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Abstract: Phase equilibria modelling incorporating melt reintegration offers a methodology to
create hypothetical rock compositions that may have existed prior to melt loss, allowing the
potential prograde evolution of rocks to be explored. However, melt reintegration modelling
relies on assumptions concerning the volume of melt that was lost and is generally restricted by
the absence of direct constraints on the pre-anatectic mineral assemblages. Mg-rich granulite in
the 514–490 Ma Delamerian Orogen in southern Australia contains spinel–cordierite symplectic
intergrowths that surround rare, coarse blocky domains of sillimanite. These sillimanite cores, as well
as the widespread presence of andalusite in lower grade areas of the southern Delamerian Orogen,
suggest that the subsolidus precursor to the granulite contained andalusite. This provides the
opportunity to test if melt reintegration modelling of the granulite predicts subsolidus andalusite.
Stepwise down-temperature melt reintegration modelling produces a water-saturated solidus after
the addition of 12 mol% melt. When modelled at subsolidus conditions, the resulting rock composition
produces andalusite-bearing assemblages with andalusite modes similar to the abundance of
the sillimanite-cored spinel–cordierite intergrowths. The modelling results from this case study
suggest that melt reintegration modelling is a valid method to recreate prograde subsolidus bulk
rock compositions.

Keywords: P–T pseudosection; low pressure metamorphism; delamerian orogen; melt reintegration;
melt loss

1. Introduction

Melting and melt loss during granulite facies metamorphism is a fundamental process that
differentiates the continental crust and causes chemical depletion in the residual material [1–3].
Advances in thermodynamic modelling of mineral assemblages have enabled quantitative phase
equilibria modelling of the melting processes operating in partially molten siliciclastic rocks in
increasingly complex chemical systems [4–11]. These models have been used to investigate the effects
of melting and melt loss on crustal rheology, composition and the preservation of geochronometers
e.g., [1,5,12–15]. However, the application of these models has been limited to theoretical situations,
as in almost all real cases there is little information about the composition of the rock prior to melting
cf. [11]. This lack of information about the likely protolith composition also means that it is essentially
impossible to determine the prograde P–T evolution of a granulite facies rock, because the composition
of the rock in which prograde minerals developed has been irrevocably modified [16]. For this reason,
quantitative petrological interpretation of mineral inclusions captured within prograde minerals
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is difficult and often impossible. In trying to reconstruct potential prograde bulk compositions,
metamorphic petrologists approach the problem via melt reintegration modelling, in which theoretical
compositions of melt are integrated into a rock composition in order to create a hypothetical “protolith”
bulk composition. A recent study by Bartoli [17] has shown that a number of methods of melt
reintegration modelling, including the stepwise method used here, are able to produce plausible
subsolidus bulk rock compositions. However, significant underestimations of melt productivity may
still occur, as exact protolith compositions are unknown in most cases. While useful, this process
relies on assumptions regarding the prograde metamorphic path and volume of melt that has been
lost and is commonly done up to a point at which a water-saturated solidus is achieved [18,19].
The determination of a final composition is unconstrained, as the prograde compositions often no
longer exist for comparison, except in some rare cases e.g., [20,21]. However, one way to assess
the viability of melt reintegration modelling as a means of determining a reasonable prograde rock
composition is to choose a granulite facies sample where the prograde subsolidus mineralogy is
relatively well constrained.

The aim of this study is to use melt reintegration to reproduce the original bulk composition of
a residual granulite facies rock from the Delamerian Orogen in southern Australia. The existence
of andalusite in the subsolidus assemblage provides a test to see whether melt reintegration P–T
modelling of the reintegrated bulk composition stabilises the observed modal abundance of subsolidus
andalusite, giving some constraints on the validity of model-generated subsolidus bulk compositions.

2. Geological Setting

The footprint of the 514–490 Ma Delamerian Orogeny has a north–south extent from the Peake and
Denison Inliers in the far north of South Australia, to the western tip of Kangaroo Island in the south
(Figure 1). It extends to the east into western New South Wales, Victoria and Tasmania. The Antarctic
continuation of the orogen is the Ross Orogen [22,23], which formed along the same paleo-continental
margin but largely predates the Delamerian Orogeny. In South Australia, Victoria, western New South
Wales and Tasmania, the Delamerian Orogen is primarily composed of Late Neoproterozoic and Early
Cambrian sedimentary rocks that were deposited in a passive margin setting. In South Australia, the
Early Cambrian sequences comprise the basal Normanville and overlying Kanmantoo Groups that
were deposited in the Stansbury Basin [24–26].

