20
4 Red 665 10 and 20
5 Red-edge 1 705 20
6 Red-edge 2 740 20
7 Red-edge 3 783 20
8 NIR 842 10

8a NIR narrow 865 20
9 Water vapour 945 60

10 Cirrus 1375 60
11 SWIR 1 1610 20
12 SWIR 2 2190 20

In this study, the Sentinel-2 Multispectral Instrument (MSI) imagery, Level 2A (atmo-
spherically, radiometrically, and geometrically corrected), was downloaded for 16 monthly
days of the last and current hydrological years (from October 2021 to January 2023) (Table 2).

https://snirh.apambiente.pt/index.php?idMain=2&idItem=3
https://snirh.apambiente.pt/index.php?idMain=2&idItem=3
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
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Table 2. Sentinel-2A MSI imagery—dates of acquisition.

Year
Date of Acquisition

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2021 11 30 30
2022 29 28 30 29 29 28 28 27 26 5 and 25
2023 4 and 24

2.2.3. Water Quality Parameters—Monitoring Points Data

The water quality parameters were obtained from the official national hydric resources
information system, SNIRH (Sistema Nacional de Informação de Recursos Hídricos), which
can be accessed through their website at https://snirh.apambiente.pt/index.php?idMain=
2&idItem=3, accessed on 22 March 2023.

The Marateca reservoir is equipped with strategically placed monitoring points for
measuring water quality (Figure 1b). The following parameters were considered: total
phosphorus (TP), total nitrogen (TN), chlorophyll-a (Chl-a), total suspended solids (TSS),
turbidity (TUR), and dissolved oxygen (DO).

The caption point (Capt) provided continuous data collection throughout the hydro-
logical year of 2021–2022 for most of the parameters. On 27 April 2022 (Figure 3), data
collection was conducted at almost all monitoring points (Capt, P1, P3, P4, and P5). How-
ever, the P2 point was not included for validation as there was no available information for
27 April 2022.
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2.3. Methods
2.3.1. Composites, Spectral Indices, Ratios Imagery, and Spectral Signatures

A Geographical Information System (GIS) software called SAGA (System for Au-
tomated Geoscientific Analyses) was utilized for performing all computations with the
Sentinel-2A imagery. SAGA is a free open-source software that can be accessed at https:
//saga-gis.sourceforge.io/en/index.html, accessed on 22 March 2023. The Coordinate
System [EPSG 32629]: WGS84/UTM zone 29N was employed for the analysis.

For the 16 dates, false-color compositions (FCCs) (Figure A1), spectral indices such as
the normalized difference water index (NDWI) and normalized difference vegetation index
(NDVI), as well as the spectral blue and green bands image ratio (B/G), were computed
using imagery with a spatial resolution of 10 m (Table 3).

https://snirh.apambiente.pt/index.php?idMain=2&idItem=3
https://snirh.apambiente.pt/index.php?idMain=2&idItem=3
https://saga-gis.sourceforge.io/en/index.html
https://saga-gis.sourceforge.io/en/index.html
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Table 3. Spectral indices and ratios (spatial resolution 10 m).

Acronym Spectral Bands Formula Equation

NDWI G—green band
NIR—near infrared band

(G−NIR)
(G+NIR)

(B3−B8)
(B3+B8)

NDVI R—red band
NIR—near infrared band

(NIR−R)
(NIR+R)

(B8−B4)
(B8+B4)

B/G B—blue band
G—green band

B
G

B2
B3

The NDWI values range from −1 to 1, where water surfaces typically fall within the
range of 0.2 to 1. Flooding and high humidity are usually within the range of 0 to 0.2, while
moderate drought and non-aqueous surfaces are within −0.3 to 0. Drought conditions and
non-aqueous surfaces are within the range of −0.1 to −0.3 [24].

Regarding the NDVI values, they also range from −1 to 1. Negative values correspond
to water surfaces, manmade structures, rocks, clouds, and snow. Bare soil typically falls
within the range of 0.1 to 0.2, while plants always have positive values between 0.2 and 1.
A healthy, dense vegetation canopy should have an NDVI value above 0.5, while sparse
vegetation usually falls within the range of 0.2 to 0.5 [25].

In addition, monthly difference indices, namely dNDWI and dNDVI, were computed
to highlight the changes observed in the Marateca reservoir from October 2021 to January
2023, particularly focusing on the periods between 30 March 2022 (pre-event), 29 April 2022
(post-event 1), and 29 May 2022 (post-event 2).

