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Abstract: This research examines risk factors for sporadic cryptosporidiosis and 

Escherichia coli (E. coli) O157 infection in East Tennessee, using a case-control approach 

and spatial logistic regression models. The risk factors examined are animal density, land 

use, geology, surface water impairment, poverty rate and availability of private water 

supply. Proximity to karst geology, beef cow population density and a high percentage of 

both developed land and pasture land are positively associated with both diseases. The 

availability of private water supply is negatively associated with both diseases. Risk maps 

generated using the model coefficients show areas of elevated risk to identify the 

communities where background risk is highest, so that limited public health resources can 

be targeted to the risk factors and communities most at risk. These results can be used as 

the framework upon which to develop a comprehensive epidemiological study that focuses 

on risk factors important at the individual level. 

Keywords: environmental risk factors; spatial modeling; cryptosporidiosis; E. coli O157; 

spatial epidemiology; spatial logistic regression 

 

1. Introduction 

The field of medical geology assesses health problems associated with geologic materials with three 

areas of focus: (1) geology as a source of harmful materials; (2) movement and alteration of harmful 
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materials through the subsurface over time and space; and (3) exposure pathways associated with 

geologic materials [1]. This research focuses on the third branch, specifically on karst geology and 

other spatially-distributed risk factors, as pathways for exposure to waterborne diseases. 

The aim for epidemiologic research in general is to identify associations between exposures and 

outcomes to maximize health or to prevent disease [2], and the probability of human infection by 

pathogens depends on a number of factors, including how well the pathogen survives in the 

environment and the opportunities for host-pathogen interaction [3]. 

It is well established that karst regions are at a higher risk for groundwater contamination due to 

groundwater-surface water interactions and low groundwater residence times [4,5]. Natural and 

anthropogenic processes impact water quality at karst springs, as surface contamination is quickly 

carried into the groundwater supply when contaminated surface runoff flows into sinkholes and 

sinking streams [6,7]. Contaminated groundwater supplies used for public or private water supplies 

can result in outbreaks of disease that are more prevalent in karst regions [8,9]. 

Exposure to impaired surface water [10–13], agricultural activity [10,13–16] and karst geology [17] has 

been linked to outbreaks of cryptosporidiosis and Escherichia coli O157 (E. coli O157) infection 

worldwide. Since the first outbreak of cryptosporidiosis related to recreational water in the United States 

was reported in 1988, Cryptosporidium has emerged as the most recognized cause of disease outbreak 

associated with recreational water [18], as it is pervasive in the environment, resistant to chlorine and has a 

low infectious dose (10 to 30 oocysts) [19]. From 2006 to 2009, Tennessee reported 315 cryptosporidiosis 

cases statewide. Forty-nine (15.7%) were from the northeast region, though this region represents only 

6% of the state’s population. Forty-seven of the forty-nine cases (96%) in the northeast region were in 

two counties, and while some of these cases were attributed to a specific exposure (such as 

contaminated food or water), the sources of infection for most of the cases remained unexplained. 

E. coli O157 is a pathogen first identified in 1982 as the cause of two outbreaks of disease in 

Oregon and Michigan, USA [18]. Since that time, the disease has become widely distributed 

throughout the United States and the rest of the world because of the high survival rate of the pathogen 

and low infectious dose (between 10 and 100 organisms) [11]. E. coli O157 infection is associated 

with consumption of contaminated water or food, such as undercooked beef, dairy products and salads; 

however, a connection between environmental exposure and E. coli O157 outbreaks has also been 

established [11,14,18,20,21]. E. coli O157 infection causes an estimated 96,534 illnesses in the United 

States each year, 3268 of which can require hospitalization [22]. From 2000 to 2010, 903 cases of  

E. coli O157 infection were reported in Tennessee. In 21 cases, the onset of symptoms was preceded 

by international travel, and only two cases were associated with a known outbreak. Therefore, in the 

majority of the Tennessee cases, the cause of illness is unknown. 

