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Abstract: Restoration of open-pit mines may utilize waste rock for landscape reconstruction, which
can include the construction of backfill aquifers. Weathering and contaminant transport may be
different in backfill aquifers compared to the surrounding aquifer because of newly available mineral
surfaces and transportable nano- to micro-scale particles generated during mining. Waste rock from
the Cordero Rojo open-pit coal mine in the Powder River Basin was exposed to benchtop leachate
experiments for 20 weeks at temperatures of 5 ◦C and 20 ◦C. Collected leachate was analyzed for
Eh, pH, specific conductance, alkalinity, and cation and anion concentrations as unfiltered and
0.45-µm and 0.2-µm filtered concentrations. During the experiment, leachate Eh and pH substan-
tially varied during the first 55 days, which corresponds to a period of high specific conductance
(>1000 µS/cm) and alkalinity (>200 mg/L). Correspondingly, anion and cation concentrations were
the largest during this early weathering stage, and the filter fractions indicated multiple forms of trans-
ported elements. After this early weathering stage, column leachate evolved towards a weathering
equilibrium of neutral, oxidizing, and low solute conditions indicated by positive Eh values, pH near
7, and specific conductance <500 µS/cm. This evolution was reflected in the decline and stabilization
or non-detection of metal(loid) concentrations reflective of a shift to primarily bulk aluminosilicate
weathering when coal- and salt-associated elements, such as arsenic, cadmium, and selenium, were
not detected or at minimal concentrations. Over the course of the experiment, the solute trend of
certain elements indicated particular weathering processes—cadmium and nanoparticle transport,
selenium and salt dissolution, and arsenic and pyrite oxidation. The mining of overburden formations
and use of the waste rock for backfill aquifers as part of landscape reconstruction will create newly
available mineral surfaces and nanoparticles that will weather to produce solute concentrations not
typically found in groundwater associated with the original overburden.

Keywords: waste rock; backfill aquifer; leachate experiment; weathering evolution

1. Introduction

A backfill aquifer is produced from the filling of a mine pit with waste rock (e.g.,
overburden and interburden materials) and the return of groundwater from infiltrating
precipitation or lateral inflow from the adjacent aquifer. As water percolates into the waste
rock, a reaction front propagates through the aquifer as newly exposed mineral surfaces and
small particles (e.g., nanoparticles) are exposed to weathering and transport processes [1,2].
Progression of the reaction front is visible in the temporal evolution of solute release until a
new equilibrium of weathering is established [3–6]. The difficulty in predicting the potential
water quality of backfill aquifers is not our lack of mineral weathering knowledge but our
lack of understanding of the availability of potential sources contributing to solute release
and transport in this modified aquifer matrix. The incomplete source identification for
the prediction of solute release has resulted in the exceedance of water quality criteria for
backfill aquifers when it was predicted that weathering of the waste rock would not result
in groundwater contamination issues [7,8].
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Backfill aquifers in the Powder River Basin (Figure 1), the largest coal mining district
in the United States, have shown variable water quality and exceedance of water quality
criteria for metal(loid) and nonmetal contaminants due to the waste rock used for landscape
restoration. The blasting and transport of the waste rock produce a new aquifer matrix with
the generation of new mineral surfaces and nanoparticles that can produce high weathering
and solute transport rates [5,9–11]. A weathering or release rate is the rate at which
primary minerals are congruently or incongruently transformed into secondary minerals
with the release of dissolved reaction products (solutes) [9]. Predicting the release of
solutes can be difficult because of coupled and sustained biogeochemical processes, but the
identification of potential solute sources and associated reaction rates with the development
of an applicable conceptual model is critical for estimating solute release and evaluating
future water quality [12–14]. A governing physical property of weathering is the available
surface area where smaller grain fractions typically undergo the greatest weathering and
release of solutes [15–17]. The generation and transport of nanoparticles, materials with at
least one dimension within the nanometer scale [18], can also contribute to the solute load
through inclusion in the dissolved phase (<0.45-µm filtering) and will weather to produce
additional solutes during transport [19]. Using waste rock from the Cordero Rojo Mine in
the Powder River Basin (PRB), a leach column experiment was conducted to discriminate
solute sources from newly created mineral surfaces and transportable particles to better
understand solute release during early-stage weathering that can impact the water quality
of backfill aquifers. Leachate data provided insight into the mineral sources of the solutes
and the form of the solutes released with the weathering of the waste rock.
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Figure 1. Location of the Cordero Rojo Mine near the town of Gillette in the Powder River Basin of
Wyoming, USA (basin boundary from the U.S. Geological Survey).