To delineate the Marateca reservoir, a single-band threshold approach was employed,
based on the histogram of the Near-Infrared (NIR) band with a digital number (DN)
threshold of less than 1300. This threshold was determined using the NIR band histogram
of the imagery taken at the total capacity day (e.g., 5 January 2023—37.2 million m3;
Figure 2b). The result was a water mask in Boolean format (Figure 3), where water pixels are
represented as “true” and non-water pixels as “false”. Subsequently, the water mask grid
was converted into a shape format consisting of polygons. This shapefile was then utilized
to extract the Marateca reservoir from the previously computed imagery with a spatial
resolution of 10 m, including the NDWI, NDVI, B/G ratio, dNDWI, and dNDVI datasets.

The nine spectral bands (e.g., B, G, R, R-edge 1, R-edge 2, R-edge 3, NIR narrow,
SWIR 1, and SWIR 2) with a spatial resolution of 20 m were utilized to acquire the spectral
signatures at the monitoring points for the following dates: 30 March 2022 (pre-event), 29
April 2022 (post-event 1), and 29 May 2022 (post-event 2).

2.3.2. Water Quality Parameters—Monitoring and Validation Data

The 27 April 2022 was selected for validation purposes as a significant number of dead
fish appeared all over the reservoir as reported by local news on the 10 April 2022.

The chosen parameters for water quality characterization were TP, TN, and estimated
Chl−a* values based on TP using the equation proposed by [26] (Equation (1)):

Ln(Chl-a) =
(Ln (TP) + 2.5136)

1.2354
(1)

Trophic classifications for lakes are an important concern for aquatic scientists regard-
ing the functioning of lake ecosystems [27–31]. In the realm of limnology and environmental
science, the evaluation of water bodies’ health and nutrient enrichment is crucial. Trophic
State Indices (TSIs) play a pivotal role in this assessment, offering a systematic approach to
quantify the nutrient status and overall ecological condition of aquatic ecosystems. Over
time, the TSI models have emerged in the literature, each designed to capture specific
nuances and factors that influence trophic state dynamics. From the classic Carlson’s
TSI [32], which relies on chlorophyll-a concentrations and transparency measurements, to
more complex models the literature shows a range of different approaches. These models
integrate various parameters such as nutrient concentrations (nitrogen and phosphorus),
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water clarity, and even biological metrics like algal biomass and macrophyte coverage.
General functional characteristics exist among the lakes in each of the main trophic sta-
tus categories. Conceptually, it is common to consider three main groups: oligotrophic
lakes, which have low nutrients, low algal biomass, high clarity, and deep photic zones;
eutrophic lakes, where blooms of cyanobacteria are frequent, with high total nutrients; and
mesotrophic lakes, which exhibit intermediate characteristics [30].

Additionally, a reservoir trophic level index (RTLI−(TP)), based on TP values, was
calculated according to Lamparelli [26] (Equation (2)) as follows:

RTLI-(TP) = 10 ∗
(

6 −
(

1.77 − 0.42x
(Ln TP)

Ln2

))
(2)

Lamparelli [26] considers six different levels of trophic status: ultraoligotrophic
(IET-(TP) ≤ 47), oligotrophic (47 < IET-(TP) ≤ 52), mesotrophic (52 < IET-(TP) ≤ 59),
eutrophic (59 < IET-(TP) ≤ 63), super-eutrophic (63 < IET-(TP) ≤ 67), and hypereutrophic
(IET-(TP) > 67), where the first level corresponds to clean water and the subsequent levels
represent increasing eutrophication.

The chemical parameters of water quality (TP, TN, estimated Chl-a*), and the reservoir
trophic level index (RTLI-(TP)), were used as a reference to analyze the spectral information
and, furthermore, working as a tool for the definition of a possible pollution spectral
signature for the 29 Aprill 2022, using the closest monitoring day, the 27 April 2022.

2.3.3. Water Characteristics Modeling

Vegetation, soil, and water have typical spectral reflectance curves (Figure 4a) allowing
to differentiate these types of land cover by remote sensing techniques [33]. Thus, these
distinctive spectral signatures support the use of various spectral indices and bands ratios
to monitor vegetation and water by remote sensing [8]. In this study the spectral indices
NDWI, NDVI, and the B/G ratio were considered for water quality parameters estimation
using remote sensing techniques. The interpretation of the NDVI, NDWI, and B/G ratio
was very straightforward in the light of the reflectance curves presented in Figure 4, the
formulas in Table 3, and values range provide in Section 2.3.1.