Because known risk factors for cryptosporidiosis and E. coli O157 infection are associated with an 

individual’s environment (apart from exposure through food and human contact), an analysis of these 

datasets would benefit from explicitly including space and spatial relationships between potential risk 

factors and disease. Proximity to a known risk factor may increase the incidence of cryptosporidiosis 

or E. coli O157 infection in a population, and therefore, epidemiologic research should take into 

account the spatial relationship between the individual, the environment and other individuals, keeping 

in mind the relationship between and among cases of these diseases. A geographic approach to the 

assessment of risk for cryptosporidiosis and E. coli O157 infection that includes the use of GIS and 



Geosciences 2014, 4 204 

 

spatial statistical modeling can be a powerful method to infer associations between the environment  

and health [23]. 

Much of East Tennessee falls within the Valley and Ridge physiographic province of North 

America, characterized by folded Paleozoic sedimentary rocks (limestone, shale and sandstone) with 

flat-lying sedimentary rocks to the west and Precambrian metamorphic rocks of the Blue Ridge 

province to the east [24]. Building on the established link between karst geology, water quality and 

health, this research examines the role of karst geology and other environmental risk factors for 

cryptosporidiosis and E. coli O157 infection in East Tennessee. 

2. Methods 

The research was accomplished in two steps. First, spatial databases of disease data and explanatory 

variables were assembled, and exploratory mapping was done. In this step, the cases were geocoded, 

rates were calculated and standardized for each zip code and explanatory variables were extracted for 

each case and zip code and overlaid with the disease data. In the second step, regression models were 

developed using a case-control approach to examine the risk for disease in the individual. 

2.1. Data 

For this study, a dataset of patient records for 903 E. coli O157 infection and 555 cryptosporidiosis 

cases occurring in Tennessee from 2000 to 2010 was extracted from the Foodborne Diseases Active 

Surveillance Network (FoodNet) database, USA Department of Health and Human Services. The patient 

records consisted of patient age, gender, date of specimen, address, recent travel history and whether the 

infection was associated with an outbreak. Appropriate safeguards were taken to protect patient privacy 

and confidentiality. Case records for East Tennessee addresses were extracted and examined for duplicates, 

recent travel, association with a known outbreak and incomplete records, and geocoding was completed 

using the University of South California WebGIS Services batch geocoder [25]. After cleaning, the datasets 

contained 247 cryptosporidiosis and 250 E. coli O157 infection records (Figure 1). 

The environmental risk factors selected as explanatory variables were geology, surface water 

impairment, agricultural animal population density by zip code, land use, groundwater well permit 

density by county and poverty rate at the block group level (Table 1). Each explanatory variable was 

extracted at the best resolution available. These data are publicly available as spatially-referenced 

spreadsheet data (related to a geographic unit such as a county or census unit) or as shapefiles that 

were directly imported into ArcGIS 10.0 [26]. 

Karst regions were delineated by selecting polygons classified as limestone or dolomite in the 

1:250,000 Geology of Tennessee shapefile [27] and creating a new layer of the karst-prone regions of 

Tennessee. Surface water shapefiles and attribute data for the Year 2008 305(b) Report [28] and  

Year 2008 303(d) Report [29] were downloaded from the Environmental Protection Agency Reach 

Address Database [30]. Using the near tool in ArcGIS, two raster files containing values for the 

distance in kilometers to the nearest karst area (KARST) and distance to the nearest impaired stream 

segment (STREAM) were constructed. 

Agricultural animal population densities were calculated for each zip code tabulation area (ZCTA) 

using the USDA Agricultural Census Data from 2007 [31] for dairy cows (MILK), beef cows (BEEF), 
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hogs (HOG) and sheep (SHEEP). The 2006 National Land Cover Dataset [32] was reclassified and 

smoothed to construct three 500 m × 500 m rasters of percent cover for each of three land use classes 

(PASTURE, FOREST and DEVELOPED). A database of well permits was obtained from the 

Tennessee Department of Environment and Conservation, summed by county and joined to the 2010 

Tiger/Line county layer (WELLS). Poverty rates at the block group level (POVRATE) were obtained 

from USA Census data [33]. Raster layers for each variable were constructed in ArcGIS for input as 

spatial explanatory variables in the spatial logistic regression model (Figure 2). 