The early compressional stages of the Delamerian Orogeny involved west-vergent thrusting
(D1) and the development of a low-angle fabric (S1), which was overprinted by two phases
of tight to open upright folds during D2 and D3 [28–30]. The early stages of the event were
synchronous with granitic magmatism throughout the region, with the earliest syntectonic granite
intruded during the onset of orogenic crustal shortening at 514 ± 4 Ma [31]. Increasingly
mantle-derived magmatism marked the end of the orogenic event (c. 490 Ma) and continued
into the Early Ordovician [32–34]. Following the Delamerian Orogeny, an extensional setting was
re-established and post-orogenic magmatism resulted in the intrusion of rhyolite and diorite dikes [27].
Within the Kanmantoo Group, Delamerian-aged metamorphism is characterised by mostly amphibolite
facies low-pressure–high-temperature metamorphism, resulting in the formation of andalusite- to
sillimanite-bearing assemblages in aluminous rocks [31,35]. Metamorphic grade increases in proximity
to the late-tectonic granitic intrusives, culminating in extensive partial melting [27,36,37].

The Kanmantoo Group metasedimentary rocks at Reedy Creek consist primarily of extensively
migmatised metapsammitic lithologies interlayered with thin discontinuous layers of metapelite.
The hosting metapsammitic lithologies are primarily composed of quartz–plagioclase–cordierite–biotite
± sillimanite. The sequence contains a pervasive biotite-bearing foliation that is parallel to and cross-cut
by migmatitic segregations. Abundant partial melting has resulted in the segregation of leucosome and
melanosome. Thin leucosomes (<2 cm wide) have been folded with the original foliation, suggesting
that some melting occurred in the early stages of the Delamerian Orogeny. However, some leucosomes
are only slightly deformed and others cross-cut the original foliation, suggesting that melting continued
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throughout the whole event. The migmatitic rocks were intruded by the Reedy Creek Granodiorite
and associated diorites at 492.6 ± 1.1 Ma [27]. The granodiorite is weakly foliated parallel to the fabric
in the migmatitic metasediments. Within the metasediments, decimetre-scale bodies of diorite have
been converted to hornblende-bearing migmatites that contain K–feldspar-bearing melts.Geosciences 2017, 7, 75 3 of 21 
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Although the bulk of the metasedimentary sequence consists of metapsammitic lithologies with
thermodynamically insensitive bulk compositions, thin discontinuous layers of cordierite-dominated
Mg-rich (MgO/(MgO+FeO) = 0.66) metapelite—that were likely to have been mud layers in the
original sequence—form sensitive mineral assemblages that can be used to investigate the P–T
evolution of the sequence. The discontinuous metapelite layers contain domains that are dominantly
composed of orthopyroxene–biotite–cordierite–plagioclase (Figure 2a,b). Locally, these domains
contain cordierite–spinel symplectites that rarely surround coarse/blocky aggregates of sillimanite
(Figure 2c). In adjacent psammitic layers, cordierite occurs as porphyroblasts within felsic segregations
and veins. We interpret the orthopyroxene and cordierite-bearing metapelitic layers to represent
residual domains that have lost melt. These layers do not contain assemblages or chemistry typical
of granitic compositions that would form leucosomes, due to their high Mg content and abundant
orthopyroxene and cordierite. The peritectic mineral assemblages preserved in these layers are very
fresh and relatively unretrogressed, indicating that melt has been drained from these layers [38].
Blocky, porphyroblastic aggregates of sillimanite surrounded by cordierite–spinel symplectites (up to
3 cm by 1 cm) (Figure 2c) in the pelite layers are interpreted to reflect the former presence of
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andalusite, based on the extensive presence of andalusite in lower grade areas of the Kanmantoo
Group (Figure 2d) [29,30,39]. Therefore, we infer the prograde sequence to have contained andalusite.
Despite the intensity of the deformation, there is no evidence for distributed sillimanite within the
foliation, suggesting that the proportion of blocky sillimanite aggregates represents the approximate
proportion of andalusite in the protolith. Layers containing these sillimanite aggregates are relatively
rare in the Kanmantoo Group sequence, but in the cordierite-dominated Mg-rich layers they comprise
around 5% of the current rock volume.
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Figure 2. (a) Mg-rich layer dominated by cordierite–biotite–orthopyroxene–plagioclase; (b) Thin,
discontinuous orthopyroxene-bearing domain; (c) Rock sample of the thin layer that was sampled
showing cordierite–spinel symplectites, amongst orthopyroxene and plagioclase; (d) Andalusite
porphyroblasts enclosed within metapelite from a lower grade area of the Delamerian (54K 0316690 E,
6122806 S, datum WGS84).