Spectral bands, spectral indices, and band ratios provide information on several
water quality parameters associated with optically active constituents [8–12], specifically:
dissolved oxygen (DO), total phosphorus (TP), total suspended solids (TSSs), turbidity
(TUR), and chlorophyll-a (Chl−a) (Table 4).

The 13 optical water types for inland waters, derived from hyperspectral water re-
flectance measurements, were used as a proxy for the analysis of the spectral bands’ image
ratio (B/G) (Figure 4b), as described by Spyrakos et al. [34].

Based on the analysis of spectral indices conducted from October 2021 to January 2023
(NDWI, NDVI, and B/G), the 29 May 2022 was selected as it showed the highest variability.
The defined spectral signatures correspond to five water classes, as follows: 1—deep water,
2—shallow water, 3—eutrophic water, 4—median deep water, and 5—turbid water. Nine
spectral bands with a spatial resolution of 20 m (B, G, R, R-edge 1, R-edge 2, R-edge 3, NIR
narrow, SWIR1, and SWIR2; (Table 1) were used for classification and modeling purposes.
The FCC, NDWI, NDVI, and B/G ratios were computed using the 20 m imagery. A water
mask grid was used to extract the Marateca reservoir. Principal component analysis (PCA)
was used for dimensionality reduction, where the first factor explains more than 95% of the
data’s variability. A false-color composite was generated using the B/G ratio, NDVI, and
NDWI imagery and an unsupervised procedure.
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Table 4. Water quality parameters with optical active constituents measured by remote sensing [8–12].

Acronym TP Chl-a TSS TUR DO

NDVI x
B/G x x x x x

TP—total phosphorus, Chl-a—chloraphyl, TSS—total suspended solids, TUR—turbidity and
DO—dissolved oxygen.

The K-means cluster analysis for grids was used to define the natural spectral classes in
the imagery, using four, five, and ten clusters, correspondingly. Furthermore, a supervised
classification was conducted based on this initial exploratory analysis and ground-truth
knowledge supported by the water quality parameters measured in the Marateca reservoir
monitoring points. The first step of the supervised classification involved the definition
of training areas as a reference to generate class signatures, using the nine spectral bands.
The water quality classes considered were as follows: 1—deep water, 2—shallow water,
3—eutrophic water, 4—median deep water, and 5—turbid water. The second step involved
using classifier algorithms (such as the maximum likelihood—MaxLike) to classify the
entire image into the spectral classes previously identified.

The random forest algorithm (ML-RF) was used as a machine learning procedure,
using the previously defined training areas, on the 30 March 2022 (pre-event), the 29 April
2022 (post-event), and the 29 May 2022 (post-event). An error matrix was computed to
assess the quality of the obtained results for the training areas for the different tested
approaches. The land cover category on the training subset (ground truth) and the clas-
sification results for the same location us allowed to quantify the percentage of correctly
classified pixels, and the Kappa coefficient was used to quantify the model’s accuracy [35].
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3. Results
3.1. Composites, Spectral Indices, Ratios Imagery and Spectral Signatures

The FCC, NDWI, NDVI, and B/G ratio imagery (with a spatial resolution of 10 m)
for the dates of 30 March 2022 (pre-event), 29 April 2022 (post-event 1), and 29 May 2022
(post-event 2) revealed certain patterns. In March, the land cover exhibited high humidity
due to the significant precipitation that occurred during that month (Figures 2a and 5a).
An observed plume entering at point P5 was noticeable in both the DNWI and B/G ratio
images (Figure 5b,d).
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The monthly difference indices dNDWI and dNDVI, calculated between the 30th of
March 2022 (pre-event), the 29 April 2022 (post-event 1), and the 29 May 2022 (post-event
2), further emphasized the observed changes (Figure 6). These indices highlighted the
impact of the weather conditions during this period, with intense precipitation in March
followed by significantly reduced precipitation in April and May (Figure 2a). As a result,
any contamination or pollutants had less dilution due to the limited rainfall during the
later months.
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Overall, comparing the pre-event and post-event 1 periods, the dNDWI exhibited
positive values, indicating an increase in moisture content. However, a noticeable plume
was observed at the entry point P5 (Figure 6a—highlighted in red). Between the post-event
1 and post-event 2 periods, negative values were observed in the dNDWI (Figure 6b),
indicating a decrease in moisture content.