Figure 1. Study area and approximate locations of disease cases from 2000 to 2010. 

 

Table 1. Candidate explanatory variables for cryptosporidiosis and E. coli O157 infection. 

Variable Description Units 

KARST 1 Distance to nearest karst geology Kilometers (Euclidean distance)
STREAM 2 Distance to nearest E. coli contaminated stream segment Kilometers (Euclidean distance)

BEEF 3 Beef cow population density (zip code level data) Animals/km2 
MILK 3 Dairy cow population density (zip code level data) Animals/km2 
HOG 3 Hog population density (zip code level data) Animals/km2 

SHEEP 3 Sheep population density (zip code level data) Animals/km2 
DEVELOPED 4 Percent cover in a 500 m × 500 m raster cell  Percent, expressed as decimal 

FOREST 4 Percent cover in a 500 m × 500 m raster cell  Percent, expressed as decimal 
PASTURE 4 Percent cover in a 500 m × 500 m raster cell  Percent, expressed as decimal 

WELLS 5 Number of well permits by population (county level data) Permits/10,000 population 
POVRATE 6 Poverty rate (block group level data) Percent, expressed as decimal 

Data Sources: 1 [27]; 2 [28,29];3 [30]; 4 [31]; 5 TDEC Well permit database; 6 [33]. 
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Figure 2. Environmental risk factors used as covariates in the spatial logistic regression model. 
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2.2. Spatial Logistic Regression Model 

The objective of a case-control modeling approach is to identify and quantify the relationship 

between risk factors and cryptosporidiosis and E. coli O157 infection in the individual. One limitation 

of a case-control study using an existing database is that control data may not be available, in which case 

random absence data can be generated and used as the control dataset [34]. To avoid this issue, a spatial 
logistic regression model was developed in R [35], using the slrm function (R package spatstat) [36]. 

The case data were entered as a point process, and the covariate data were input as image files that 

span the area of interest. 

The explanatory variables selected for inclusion in cryptosporidiosis models were: beef and dairy 

cow population density; sheep population density; percent of developed, forested and agricultural land; 

distance to karst geology; distance to impaired stream; poverty rate; and well permit density. Hog 

population density was not included in the model, because exploratory analyses indicated there was no 

significant statistical correlation between hog population density and cryptosporidiosis. 

Explanatory variables selected for inclusion in the E. coli O157 models were: beef and dairy cow 

population density; hog population density; percent of developed, forested and agricultural land; 

distance to karst geology; distance to impaired stream; poverty rate; and well permit density. Sheep 

population density was not included in the model, because there was no significant statistical 

correlation between sheep density and E. coli O157 infection in preliminary analyses. 

Risk maps were generated in ArcGIS 10.0 for both cryptosporidiosis and E. coli O157 infection 

from the model coefficients using the raster calculator tool and the equation: ܲ = 	 1ہ + expሺ− log ܽ − ଵ (1)ିۂሻܺܤ

where P is the risk for disease at any given raster cell, log a is an offset term representing  

log-transformed population, B is the vector of model coefficients and X is the vector of covariate 

values. The Akaike information criterion (AIC), a diagnostic tool to quantify the trade-off between 

increased explanatory power and information loss associated with the use of additional explanatory 

variables in a model, was used to select the best model for each disease. 

3. Results 

3.1. Cryptosporidiosis 

Multiple spatial logistic regression models were generated in R using the slrm function, with 

different combinations of covariates and interaction terms (Table 2). Model C1 includes all candidate 

covariates, except HOG, which showed no relationship with cryptosporidiosis. Model C2 includes 

only those variables significant in Model C1, and C3 includes all variables significant in C1 plus all 

possible interaction terms. Interactions were examined, but were not statistically significant (p > 0.05). 