Samples and Petrography

The sample used in this study (sample 14-RDC-04) was taken from a thin metapelitic layer
(>10 cm in width), within thick metapsammitic layers in Reedy Creek (Figures 1 and 2a,b). Sample
14-RDC-04 contains orthopyroxene, biotite, cordierite, spinel, plagioclase, magnetite, ilmenite and
minor sillimanite. Coarse-grained (1–6 mm) euhedral grains of orthopyroxene are common throughout
the leucosomes and contain inclusions of biotite, ilmenite and magnetite. Coarse-grained, poikiloblastic
cordierite (1–6 mm) contains inclusions of biotite, plagioclase, magnetite and ilmenite. Symplectites
of spinel and cordierite (in patches 4–10 mm in diameter) are common (Figure 3a). In rare instances,
these cordierite–spinel symplectites surround aggregates of sillimanite grains (3–6 mm; Figure 3b,c).
Orthopyroxene grains occur in direct contact with biotite and are surrounded by cordierite and
plagioclase (Figure 3d). There are two morphologies of biotite. Some biotite grains are aligned and
define a weak foliation, whereas other biotite is randomly oriented. Biotite adjacent to cordierite
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occurs as ragged anhedral grains. No biotite is present in the areas immediately adjacent to the
cordierite–spinel symplectites (Figure 3a,c). Cordierite–spinel symplectites and sillimanite grains
do not show any orientation and no foliation is observed in the biotite-absent regions. We interpret
the peak assemblage present in this sample to be plagioclase + biotite + orthopyroxene + cordierite
+ spinel + magnetite + ilmenite. The rare, coarse-grained domains of sillimanite enclosed within
spinel–cordierite symplectites are interpreted to be textural relics from replacement of prograde
andalusite. Although sillimanite and orthopyroxene are in close proximity (Figure 3d), we do not
interpret them to represent former stable coexistence.
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Figure 3. Photomicrographs and thin section photographs of sample 14-RDC-04. (a) Spinel
and cordierite symplectites; (b) Relict sillimanite grain, showing typical crosshatching andalusite
replacement texture, surrounded by symplectic corona of spinel and cordierite; (c) Relict sillimanite
surrounded by a cordierite–spinel corona; (d) Anhedral orthopyroxene grains adjacent to semi-oriented
biotite. Biotite becomes unoriented and has an anhedral shape when in contact with cordierite.

3. Materials and Methods

The pelitic orthopyroxene-bearing domains that make up sample 14-RDC-04 are thin and
irregularly shaped, meaning that rock slabs cut for whole rock geochemistry contain a mixture of
residual pelite and the surrounding wall rock, and thus may not provide a valid composition for the
purposes of phase equilibria modelling. Instead, a chemical composition of the orthopyroxene-bearing
domains was determined by combining average measured mineral chemistry and density with
estimates of mineral proportions in these domains. In the domain used for the determination
of mineral modal abundances, sillimanite is almost completely replaced by blocky aggregates of
cordierite–spinel, so was not considered as part of the composition. Estimations of the proportions of
minerals present in the sample were determined by pixel counting minerals in thin section images using
Adobe Photoshop. The area of thin section used for pixel counting was quite large, at approximately
7.5 × 3.5 cm (26.25 cm2). As the domains that were sampled were quite thin, we believe that this 2D
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area is representative of the equilibrium volume. The use of individual mineral chemistry to determine
a bulk composition is a relatively common practice e.g., [40,41]; however, it should be noted that this
method may produce different results than compositions acquired using XRF (X-ray Fluorescence),
see [42]. Mineral chemical analyses were obtained using a Cameca SXFive electron microprobe at
Adelaide Microscopy, with standard operating procedures. The mineral modes and average mineral
chemical analyses and densities used for the determination of the residual pelite composition are
provided in Table 1.

Table 1. Mineral modal proportions and average mineral chemistry used to obtain a chemical
composition of the orthopyroxene-bearing domains for the purposes of phase equilibria modelling.
Individual mineral analyses can be found in Supplementary materials.

Mineral Bi Cd Opx Sp Pl Total

Mode (wt %) 9.93 34.59 21.41 6.41 27.67 100 –
Mineral Density (kg/m3) 2.9 2.6 3.5 4.1 2.6 – –

wt % Bi Cd Opx Sp Pl Average Bulk
Composition

Final Bulk
Composition

SiO2 37.99 49.39 52.65 0.09 68.77 51.16 50.61
TiO2 3.48 0 0.09 0.01 0 0.37 0.37

Al2O3 15.17 33.06 2.22 58.04 19.68 22.58 22.34
Cr2O3 0.1 0 0.04 0.04 0 0.02 0.02
FeO 14.36 5.06 24.2 33.72 0 10.52 10.41

MnO 0.02 0.05 0.24 0.12 0 0.08 0.08
MgO 15.89 11.14 21.71 7.89 0 10.58 10.47
ZnO 0.01 0.01 0.02 0.13 0 0.02 0.02
CaO 0 0 0.02 0.01 1.5 0.42 0.42