On the other hand, the dNDVI showed negative values between the pre-event and
post-event 1 period (Figure 6c), suggesting a decrease in eutrophication, particularly at the
east side of the reservoir and the water entry points. This decrease could be attributed to
the high precipitation that occurred in March (Figure 2a). Between the post-event 1 and
post-event 2 periods, positive values were observed in the dNDVI indicating an increase in
eutrophication, primarily at the entry point P5 (Figure 6d—highlighted in red).

The spectral reflectance signatures in the monitoring points location (Figure 1b) were
obtained with the sole purpose of exploring and validating the measurements in situ by
APA. The multispectral imagery of 20 m spatial resolution, as nine bands were available
(Table 1), provided a more complete spectral reflectance signature along the electromagnetic
spectrum. Despite monitoring points sensors being in the water, mixed pixels of water and
surrounding vegetation, bare soil, and infrastructures were observed in the 20 m spatial
resolution imagery (e.g., Cap, P4, and P5) (Figure 7a). The spectral signatures obtained from
the monitoring points locations on 30 March 2022 (pre-event), 29 April 2022 (post-event 1),
and 29 May 2022 (post-event 2) demonstrated a general trend of increasing differentiation
between the monitoring points locations (Figure 7b) as no precipitation occurred in April
and May (Figure 2a). The effect of mixed pixels is more evident from Cap, P1, P2, P4,
P3 to P5 monitoring point locations, with the latter showing a reflectance curve like the
vegetation reflectance curve (see Figure 4a).

3.2. Water Quality Parameters—Monitoring and Validation Data

The Capt monitoring point was the only point with consistent continuous data collection
from October to April 2022. On the 8 March 2022 (pre-event), the Capt point had very high
values for the parameters TP, TN, and Chl-a and moderate values for TSS and TUR (Figure 8).
On the 10 April 2022, a significant number of dead fish in the reservoir were observed.
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Figure 7. Study area—Marateca reflectance curves for the monitoring points: (a) monitoring points
Capt, P1, P2, P3, P4, and P5 over the FCC 29 May 2022; (b) reflectance curves 30 March 2022 (pre-
event); (c) reflectance curves 29 April 2022 (post-event); and (d) reflectance curves 29 May 2022
(post-event).
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Figure 8. Study area—Marateca’s water quality parameters at the monitoring sampling point Capt
from October 2021 to April 2022 and maximum admissible values (red line): TP—total phosphorus,
TN—total nitrogen, Chl-a—chlorophyll, TSS—total suspended solids, TUR—turbidity, and DO—
dissolved oxygen.

The Capt monitoring point was the only location with continuous data collection
available from October to April 2022. On 8 March 2022 (pre-event), the Capt point exhibited
extremely high values for TP, TN, and Chl-a, along with moderate values for TSS and
TUR (Figure 8). This indicates a potentially high nutrient load and algal biomass in the
reservoir. On 10 April 2022, a significant occurrence of dead fish in the reservoir was
observed, indicating a possible adverse event.

On 27 April 2022 (post-event 1), water quality parameters for TP and TN were available
for most of the monitoring points, including Capt, P1, P3, P4, and P5. These parameters
were the focus of the analysis in this study for validation purposes (Figure 9).



Geosciences 2023, 13, 259 13 of 20

Geosciences 2023, 13, 259 13 of 21 
 

 

reservoir. On 10 April 2022, a significant occurrence of dead fish in the reservoir was ob-
served, indicating a possible adverse event. 

On 27 April 2022 (post-event 1), water quality parameters for TP and TN were avail-
able for most of the monitoring points, including Capt, P1, P3, P4, and P5. These parame-
ters were the focus of the analysis in this study for validation purposes (Figure 9). 

The evaluation of the obtained values for the five monitoring points (Capt, P1, P3, P4, 
and P5) concerning the maximum admissible value for TP, which is 35 µgL−1 according to 
DL n°152/2017, 7 December 2017 [36], showed that point P5 had high TP values, point P1 
had intermediate values, while points Capt, P3, and P4 had low TP values (Figure 9a). 