1.1. Powder River Basin Geology

The PRB (Figure 1) is a north-northwest to south-southeast trending asymmetric
syncline that accumulated marine, alluvial, fluvial, and lacustrine sediments [20]. The
structural axis is located along the western part of the basin (Figure 1). The western
limb of the PRB is characterized by steeply dipping (~20◦) strata, and the eastern limb
is characterized by gently dipping (2–5◦) strata, including the coal-bearing rocks [21].
The Cordero Rojo Mine extracts its coal from the Wyodak-Anderson coal seam of the
Tongue River member of the Fort Union Formation, which is overlain by upper units of
the Paleocene Fort Union Formation and the near-surface Eocene Wasatch Formation [22]
(Figure 2). Open-pit mining of the coal takes advantage of the near-surface coal deposits
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along the basin’s eastern margin and their gentle westward dip. A typical PRB mining
operation consists of a westward-moving open pit, removal of overburden and coal, nearby
storage of waste rock, and landscape restoration to the east of the active mine site (Figure 3).
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Cordero Rojo Mine, Powder River Basin, Wyoming, USA.

1.2. Powder River Basin Waste Rock and Groundwater Contaminants

Waste rock from the Cordero Rojo Mine in the PRB is derived from the Wasatch
and Fort Union formations—sequences of interbedded fluvial, lacustrine, and palustrine
deposits that compose the overburden [23–25]. The Wasatch Formation is composed of
sandstones, mudstones, conglomerate lenses, and interbedded limestone and evapor-
ites [26]. The Fort Union Formation is composed of non-sulfidic shales, mudstones, and
concretionary sandstones [27,28] whose paleoenvironment also produced the interbedded
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low-sulfur coal [29–31]. The PRB coal contains accessory minerals, such as arsenic-bearing
pyrite [FeS2], cadmium-bearing sphalerite [(Zn,Fe)S], and galena [PbS] [32]. Primary con-
taminants (exceedance of water quality criteria) detected in backfill aquifers of the PRB
include arsenic [As], barium [Ba], manganese [Mn], and selenium [Se] [33]. Such contam-
ination is not typically found in groundwater that has interacted with the Wasatch and
Fort Union formations [34]. Therefore, it was hypothesized that production and disposal
of the waste rock have incorporated small coal particles containing higher concentrations
of the potential contaminants, exposed previously unavailable forms of the contaminants
(e.g., bound salts), and/or produced contaminant-containing nanoparticles that are weath-
ered and transported within the backfill aquifers. The goal of this study was to discriminate
contaminant sources through the interpretation of solute trends indicative of weathering
processes in the waste rock.

2. Study Methods
2.1. Waste Rock Collection

Wasatch and Fort Union waste rock were collected within two weeks of initial excava-
tion from the Cordero Rojo Mine in August of 2021. The waste rock samples were collected
from the most recent waste piles generated with mining of the overburden (nearest waste
piles to the active mine site, as shown in Figure 3). Sample collection was completed
according to the “clean hands” techniques as prescribed for field and laboratory experi-
ments involving trace metals [35,36]. Wasatch and Fort Union waste rock were segregated
during the mining process, and samples were collected separately per standard practice for
sampling aggregates [37]. The samples were screened in the field to <6.3 mm to meet the
criteria for kinetic columns [38,39]. The 300 kg of screened waste rock (86 kg Wasatch waste
rock and 214 kg Fort Union waste rock) was sealed in 0.02 m3 buckets and transported to
the University of Idaho, where the waste rock was temporarily stored at 5 ◦C until dried at
125 ◦C for 48 h.