Model results were generally consistent between models, and Model C1 was the best model, using the 

Akaike information criterion (AIC) as a diagnostic tool. Given the order of the AIC, the range of 

8957–8968 between the three models is not large, indicating minimal additional loss of information 

with increased model complexity. 
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Table 2. Spatial logistic regression model (SLRM) coefficients (p-values in parentheses) 

for cryptosporidiosis individual models. Shaded cells represent excluded variables. Model 

diagnostics (AIC) are shown on the bottom row. 

Covariates 
SLRM Coefficients (p-values) 

C1 C2 C3 

(Intercept) −18.58868 −19.28357 −19.54150 
BEEF 0.1899209 (0.000) 0.415818 (0.000) 0.384648 (0.000) 
MILK 9.700272 (0.599) 
SHEEP −6.439952 (0.973) 
DEVELOPED 0.02983753 (0.000) 0.034451 (0.000) 0.041139 (0.000) 
PASTURE 0.01080318 (0.000) 0.016177 (0.000) 0.012557 (0.000) 
FOREST −0.0055259 (0.761) 
WELLS −0.001641 (0.000) −0.001450 (0.000) −0.000690 (0.000) 
KARST −0.0001505 (0.000) −0.0001545 (0.000) −0.000518 (0.000) 
STREAM −0.0000237 (0.004) −0.0000198 (0.014) −0.0000029 (0.014) 
POVRATE −0.3994621 (0.538) 

Model Diagnostics 

AIC 8957.298 8961.791 8968.142 

The factors most significant for increased risk for cryptosporidiosis are proximity to karst geology 

(KARST), proximity to E. coli impaired streams (STREAM), higher beef cow population density 

(BEEF), residence within developed (DEVELOPED) or agricultural (PASTURE) land and a lower 

well density by population (WELLS). 

A map showing background environmental risk generated using Model C1 (Figure 3) and Equation (1) 

using an offset of log(population density) [37] shows elevated risk (as the probability of disease) along 

developed corridors, in urban centers and in one predominantly rural area (Greene County area). Faint 

northeast-southwest trending linear areas of high risk show the contribution to risk from karst geology. 

Figure 3. Spatial logistic regression model (C1) risk map for cryptosporidiosis (see Table 2 

for the coefficients). 
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3.2. E. coli O157 

Spatial logistic regression models for E. coli O157 infection were developed in R for various 

combinations of covariates and interaction terms (Table 3). Results were generally consistent between 

models. Model E1 included all candidate variables, with no interaction terms. Model E2 included only 

the significant variables from E1, and a comparison of AIC shows that E2 is a slight improvement over 

E1. Model E3 was constructed using only the variables in E2 plus all possible interaction terms. Only 

two interaction terms (DEVELOPED × PASTURE and HOG × KARST) emerged as significant, and 

the AIC increased due to the increased complexity in the model. 

Table 3. Spatial logistic regression model coefficients (p-values in parentheses) for E. coli 

O157 individual models. Shaded cells represent excluded variables. Model diagnostics 

(AIC) are shown in the bottom row. 

Covariates 
SLRM Coefficient (p-values) 

E1 E2 E3 † E4 

Constant −19.43082 −19.27842 −19.56200 −19.14675 

BEEF 0.3765216 (0.000) 0.3863660 (0.000) 1.633936 (0.000) 0.3046392 (0.000) 

MILK −2.96153 (0.001) −0.299347 (0.001) −20.07985 (0.001) −1.319051 (0.001) 

HOG 3.016985 (0.023) 2.954141 (0.023) 4.032882 (0.023) 1.794563 (0.023) 

DEVELOPED 0.0322240 (0.000) 0.0307588 (0.000) 0.0320371 (0.000) 0.0282152 (0.000) 