  

(a) (b) 

  

(c) (d) 

Figure 9. Values at monitoring points (Capt, P1, P3, P4 and P5) on 27 April 2022 (post-event) for: (a) 
TP—total phosphorus, (b) TN—total nitrogen, (c) Chl−a*—estimated chlorophyll-a, and (d) RTLI 
(TP)—reservoir trophic level index [26]. 

Regarding TN (total nitrogen), when considering the maximum allowable value of 
1.5 mgL−1 according to DL n°152/2017, dated 7 December 2017 [36], elevated levels were 
observed at points P1, P3, and P5, an intermediate level at Capt, and a lower level at P4. 
Notably, point P5 displayed the highest values for both TP (total phosphorus) and TN, 
surpassing the allowable maximum allowable values (Figure 9b). Regarding the estimated 
values of Chl-a*, and assuming the allowable value of 20 µgL−1 for reservoirs by the 

P5 

P1 

P4 

P3 

Capt 

P5 P4 

P1 

P3 Capt P3 

P3 

P4 P5 

P1 

Capt 

P5 P4 

P1 

Capt 

Figure 9. Values at monitoring points (Capt, P1, P3, P4 and P5) on 27 April 2022 (post-event) for:
(a) TP—total phosphorus, (b) TN—total nitrogen, (c) Chl−a*—estimated chlorophyll-a, and (d) RTLI
(TP)—reservoir trophic level index [26].

The evaluation of the obtained values for the five monitoring points (Capt, P1, P3, P4,
and P5) concerning the maximum admissible value for TP, which is 35 µgL−1 according to
DL n◦152/2017, 7 December 2017 [36], showed that point P5 had high TP values, point P1
had intermediate values, while points Capt, P3, and P4 had low TP values (Figure 9a).

Regarding TN (total nitrogen), when considering the maximum allowable value of
1.5 mgL−1 according to DL n◦152/2017, dated 7 December 2017 [36], elevated levels were
observed at points P1, P3, and P5, an intermediate level at Capt, and a lower level at P4.
Notably, point P5 displayed the highest values for both TP (total phosphorus) and TN,
surpassing the allowable maximum allowable values (Figure 9b). Regarding the estimated
values of Chl-a*, and assuming the allowable value of 20 µgL−1 for reservoirs by the
Portuguese Environmental Agency (APA), it is evident that the distribution aligns with the
TP values and surpasses the allowable threshold in all monitoring points.

The reservoir’s trophic level index (RTLI-(TP)), measured in the gauging stations
revealed two levels [26]: a Hypereutrophic level at points P1 and P5, and a Eutrophic level
at Capt, P3, and P4, indicating that corrective actions are needed (Figure 9c).

The defined spectral signatures for the gauging stations on 29 April 2022 (Figure 7b),
were consistent with the water quality chemical parameters TP, TN, and estimated Chl-a*,
as well as the reservoir trophic level index (RTLI-(TP)) on the 27 April 2022 (Figure 8).
Indeed, point P5 showed a spectral signature pattern that closely resembled the curve for



Geosciences 2023, 13, 259 14 of 20

the Hypereutrophic water type, which is consistent with the trophic level computed using
the chemical contents of the selected covariates collected in the same day (Figure 4).

3.3. Water Characteristics Modeling

The imagery for the 29 May 2022 (Figure 5) showed to have the highest variability in
water characteristics throughout this reservoir when compared to the 30 March and the
29 April 2022. The spectral signatures at the monitoring points also appeared to have less
spectral confusion on 29 May 2022 (Figure 7c). This variability was also highlighted by the
first principal component image and the false-color composite image from the B/G ratio,
NDVI, and NDWI imagery (Figure 10a,b).
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NDVI-BG-NDWI; and (c) unsupervised classification (K-means Clusters) with five clusters.
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The nine spectral bands (e.g., B, G, R, R-edge 1, R-edge 1, R-edge 1, NIR narrow,
SWIR1, and SWIR2) natural clustering with four, five, and ten clusters obtained by the
unsupervised procedure (e.g., K-means cluster analysis for grids) also emphasized the
variability previously observed and highlighted possible training areas with no spectral
confusion (Figure 10c).

Based on the unsupervised clustering image and the ground-truth knowledge, sup-
ported by the Marateca reservoir monitoring points water quality chemical parameters
data, the digitalized training areas (polygons) for five water characteristics classes consid-
ered (e.g., 1—deep water; 2—shallow water; 3—eutrophic water; 4—median deep water;
and 5—turbid water) again revealed that its spectral signatures had no spectral confusion
(Figure 11).
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Figure 11. Study area—Marateca reservoir reflectance curves on 29 May 2022 imagery of 20 m spatial
resolution: (a) training areas (polygons); and (b) reflectance curves for the considered five water
classes (e.g., 1—deep water; 2—shallow water; 3—eutrophic water; 4—median deep water; and
5—turbid water).