2.2. Waste Rock Characterization

To distinguish potential formation differences in contaminant sources, the dried
Wasatch and Fort Union waste rock were evaluated for element composition (X-ray fluores-
cence (XRF)), grain size distribution, weathering resistance (slake durability test [40]), and
surface area (Brunauer–Emmett–Teller (BET) analysis) prior to the start of the leach column
experiment. Wasatch and Fort Union waste rock were submitted to the Washington State
University GeoAnalytical Laboratory for XRF analysis (Advant’XP + sequential XRF, fused
beads). Grain size distribution and slake durability tests were performed at the University
of Idaho. Surface area was analyzed by a contract laboratory using a TriStar II Plus High
Throughput Surface Area and Porosity Analyzer.

2.3. Leach Columns

A 20-week leach column experiment was conducted to evaluate the weathering pro-
cesses responsible for controlling the release and transport of potential contaminants from
the waste rock. Warm-room (20 ◦C ± 1 ◦C) and cold-room (5 ◦C ± 0.5 ◦C) PVC columns
(0.6 m (H) × 0.1 m (W)) were loaded with 0.8 kg of dried Wasatch waste rock and 3.2 kg of
dried Fort Union waste rock to mimic overburden distributions at the Cordero Rojo Mine,
which is replicated with backfill aquifer construction. The base of each column contained a
two-layer, 2.5-cm thick, non-reactive mesh filter for the retention of the waste rock material
while allowing for the passage of <10-µm particles into the upper portion of the mesh
and <4-µm particles in the lower portion of the mesh. This dual-layer mesh assisted in
retaining bulk solids in the column while minimizing the clogging of the system with the
movement of microparticles into the mesh.

The weathering cycle for each leach column consisted of a semiweekly schedule of
the drip introduction of 1 L of deionized water and full saturation of the waste rock for
72 h followed by a 2 h drain period and a 6 h unsaturated period before resaturation of
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the column. This is a modification of the standard humidity cell protocol [39] to simu-
late primarily saturated (e.g., aquifer) conditions and allow for the collection of sufficient
water volume for analysis of environmental parameters and solutes. The twice-weekly
collection of the leachate from each column was immediately analyzed for pH (±0.01 pH),
Eh (±0.2 mV), and specific conductance (±0.01 µS/cm) with calibrated Orion 3-Star me-
ters/probes followed by submission of samples to the University of Idaho Analytical
Services Laboratory for analysis of anion (0.45-µm filtered) and cation (unfiltered (total),
0.45-µm filtered, and 0.2-µm filtered) concentrations. Additionally, alkalinity was
determined by an OrionStarT940 auto-titrator using 0.1 N HCl (±0.1 mg/L as CaCO3).
Filtered anion (bromide [Br], chloride [Cl], fluoride [F], nitrate-nitrite [NO3-NO2 as N],
ortho-phosphate [PO4], and sulfate [SO4]) concentrations were determined via ion chro-
matography (Dionex Aquion Ion Chromatograph). Cation (aluminum [Al], As, Ba, boron [B],
Cd, calcium [Ca], chromium [Cr], copper [Cu], iron [Fe], lead [Pb], magnesium [Mg], Mn,
molybdenum [Mo], nickel [Ni], potassium [K], Se, sodium [Na], zinc [Zn]) concentrations
of unfiltered and filtered samples were determined via inductively coupled plasma optical
emission spectrometry (ICP-OES) for larger concentrations (Perkin Elmer Optima 8300
ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) for smaller concen-
trations (Agilent 7800 ICP-MS). Duplicate samples were randomly collected during each
leachate collection period to assess laboratory analysis accuracy.

2.4. Data Analysis

The goal of the data analysis was the evaluation of the temporal trends, or variability
with time, of the environmental parameters and of the release of solutes for the identifi-
cation of substantive changes in weathering processes. The identification of changes in
solute release from the waste rock assisted in discriminating contaminant sources and the
weathering processes that released the solutes into solution. The temporal trends of the
environmental parameters of pH, specific conductance, and alkalinity were smoothed using
the moving window average (4-point window) technique to reduce the volatility of the
data series and allow for an improved display of the data trends (all data in Supplementary
Materials). Values of Eh were not smoothed to preserve reduction–oxidation (redox) con-
ditions that widely varied during the experiment. A principal component analysis (PCA)
was used to identify clusters of related metal(loid) solutes for discriminating potential
weathering processes in warm and cold conditions and the unfiltered and filter fractions.
Solute data sets that were predominantly (>80 %) below laboratory reporting limits were
not included in the PCA.