PASTURE 0.0166063 (0.000) 0.0150557 (0.000) 0.0093708 (0.000) 0.0103302 (0.000) 

FOREST 0.0187083 (0.737) 

WELLS −0.00122612 (0.000) −0.00122976 (0.000) −0.000922645 (0.000) −0.00128114 (0.000) 

KARST −0.000219501 (0.000) −0.000216085 (0.000) −0.000380838 (0.000) −0.000336388 (0.000)

STREAM 0.0000023 (0.721) 

POVRATE 0.184116 (0.774) 

HOG*KARST 0.00698929 (0.036) 0.00518194 (0.064) 

DEVELOPED*PASTURE 0.000405056 (0.005) 0.000354069 (0.003) 

Model Diagnostics 

AIC 9190.348 9184.642 9194.744 9176.378 
† Model E3 included all possible interactions between explanatory variables, but only coefficients for significant 

interactions are presented in the table to conserve space. Model E4 included only the two interaction terms listed. 

The final model (E4) was the best SLRM (using the AIC as a diagnostic tool) and included only 

significant covariates from previous models. The risk factors for E. coli O157 infection identified in 

Model E4 are: distance to karst geology (KARST); beef cow (BEEF), dairy cow (MILK) and hog 

(HOG) population density; percent of developed land (DEVELOPED); percent of agricultural land 

(PASTURE); and well permit density (WELLS). The interaction term DEVELOPED*PASTURE was 

significant (p < 0.05). Disease is positively associated with increasing values of BEEF, HOG, 

DEVELOPED and PASTURE and negatively associated with increasing values of MILK, WELLS 

and KARST. 

A map of background environmental risk generated using Model E4 (Figure 4) and Equation (1) 

with an offset of log(population density) shows elevated risk along developed corridors and in urban 

centers, in areas of agricultural land use and in areas of karst. 
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Figure 4. Spatial logistic regression model (E4) risk map for E. coli O157 infection (see 

Table 3 for the coefficients). 

 

4. Discussion 

Both cryptosporidiosis and E. coli O157 infection are waterborne diseases with low infectious doses 

and high survivability in the environment. It is reasonable therefore to see similar environmental risk 

factors for both diseases. However, there are also notable differences, which will be discussed in the 

sections that follow. 

4.1. Karst Geology 

Proximity to karst geology was a small, but consistently significant, risk factor for both diseases. 

This finding is in agreement with previous research for cryptosporidiosis [17] and is not surprising for 

a number of reasons. First, karst areas are underlain by limestone that is less resistant to weathering 

and erosion. Karst areas therefore coincide with valley bottoms in East Tennessee, which is where 

development is concentrated due to the ease of construction and access to transportation corridors 

(roads and rivers). This may lead to increased opportunities for human-to-human transmission. 

Second, and perhaps more importantly, in karst areas, surface water and groundwater are well 

connected through sinkholes and springs, and so, surface contamination readily enters the groundwater 

system and can emerge elsewhere as a spring, having had little opportunity for the natural attenuation 

typical of non-karst regions. Patients may unwittingly become infected through contact with an 

impaired spring. Proximity to karst geology is therefore an important risk factor and should be 

included in future studies of environmental risk factors for cryptosporidiosis and E. coli O157 infection. 

4.2. Surface Water Quality 

For cryptosporidiosis, proximity to an E. coli-impaired stream (STREAM) was associated with 

increased risk for disease, which is in agreement with risk factors reported in other studies [38–40]. 

Contact with contaminated water may be more likely the closer the patient resides to the stream, 
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although it is important to note that proximity to a stream does not necessarily mean that contact 

occurs between an individual and the contaminant, and no data were available to determine whether 

individuals with either disease had physical contact with recreational water. Nevertheless, in East 

Tennessee, the general pattern of land development is for forested lands at higher elevations along 

ridge tops and for developed lands to hug the valley bottoms near established streams. The fluviokarst 

hydrology, characterized by both surface and subsurface drainage, sinkholes and abundant springs, 

provides ample opportunity for recreational contact. 