The imagery taken on 29 May 2022 (Figure 5) exhibited the highest variability in water
characteristics within the reservoir compared to the images taken on 30 March and 29 April
2022. The spectral signatures at the monitoring points also showed less spectral confusion
on 29 May 2022 (Figure 7c). This variability was further highlighted by the first principal
component image and the false-color composite image derived from the B/G ratio, NDVI,
and NDWI imagery (Figure 10a,b).

The natural clustering of the nine spectral bands (B, G, R, R-edge 1, R-edge 1, R-edge
1, NIR narrow, SWIR1, and SWIR2) using unsupervised clustering techniques such as K-
means cluster analysis with four, five, and ten clusters emphasized the observed variability
and identified potential training areas with minimal spectral confusion (Figure 10c).

Based on the unsupervised clustering image and the ground-truth information pro-
vided by the water quality chemical parameters from the Marateca reservoir monitoring
points, the digitalized training areas (polygons) for the five water characteristic classes
(deep water, shallow water, eutrophic water, median deep water, and turbid water) demon-
strated once again that their spectral signatures were distinct without spectral confusion
(Figure 11).

The error matrix computed to validate the training areas (Figure 11a) against the
classified image by the classifier of the maximum likelihood (MaxLike) delivered an overall
accuracy and a Cohen’s Kappa coefficient of 99%. The error matrix between the Maxlike
image and the Cluster 5 image (Figure 10c) delivered an overall accuracy of 72% and a
Cohen’s Kappa coefficient of 45%.
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The error matrix between the ML-RF simulated image (Figure 12b), modeled using
the training areas (Figure 11a), and the Cluster 5 image (Figure 10c) delivered an overall
accuracy of 76% and a Cohen’s Kappa coefficient of 53%. The ML-RF simulated images
for the 30 March 2022, 29 April 2022, and the 30 May (Figure 12), using the training
areas digitalized on the 29 May 2022 (Figure 11a), clearly identified the natural clusters
(Figure 10c), particularly the plume at the entry point P5 and the eutrophication zones
(Figures 5 and 6).
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The error matrix was computed to validate the training areas (Figure 11a) by com-
paring them against the classified image generated by the maximum likelihood (MaxLike)
classifier. The overall accuracy of the classification was found to be 99%, indicating a high
level of agreement between the classified image and the training areas. The Cohen’s Kappa
coefficient, which quantifies the model accuracy beyond random chance, was also 99%.

When comparing the MaxLike classified image with the Cluster 5 image (Figure 10c),
the overall accuracy was 72% with a Cohen’s Kappa coefficient of 45%. This indicates a
moderate level of agreement between the two images.

Similarly, when comparing the ML-RF simulated image (Figure 12b), generated using
the training areas from Figure 11a, with the Cluster 5 image (Figure 10c), the overall
accuracy was 76% with a Cohen’s Kappa coefficient of 53%. This suggests a moderate level
of agreement between the ML-RF simulated image and the Cluster 5 image.

The ML-RF simulated images for 30 March 2022, 29 April 2022, and 30 May 2022
(Figure 12), which were generated using the training areas digitalized on 29 May 2022
(Figure 11a), successfully identified the natural clusters observed in Figure 10c. Specifically,
the plume at the entry point P5 and the eutrophication zones, as depicted in Figures 5 and 6,
were identified in the ML-RF simulated images.

4. Discussion and Conclusions

Spectral information obtained from measurement points plays a vital role in under-
standing the ecological dynamics of water bodies, particularly in relation to trophic levels.
By validating spectral signatures at these measurement points, it becomes possible to
estimate trophic levels continuously and comprehensively throughout the entire reservoir.
In the context of reservoirs and aquatic ecosystems, different trophic levels, ranging from
oligotrophic (low nutrient levels) to hypereutrophic (high nutrient levels), exhibit distinct
spectral signatures. These signatures are essential for assessing the overall health and pro-
ductivity of the ecosystem. By conducting thorough validation of the spectral information
collected at measurement points, it is possible to assume the corresponding spectral signa-
tures. This validation process involves rigorous analysis and comparison of the obtained
data with established reference data (gauging points), ensuring accuracy and consistency.
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Once the spectral signatures are validated, they can be used to estimate trophic levels
continuously and across the entire reservoir. Further work will include the integration of
more sensors strategically positioned in a uniform grid over the entire reservoir area. This
approach will facilitate the application of advanced interpolation techniques, enabling the
creation of a trophic level’s estimated mapping that after can be overlayed onto the patterns
acquired through remote sensing, and, consequently, enabling a more precise validation of
the spectral signatures.