A Spearman rank correlation analysis of Eh and redox-sensitive elements (As, Fe,
Mn, and Mo) was performed to evaluate the oxidative dissolution of sulfide minerals,
such as pyrite, that are present in the Fort Union Formation [32]. The Spearman test is
a nonparametric measure of rank correlation (statistical dependence between the rank-
ings of two variables) that produces a statistic (ρ) between +1 (perfect positive relation)
and −1 (perfect negative relation). This correlation analysis was performed using only
the warm-room unfiltered and filtered values because of substantial non-detection results
for these elements in the cold-room leachate. A false discovery rate (q-value) was used
in place of a p-value to minimize the presentation of false negatives. Additionally, the
activation energy (Ea, Equation (1)) of the oxidative dissolution of pyrite was calculated
to evaluate temporal changes in pyrite weathering that may indicate inhibition of sulfide
weathering because of precipitate formation [41]. Arsenic was selected for the calculation
of the activation energy because of its strong correlation with Eh and the presence of Fe and
sulfur [S] in other mineral sources found in the waste rock [42]. The Arrhenius equation of
a single temperature and rate constant (Equation (1)) was used to calculate Ea instead of the
typical two-temperature/two-rate method because cold-room As concentrations decreased
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below detection levels during the experiment. The one-temperature/rate method employs
the geometric solution or slope (line of best fit) of the ln k-to-time relation for estimating Ea:

ln(k) = ln(A) − (Ea/RT) (1)

where Ea is the activation energy (J·mol−1), R is the universal gas constant
(8.314 × 10−3 J·mol−1·K−1), A is a pre-exponential factor (s−1), and T is the temperature
(K) at the respective times of the observed rate constant (k in mol·m−2·s−1).

3. Results and Discussion
3.1. Waste Rock Characterization

Large concentrations of Al and silicon (Si) were present in the Wasatch and Fort Union
waste rock, reflective of the dominant aluminosilicate minerals that compose these fluvial
and lacustrine deposits [20,26] (Figure 4). Larger concentrations of redox-sensitive elements
of Fe and Mn were present in the Fort Union waste rock, which are indicative of the low-
energy paleoenvironments associated with certain units of the Fort Union Formation [43,44].
The slake durability tests indicated stronger rock (93% durability index) from the Wasatch
Formation compared to a durability index of 89% for rock from the Fort Union Formation.
Such results align with the presence of substantial sandstone in the Wasatch Formation [26]
compared to the higher content of shales and mudstones in the Fort Union Formation [44].
Correspondingly, the grain size distribution analysis indicated a greater fraction of clay-
sized particles (7.6%) present in the Fort Union waste rock. The greater presence of smaller
particles in the Fort Union waste rock also translated to a greater surface area of 14.2 m2/g
compared to the 5.1 m2/g for the Wasatch sample.
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Figure 4. Element composition of the Fort Union and Wasatch waste rock from the Cordero
Rojo Mine.

3.2. Leachate Environmental Conditions

The environmental parameters for warm- and cold-room leachates indicated high
variability during the first 55 days of the experiment (Figure 5). Eh fluctuated between
positive values (maximum of 142 mV for warm-room leachate and 154 mV for cold-
room leachate) and negative values (minimum of −113 mV for the warm-room leachate
and −118 mV for the cold-room leachate), indicating alternating oxidizing and reducing
conditions with the greatest variability during the first 45 days. Specific conductance
ranged from 6410 µS/cm to 315 µS/cm for the warm-room leachate and 6350 µS/cm to
271 µS/cm for cold-room leachate, and the specific conductance of leachate from both
columns decreased sharply during the first 40 days of the experiment (Figure 5b). Values
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of pH remained near neutral for the entire experiment, ranging from 6.05 to 7.03 for the
warm-room leachate and 6.47 to 7.04 for the cold-room leachate (Figure 5c). However,
comparison of the warm-room and cold-room pH trends indicated a greater difference in
pH values during the first 55 days. Alkalinity ranged from 550 mg/L to 148 mg/L for the
warm-room leachate and 613 mg/L to 139 mg/L for the cold-room leachate (Figure 5d)
with a sharp decline in both alkalinities during the first 20 days and a slower decrease from
day 20 to day 70.
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window) technique except for Eh.