Public water suppliers in the study area withdraw 82.2% of water by volume from surface lakes or 

streams, 15.9% from wells and 10.5% from springs [41]. Moreover, in karst areas with fluviokarst 

hydrology, groundwater-surface water interactions are well established, and surface contamination 

may quickly enter groundwater supplies and contaminate wells and springs. Spring response to 

precipitation includes increased flow and suspended sediment load [42], further evidence for 

groundwater-surface water interactions. 

For E. coli O157 infection, proximity to an E. coli-impaired stream was not an important risk factor 

for disease, which contrasts previous studies that associated recreational water exposure with increased 

risk for E. coli O157 infection. [13,14]. A study of 350 E. coli O157 outbreaks in the United States 

from 1982 to 2002 determined that in 9.5% of the cases, the transmission route was related to 

recreational water contact, 4.5% was related to contaminated water supply, 3% was attributed to cattle 

contact and 21% was of unknown transmission (the remainder of cases were attributed to foodborne or 

person-to-person transmission) [10]. Surface water streams that are recognized by the state and by the 

Environmental Protection Agency as impaired due to the presence of E. coli are considered a public 

health threat, because E. coli is an indicator organism for the presence of both cryptosporidiosis and  

E. coli O157 in surface water. Environmental contamination of surface water supplies, resulting in the 

presence of fecal bacteria in streams and lakes, is known to increase the risk for bacteria-related 

sickness and death in humans [2,18,38,42]. Nevertheless, research that employs surface water quality 

spatial databases in spatial disease models is not well represented in the literature. The spatial models 

developed in this research associate proximity to an E. coli-impaired surface water stream with 

cryptosporidiosis, but not with E. coli O157 infection. While E. coli is the standard indicator for fecal 

pollution used by the state of Tennessee for the presence of both E. coli O157 and Cryptosporidium in 

surface water, prior research has shown that it is a poor indicator for the presence of E. coli O157 (in 

one study, the pathogen was detected in less than 1% of samples testing positive for E. coli [43]), but it 

is a reasonable indicator for Cryptosporidium oocysts (in the same study, oocysts were detected in 

40% of samples testing positive for E. coli). Similarly, E. coli and turbidity were positively correlated 

in surface water samples, but E. coli O157 was not significantly correlated with turbidity [44]. The 

findings of the research presented here support the questioning of the use of E. coli as an appropriate 

indicator bacteria for E. coli O157 and as an indicator for the public health threat. 

4.3. Land Use 

The percent of agricultural land (PASTURE) and the percent of developed land (DEVELOPED) 

were associated with increased risk for both diseases, suggesting multiple pathways of transmission. A 

high percentage of developed land can be thought of as a proxy for high population density, and a 
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higher number of cases of disease would be expected in these areas, due to the number of residents and 

consequent opportunities for human-to-human transmission. Agricultural land was also associated with 

increased disease in the individual and in the population, likely due to the presence of agricultural 

animals and opportunities for animal-to-human transmission [40,45]. 

The data used in this study were not sufficiently detailed to speciate the cryptosporidiosis cases into 

C. hominis and C. parvum, which are the two species commonly associated with human-to-human 

contact and animal-to-human contact, respectively. Others have found a positive association between 

developed land and C. hominis and between agricultural land and with C. parvum [46], but there is no 

way to test this using the cryptosporidiosis case data available for this study. 

The association of developed land with E. coli O157 infection contrasts two other studies that 

positively associated disease with rural areas [14] and [47] farm density. Their findings agree, however, 

with the positive association between disease and agricultural land found in this study. The significance 

of contrasting land use variables as risk factors for both diseases suggests multiple pathways for 

infection. In developed land, transmission may be by human-to-human contact, foodborne transmission 

or through direct animal contact during farm visits. In pasture and forested lands, transmission may be 

through environmental contamination, foodborne transmission or through animal-to-human contact. 