Continuous estimation of trophic levels is a significant advancement in environmental
monitoring. It allows for real-time tracking of changes in nutrient levels and overall eco-
logical conditions. This information is crucial for identifying potential sources of pollution,
understanding the impact of human activities on the ecosystem, and implementing timely
and targeted remediation measure. Furthermore, continuous trophic level estimation pro-
vides a comprehensive and holistic view of the reservoir’s health. It enables environmental
authorities and policymakers to identify critical areas of concern and allocate resources
effectively to protect and preserve the water body. Moreover, such data-driven approaches
can guide sustainable management practices to maintain a balanced and thriving ecosystem.

Concerning the Marateca reservoir, the conducted survey allowed for the identification
of two trophic index levels (RTLI-(TP)) [26] which showed two levels: the hypereutrophic
level at points P1, P2, and P5 and the eutrophic level at points Capt, P3, and P4, and
confirming entry point P5 as one of the most problematic. Indeed, the principal sources of
nutrients in lakes and reservoirs are land runoff and atmospheric inputs. Relatively small
internal reservoirs, such as Marateca, are highly sensitive to seasonal intakes. Runoff and
atmospheric inputs may vary significantly in the concentration and ratio of TP and TN,
and, therefore, in the proportion of organic and inorganic forms of these nutrients [37,38].
Two reasons that may explain the elevated levels of TP, TN, and estimated Chl-a. One
possibility is eutrophication due to agricultural fertilizers. In this scenario, a high TP value
and a lower TN value would be expected. The second possibility is soil erosion with the
transport of large amounts of nutrients into the reservoir, especially phosphorus which
tends to adhere to soil particles, while nitrogen is more soluble can be washed away more
easily [39,40]. Furthermore, the identified hypereutrophic and eutrophic levels refer to
excessive growth of algae and other aquatic plants in the water body. This growth is often
caused by an excess of nutrients such as phosphorus and nitrogen in the water. When these
nutrients are available in abundance algae and other plants can grow very quickly, leading
to the water body becoming overgrown and appearing green or brown. This excess growth
of plants can also lead to a depletion of oxygen in the water, which can harm fish and other
aquatic life, and is often the result of human activities such as agriculture, urbanization,
and industrialization. Due to the high precipitation in March, an increase in moisture
content, particularly at the east side of the reservoir, was observed along with a decrease in
eutrophication also at the east side and mostly at the reservoir water entries. During the
following two months, there was no significant precipitation, consequently, a decrease in
moisture content and an increase in eutrophication occurred, mostly at entry point P5.

In this study, five water characteristics classes were differentiated in the Marateca
reservoir (e.g., 1—deep water; 2—shallow water; 3—eutrophic water; 4—median deep
water; and 5—turbid water) using the spectral signatures created with the 29 May 2022
imagery. The ML-RF simulated image, modeled using these training areas, delivered an
overall accuracy of 76% and a Cohen’s Kappa coefficient of 53% when compared to the
Cluster 5 image (natural clustering) proving to be robust. Thus, these training areas allowed
modeling of the Marateca reservoir water characteristics for the period under analysis
(March, April, and May 202) forecasting the problematic zones either due to drought
and/or contamination. The Sentinel2A imagery proved to be a valuable monitoring tool,
as the spectral information aligns with the point measured data, allowing validation of
the nominal spectral signatures for TP, TN, and Chl-a*. The reservoir’s continuous water
quality evaluation in conjunction with traditional sampling methods and field surveying
for validation is a promising approach for pollution control [8–12].
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The methodological approach developed in this study can be easily applied to other
reservoirs and is a key support tool for decision-makers. Nevertheless, continuous mon-
itoring with consistent data collection over time is mandatory. Furthermore, the water
sample’s location should be improved to provide a better distribution of water quality
parameters throughout the entire reservoir for effective variability monitoring.
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