The high-solute-release period (early weathering stage) indicated by the leachate
specific conductance likely is a result of the flushing of nano- to micro-scale particles
and the influence of fast reaction weathering, such as sulfide oxidation [11,45], when
the largest surface area of these minerals was available. This early weathering stage
(day 3 to day 31, specific conductance >1000 µS/cm) also corresponds to sharp decreases
and increases in Eh values and the period of maximum pH difference between the warm-
room and cold-room leachates (Figure 5). These results indicate oxygen-consuming and
acid-generating reactions, such as the oxidative dissolution of pyrite [46]. The lessening
of the temperature effect on pH by day 55 corresponds to the stabilization of positive Eh
values and the lessening of the decrease in the specific conductance trend (past the inflection
point), which indicate a shift to weathering of less reactive minerals (e.g., aluminosilicates)
and loss (consumption) of the more reactive sulfide minerals. Alkalinity values in the warm-
and cold-room leachates remained elevated past this early weathering stage indicative of
the relatively slower reactivity of available carbonate minerals [6,9,47], which have been
identified in the Wasatch Formation [26,32].
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3.3. Weathering Processes and Solute Trends

The first component (PC1, Table 1) of the PCA indicated an association (covariance of
0.14) of the major cations (Ca, Mg, and K) along with Mn, Ni, and Zn that is consistent in
the unfiltered and filtered concentrations in warm- and cold-room conditions (Table 1, bold
blue values). This association of the major cations indicates primarily bulk aluminosilicate
and carbonate weathering throughout the experiment. The inclusion of Mn and Zn in this
associated group likely reflects the presence of Mn and Zn-bearing carbonate species that
have been identified in the Powder River Basin overburden formations [32]. Additionally,
the Ni likely is from a clay source [32,48,49] that is weathered and transported during
the experiment. The association of the redox-sensitive Mn with these elements likely is
the result of the weathering of Mn oxides found in the Wasatch Formation [50], which
is supported by the lack of correlation (Spearman ρ of −0.04 to −0.03, q-value of 0.84)
between Eh and Mn concentrations (unfiltered or filtered) where a correlation would be
expected if the Mn was being released with sulfide oxidation. The second component
(PC2, Table 1) of the PCA indicated a correlation of As and Fe (stronger in filtered results)
likely because of their association in sulfide minerals (e.g., As-bearing pyrite) found in
the Wyodak-Anderson coal [48,51]. The second component also indicated an opposing
correlation of Mo (positive) and Fe and As (negative) in the warm-room leachate (lack of
detectable concentrations in the cold-room leachate), which may indicate the presence of
Mo in the coal [52] that has a different mineral source than Fe and As. The association
of Mo in PC2 likely is derived from the remaining organic carbon in the coal [32], which
is supported by the strong, positive correlation (Spearman’s ρ of 0.58 to 0.55, q-value of
0.0009) between Mo and Eh and suggestive of the oxidation of an organic source and release
of Mo [53].

Table 1. Covariance matrix of the principal component analysis (two components: PC1 and PC2)
for warm- and cold-room solute concentrations for each concentration fraction (total (unfiltered),
0.45-µm filtered, and 0.2 µm filtered). Noted associations in bold and colored fonts.