No data about the patient’s occupation was available in the dataset; however, it is reasonable to 

recognize that farmers, farm families and farm workers will have different exposures and immunity to 

both diseases, which may influence model results. The significance of the interaction term between 

developed land and agricultural land for E. coli O157 infection can be thought of as a variable 

expressing the proximity of development to agriculture (i.e., locations where developed land and 

agricultural land are both dominant), providing increased opportunity for contact between residents 

and agricultural activity, which has been related to increased risk for E. coli O157 infection [13,14]. 

4.4. Agricultural Animal Population Densities 

The positive association of beef cow population density (BEEF) with increased risk for disease 

agrees with other studies that have linked cattle populations with cryptosporidiosis [46,48] and  

E. coli O157 infection [14,20,21]. Although beef cow population density was positively associated 

with both diseases, dairy cow population density was not significantly associated with 

cryptosporidiosis and was negatively associated with E. coli O157 infection. Because of the 

differences in how their populations are associated with the two diseases, it is therefore important to 

differentiate between beef and dairy cattle in similar studies. All cattle-related studies reviewed for this 

research treated cattle as one group, but this research suggests that the cattle population should be 

partitioned into beef and dairy. The protective effect of dairy cow population density may result from 

the regulation of farming practices in dairy farms, specifically the controls required to capture and treat 

runoff, which reduce the pathogen load in the environment. In contrast, beef cattle are more common 

in East Tennessee, and no environmental regulations exist to control runoff from pasture land nor to 

control access to streams by cattle. Consequently, runoff from agricultural fields is a non-point source 

of surface water pollution, which increases the environmental pollution load. Interpreting the negative 

association between dairy cattle and E. coli O157 infection as a protective effect is a plausible 

hypothesis, but cannot be confirmed at this point. 
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The positive association found between hog population density (HOG) and E. coli O157 infection 

contrasts with two other studies that found a negative association [15] and no association [21]. 

4.5. Poverty Rate 

Poverty rate was not retained as an explanatory variable for either disease, which may indicate that 

poverty rate at the block group level is not a good indicator of risk for disease in the individual. A 

better variable to include in the individual model may be the socioeconomic status of the individual, 

rather than the individual’s block group, because the aggregate variable smoothes out variability, and 

there is no way to know the actual socioeconomic status of the individual when using aggregate data. 

4.6. Well Permits 

Well permit density was positively related to cryptosporidiosis and E. coli O157 infection. While 

not indicative of drinking water source for a given case of disease, well permit density can indicate 

whether private water supply is more or less common in a county, so it is a measure of the availability 

of a private water supply. The finding that increased disease risk in the individual is associated with 

decreased well density indicates that the availability of private water supplies has a protective effect. 

Wells in the study area have an average depth of 309 feet, which easily bottom within the karst 

limestone bedrock unit that underlies much of the study area. In fact, one eighth of the deepest caves in 

the USA are found within karst areas of Tennessee, and because these caves regularly descend beyond 

the average depth of the private wells, the depth of the wells is not a compelling explanation for their 

apparent protective effect. Note, however, that this finding agrees with a recent Tennessee Department 

of Health clinical epidemiological study on cryptosporidiosis conducted in the Greene County, 

Tennessee, region from 2009 to 2011. This study used a supplemental form to gather drinking water 

source, recreational water exposure, food, travel and animal exposures at the individual level.  

No association with private water supplies was found. This result, however, contrasts with other 

studies that associated private water supply with increased risk for E. coli O157 infection [14]  

and cryptosporidiosis [17,48]. 

4.7. Limitations 

This study examines environmental risk factors for two diseases that can also be transmitted 

through other exposures related to an individual’s behavior or lifestyle. These variables may include 

consumption of undercooked beef or unpasteurized dairy products, visits to farms, contact with 

infected persons and playing or swimming in contaminated surface water [3,11,14,45,46,49–51]. The 

individual models developed here do not capture this individual behavior, but instead, can capture 

potential exposure to risk for the individual by inclusion of environmental variables at the local scale. 