Element
Warm Cold

Total 0.45-µm 0.2-µm Total 0.45-µm 0.2-µm

As
PC1 0.02 0.03 0.03 0.09 0.13 0.13
PC2 −0.29 −0.26 −0.27 −0.09 0.12 0.13

Ba
PC1 −0.13 −0.13 −0.13 −0.12 −0.13 −0.13
PC2 0.09 0.09 0.09 0.14 0.14 0.14

B
PC1 0.11 0.14 0.14 0.09 0.14 0.14
PC2 −0.05 0.01 0.01 0.06 −0.05 −0.05

Ca
PC1 0.15 0.15 0.15 0.14 0.14 0.14
PC2 0.01 0.01 0.01 −0.03 −0.02 −0.02

Fe
PC1 0.11 0.06 0.07 0.03 −0.06 −0.06
PC2 −0.12 −0.27 −0.26 0.14 −0.01 −0.01

Mg PC1 0.14 0.14 0.14 0.14 0.14 0.14
PC2 0.07 0.07 0.07 0.05 0.05 0.05

Mn
PC1 0.14 0.14 0.14 0.14 0.14 0.14
PC2 −0.07 −0.07 −0.06 −0.04 −0.01 −0.01

Mo
PC1 −0.02 −0.02 −0.01 0.03 0.03 0.03
PC2 0.26 0.25 0.27 0.23 0.26 0.26

Ni
PC1 0.14 0.14 0.14 0.14 0.14 0.14
PC2 0.04 0.05 0.05 0.07 0.08 0.08

K
PC1 0.14 0.14 0.14 0.14 0.14 0.14
PC2 0.04 0.05 0.05 0.03 0.03 0.03

Zn
PC1 0.14 0.14 0.14 0.14 0.14 0.14
PC2 0.06 0.04 0.06 0.05 0.04 0.04

3.3.1. Salt Dissolution or Nanoparticle Flushing

The PCA did not include elements that were only detectable in the leachate during
the first two weeks of the experiment, such as Cd and Se (Figure 6a,b). These elements
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have an association with sulfide minerals in the PRB coal [42,54,55], but their concentration
trends did not mimic a release indicative of the oxidative dissolution of pyrite, such as
is seen with the As concentrations (Figure 6c). In the overburden formations, Se can
be found in coal, coal-associated pyrite, water-leachable salts, and as sorbed particles
(e.g., selenite [SeO3]) [54]. Dreher and Finkelman [56] indicated that Se salts from past
oxidation of pyrite may be the primary source of Se in the overburden, although they
found seven different forms of Se with no discrimination between Wasatch and Fort
Union formations. The quick release of Se and lack of difference between filter fraction
concentrations and temperature conditions (Figure 6b) are indicative of a fast-dissolving
salt and/or desorption and oxidation of Se particles, such as selenite. The incorporation of
Se into gypsum (CaSO4) can occur with the oxidation of pyrite/coal and the substitution
of Se for S in gypsum [57,58]. Such processes are partially responsible for the significant
presence of gypsum in Powder River Basin sedimentary formations [59–63]. Se-bearing
salts can readily dissolve, but the dissolution of the salts may not contribute substantial
soluble Se species (e.g., selenate (SeO4

2−)) if selenite is produced because of the preference
of selenite to readily sorb to sediments [64–66]. The Se released into the leachate appears
to be primarily particle release (early and large concentrations) with a contribution from
Se salt dissolution that is more visible in the second week when the warm-room leachate
indicated higher concentrations of Se.
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reporting limit for each of the analytes.

The leachate Cd trends indicate an early concentration peak that quickly decreased
after day 3 for all filtered warm- and cold-room results and after day 7 for unfiltered warm-
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room concentrations (Figure 6a). Cadmium has not been documented as a salt byproduct
from the oxidation of sulfide minerals in the Fort Union Formation, but Cd is associated
with sphalerite [(Fe, Zn)S] found in PRB coal [48]. Given the likely presence of Se salts from
the oxidation of pyrite, it can be assumed that Cd was similarly released with sphalerite
oxidation and deposited in the overburden formations. The introduction of leach water to
the waste rock would not have a similar mobilizing effect on Cd compared to Se if both
elements are contained in readily dissolvable salts since Cd is less soluble than Se [67].
This lower solubility of Cd is reflected in the much lower concentrations of Cd released
from the waste rock compared to Se (Figure 6) even though there are equivalent amounts
of Cd and Se in the Wyodak-Anderson coal seam [68]. With the lower solubility of Cd,
it is assumed that the early release of Cd from the waste rock is because of the transport
of Cd-bearing particles, primarily nanoparticles [69]. Not all of the Cd was present in
nanoparticles given the greater release of Cd in the unfiltered warm-room leachate, which
indicated a more torturous path of the release of larger particles being transported from the
waste rock. Comparison of the pre-experiment Wasatch and Fort Union rock samples to
post-experiment samples from the warm-room column indicated the loss of the smallest
grains (<0.07 mm) from the Fort Union waste rock during the experiment indicative of the
loss (e.g., transport, weathering) of small particles (Figure 7).
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and post-experimental waste rock sampled at three locations from the warm-room leach column (low,
middle, and high).

3.3.2. Sulfide Oxidation

Arsenic concentrations were largest in warm-room and cold-room leachates during the
early weathering stage when Eh varied between positive and negative values (Figure 6c),
reflective of the likely consumption of oxygen with sulfide mineral weathering. The
correlation analysis indicated a strong-to-moderate negative correlation (Spearman’s ρ of
−0.56 to −0.29, q-value of 0.0009 to 0.1) between As and Eh for the filtered and unfiltered
concentrations. The majority of the As released in the warm-room leachate was present in
the 0.2-µm filtered samples indicating ion release and/or small nanoparticles (Figure 6c).
The larger As concentrations in unfiltered leachate from both temperature conditions
indicate some release of As-bearing microparticles from the columns. The substantial
difference in As concentrations between warm-room and cold-room leachates indicates a
temperature effect for oxidative dissolution of As-bearing pyrite. However, the cold-room
leachate continued to show the presence of As in the unfiltered solution following the loss
of detectable As in the filtered fractions.
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The release of As with weathering of As-bearing pyrite typically would result in an
early peak concentration because of the dissolution of the source mineral(s) outer layer
(rim or coating) followed by a moderated release according to the mass-to-volume ratio of
the available mineral source and pH of the porewater solution [70,71]. The primary loss of
As from the waste rock during the early weathering stage for the warm-room column is in
the filtered samples and displays a concentration trend that peaks near day 17, followed by
a moderate decreasing trend. The post-peak trend of As concentrations follows an expected
element release trend for the oxidative dissolution of pyrite [72], which is indicative of
the weathering of the As-bearing pyrite contained in the PRB coal that was incorporated
into the waste rock. Calculation of the effective activation energy of pyrite weathering
(Figure 8) from the filtered concentrations of As presents a typical energy trend of an initial
energy barrier (oxidation of the mineral surface), an early drop in the energy barrier as
the sulfide surface degrades, and a slow increase in the necessary energy for oxidation
of the remaining sulfide mineral. This trend represents the oxidation of the unreacted
sulfide surface (shrinking core model), which becomes controlled by the inward diffusion
of oxygen given the pore-blocking effect of Fe and S precipitates on the unreacted sulfide
surface [73]. This oxygen diffusion effect is more pronounced in neutral conditions, in
which Fe is not solubilized and can form substantial Fe (oxyhydr)oxide precipitates [74–76].
The effective activation energy trend aligns with the evolution of activation energy neces-
sary for the different bonding arrangements where the initial dissociation of oxygen at the
sulfide surface typically requires an activation energy of 22.6 kJ/mol [77] (compared to our
calculated 18.2 kJ/mol) followed by lower energy requirements with degradation of the
mineral structure.
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3.3.3. Bulk Solid Weathering

With the identification of salt dissolution, particle transport, and pyrite oxidation
contributing to the high solute release period, an additional weathering process is necessary
to explain the large concentrations in most solutes during the early weathering stage and
the following period of higher alkalinity (Figure 5). Transport of other nanoparticles
and weathering of the bulk aluminosilicate and carbonate minerals likely explains the
remaining contributions to the high solute and high alkalinity periods prior to the waste
rock equilibrating to the low-solute weathering period (post-day 70). Carbonates typically
weather at a higher rate compared to aluminosilicates [78], which may explain the higher
Ca concentrations compared to K (Figure 9) even though there is greater K in the Wasatch
and Fort Union waste rock (Figure 4). Carbonate weathering likely is responsible for the
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pH moderation (>6.1) during pyrite oxidation early in the experiment and the increasing
pH during the remainder of the experiment (Figure 5) as well as the longer period of high
alkalinity compared to the high specific conductance period (Figure 5). The large, early
concentrations for Ca and K suggest the release of Ca- and K-bearing nanoparticles [19],
desorption (exchangeable ions) from larger particles [79], and/or loss from roughened
surfaces [80], followed by a typical slow release of these elements with bulk aluminosilicate
weathering [81,82]. Warm-room leachate shows higher initial concentrations than cold-
room leachate for both Ca and K, which is the result of temperature and pH controls on
desorption and mineral degradation [62–67].
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3.3.4. Multiple Source Weathering