Proximity to contaminated surface water or to agricultural activity can increase the likelihood that a 

person will come in contact with an environmental reservoir of cryptosporidiosis or E. coli O157 and 

in this way can increase background risk. The individual model, therefore, can be thought of as the 

environmental background risk at the individual level (large-scale environmental risk). 



Geosciences 2014, 4 214 

 

Selection of a “best” model is secondary to identifying risk factors for E. coli O157 infection and 

cryptosporidiosis from a set of potential environmental and socioeconomic explanatory variables. An 

understanding of the environmental and socioeconomic variables that emerge as significant risk factors 

for disease can help to inform policies to combat disease prevalence. Often, these relationships can be 

discerned by exploratory mapping of disease cases overlaid with risk factors; however, the modeling 

process is important to statistically quantify the risk and the important risk factors. Risk maps, such as 

those displayed in Figures 2 and 3, can visually communicate the environmental background risk for 

disease within the study area. Because cryptosporidiosis and E. coli O157 infection are rare diseases, 

the probabilities are low, but differences in high versus low risk are apparent. 

Care must be taken in interpreting maps such as these, because individual behavior has not been 

factored in. Background risk maps may therefore be most useful in developing the framework for a 

public education campaign to combat a disease endemic within a population or in developing a more 

in-depth epidemiological study. Knowledge of the explanatory variables used by the model to generate 

the risk map can be useful to identify the behaviors to target in such a campaign, for example warning 

residents of the risks associated with agricultural animal contact or playing in or around an impaired 

stream. In this way, limited public health resources can be targeted at the locations and the behaviors 

most associated with disease. 

While geospatial analysis and the explicit inclusion of space when assessing disease risk can be a 

valuable tool to identify populations at risk, any model is only as good as the data and assumptions 

used to generate the model. Non-reporting of diseases because a patient does not seek medical 

attention, because a sample is not taken during the medical examination or due to incomplete reporting 

of disease incidence can erode the quality of a dataset. Patterns in non-reporting can also affect results 

if members of one socioeconomic group are less likely (or more likely) to be exposed or to seek 

treatment [46]. Care must be taken, therefore, in the interpretation of model results, because spatial 

differences in reporting rates may introduce bias into the modeled relationship between disease and 

environmental risk factors. 

5. Conclusions 

This research has shown that environmental variables are important risk factors for cryptosporidiosis 

and E. coli O157 infection in the individual. Proximity to karst geology was associated with both 

diseases, indicating that geology, specifically limestone and dolomite formations that are prone to karst 

weathering, should be incorporated as a proximity measure in waterborne disease risk models. 

Proximity to impaired surface water was a risk factor for cryptosporidiosis, but not E. coli O157 

infection, likely related to the utility of E. coli as an indicator for E. coli O157. 

Beef cow population density was positively associated with both diseases, while dairy cow 

population density was negatively associated with E. coli O157 infection. Because of the different 

results for cattle, populations should be partitioned into dairy and beef cattle when included as risk 

factors in a model for cryptosporidiosis and E. coli O157 infection. 

Multiple transmission sources for both diseases are indicated by the positive association between 

percent agricultural land and percent developed land. Because both developed land and pasture land 

are associated with increased risk for cryptosporidiosis, future studies of environmental risk factors for 
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cryptosporidiosis should partition the cases by species (C. hominis and C. parvum) to examine the role 

of pasture and land use. To accomplish this, diagnostic methods must identify Cryptosporidium at the 

species level. 

Models such as these can be useful to identify important risk factors for disease and to generate a 

background risk model. These results can then be used to develop a public education campaign to target 

limited public health resources to address behaviors associated with the most important risk factors in the 

communities where opportunities for those behaviors are most likely. These results can also be used as 

the framework upon which to develop a more comprehensive epidemiological or microbiological study 

to examine specific pathways for disease that focus on individual level risk factors. 
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