Iron concentrations for warm- and cold-room leachates indicated multiple weathering
processes causing the release of Fe over the course of the experiment (Figure 10). Iron
content in the Wasatch and Fort Union waste rock is substantial (Figure 4) and has multiple
mineral sources, including sulfides (pyrite) and aluminosilicates (feldspars and associated
clays) along with sorbed Fe (oxyhydr)oxide particles. The relation of Fe and Eh was a
moderate-to-weak negative correlation (Spearman’s ρ of −0.31 for the filtered concentra-
tions (q-value of 0.01) and −0.11 for the unfiltered concentrations (q-value of 0.7)), likely
because of the variety of Fe sources and solubility controls on Fe. Given the low solubility
of Fe3+ in oxidizing and near-neutral waters [83,84], Fe likely was released from the waste
rock as desorbed Fe (oxyhydr)oxide particles early in the experiment, which accounts for
the large total Fe concentration peak at day 3. The potential for mobile Fe forms is a com-
plex interaction of environmental conditions and solute composition and concentrations
that commonly results in the formation of nanoscale to colloidal Fe particles [85–89]. The
much larger concentration of Fe in the warm-room leachate during this first week of the
experiment is indicative of the effect of pH and temperature on Fe particle desorption and
transport [90–92]. After the initial peak of Fe, there is a substantial release of Fe from the
warm-room leachate with oxidation of the pyrite, which is limited under the cold-room
conditions [93]. As Fe forms are mobilized and removed from the waste rock, along with
the lessening of available sulfide surfaces, Fe starts to weather at a consistent and lower
release rate at approximately day 65 (Figure 10), similar to the trends of Ca and K (Figure 9).
This Fe trend likely is the result of the release of Fe (oxyhydr)oxides with weathering of the
bulk solids and continued desorption and particle aggregation/deaggregation [94,95].
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4. Conclusions

During mine site restoration, the construction and saturation of backfill aquifers may
cause groundwater quality impacts because of freshly exposed mineral surfaces and the
presence of newly created and transportable particles in the waste rock. Monitoring of
groundwater in backfill aquifers of the Powder River Basin has indicated water quality
impacts that were not expected given groundwater quality in aquifers contained in the
original overburden/waste rock formations. A 20-week leach column experiment was
conducted to characterize solute sources and weathering processes for recently gener-
ated waste rock from the Cordero Rojo Mine in the Powder River Basin. Analysis of
the Eh, pH, specific conductance, alkalinity, and cation and anion concentrations of the
leachate collected from warm-room and cold-room columns indicated an early weath-
ering stage during the first 55 days of the experiment—indicated by Eh alternating be-
tween positive and negative values, pH < 6.5, specific conductance up to 6500 µS/cm,
alkalinity > 500 mg/L, and the largest anion and cation concentrations during this pe-
riod. After this early weathering period, alkalinity decreased but remained elevated at
200 to 300 mg/L and, along with elevated calcium values, indicated a transitional stage
of additional carbonate weathering. Following this transitional weathering period, a low
solute period representative of primarily aluminosilicate weathering occurred after day 70.

Multiple weathering processes were identified from leachate solute trends—particle
transport, salt dissolution, sulfide oxidation, carbonate dissolution, and the weathering of
the bulk aluminosilicate matrix. Certain elements indicated one or two weathering pro-
cesses that were primarily responsible for the release of an element into solution: cadmium
from particle transport during early flushing, selenium from particle transport and salt
dissolution with early flushing and weathering of highly soluble minerals, arsenic from oxi-
dation of pyrite found in the coal, calcium from particle transport and carbonate dissolution
during and after the early weathering period, and potassium from particle transport and
aluminosilicate weathering from early flushing through to equilibrium weathering. Ele-
ments with multiple mineral sources, such as iron, produced complex concentration trends
because of concurrent and sequential weathering processes. The mining and landscape
restoration process produces newly exposed mineral surfaces and nano- to micro-scale
particles that may be weathered and transported in groundwater, creating water quality
issues not expected given historical aquifer water quality in the regional geology of the
Powder River Basin. Mining companies should expect an early weathering stage in back-
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fill aquifers where contaminant concentrations may be higher unless actions are taken
to minimize the presence or availability of newly accessible contaminant sources in the
waste rock.
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