Na2O 0.08 0 0 0 10.04 2.79 2.76
K2O 8.68 0 0.03 0 0 0.86 0.85

Cl 0.49 0.16 0 0 0 0.11 0.11
F 0.02 0 0 0 0 0 0.00

Total 96.29 98.87 101.22 100.05 99.99 101.08 100

One of the uncertainties of pseudosection modelling is determining the bulk composition that
relates to the formation of the peak metamorphic mineral assemblage, particularly the amount of
H2O and Fe2O3. P–MO, P–MH2O and T–MH2O sections (where the oxidation state (MO) or amount of
water (MH2O) is varied as a function of pressure (P) or temperature (T); Appendix A were calculated to
assess the sensitivity of the compositions of the sample to changing H2O content and oxidation state
(O), and determine appropriate values for the domain composition. The P–MO and P–MH2O sections
were drawn at a constant temperature of 750 ◦C, which was chosen based on a first pass estimate
of the likely metamorphic conditions of the suprasolidus assemblage and the assumed sensitivity of
the assemblage to pressure. A T–MH2O section was modelled after the P–MH2O to better assess the
H2O content of the sample due to the greater sensitivity of H2O-dependent equilibria to temperature.
The T–MH2O section was calculated at a fixed pressure of 4.2 kbar, which was chosen based on the
pressure of the peak field on the P–MO and P–MH2O sections. Maximum H2O values used on the
x-axis of P–MH2O and T–MH2O sections were chosen to be 1.5 wt %. Compositions chosen along the
x-axis from the peak fields of P–X and T–X diagrams for P–T modelling were selected based on modal
proportions of minerals that best suited the estimated modes. Further information on the methods for
the selection of compositions from these diagrams can be found in Appendix B.

Phase equilibria models were calculated for sample 14-RDC-04 using THERMOCALC
3.40 [43,44] in the chemical system MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O
(MnNCKFMASHTO), where ”O” is a proxy for Fe2O3, using the internally-consistent
thermodynamic dataset ds62’ [43] and activity–composition models reparametrised for Mn [8–10].
Completed pseudosections were contoured for the modal proportions of minerals using



Geosciences 2017, 7, 75 7 of 21

TCInvestigator [45]. The chemical composition of the discontinuous orthopyroxene-bearing pelitic
layers (sample 14-RDC-04, see Figure 4) was used to constrain the peak metamorphic conditions at
Reedy Creek.
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Figure 4. (a) Calculated P–T pseudosection using the composition of the residual
orthopyroxene-bearing domain. The bulk composition (in mol%) is given above the pseudosection.
The bold black line represents the solidus and the field outlined in yellow is the interpreted peak
assemblage. (b) Overlay of modal contours on the peak field of Figure 4a. To avoid making the diagram
overly complex, only the most abundant phases were included on the overlay. The contours of each
mineral on the peak field of the P–T section represent the modal abundances of the major phases in
sample 14-RDC-04, including plagioclase, biotite, orthopyroxene and cordierite. Primary overlap of
phases occurs between 2–4 kbar in the peak field. Individual modal proportion plots for each mineral
can be found in Appendix B.

Melt reintegration was undertaken after calculation of the P–T pseudosection using the original
residual composition (Figure 4a) as a starting point, following the method of Korhonen, Brown, Clark
and Bhattacharya [18]. This stepwise melt reintegration method is now well-established and has
been used to remove melt or to rebuild protolith compositions in numerous studies e.g., [11,12,17–19].
This method adds 6 mol% melt to the system when the modal proportion of melt in the initial
composition reaches 1 mol%, equivalent to the 7% melt connectivity transition (MCT) of [46]. This 7%
threshold is interpreted as the point at which there is enough melt present in the rock to create a
connected grain boundary network, resulting in the rapid decrease of rock strength and likely melt
loss [47]. The composition of the melt that is reintegrated back into the rock corresponds to the
composition of the 1% melt contour, which is interpreted to be the amount of melt remaining on grain
boundaries after a melt loss event. The resulting composition is then normalised and can be used to
calculate further P–T pseudosections until the composition produces a wet solidus. It is assumed that
as a rock crosses the solidus any remaining free H2O will be immediately used up during production



Geosciences 2017, 7, 75 8 of 21

of the first vestiges of melt. Therefore, melt reintegration modelling aims to reintegrate melt until the
solidus is just H2O-saturated, to model the point at which a subsolidus composition would begin to
melt. The P–T path during the Delamerian Orogeny is not well constrained. Therefore, for the purpose
of simplifying melt reintegration modelling, an isobaric heating path of 3.5 kbar was assumed, based
on the peak pressures inferred from the P–T pseudosection, the presence of andalusite pseudomorphs
in the Reedy Creek area and the metamorphic pressures that are recorded elsewhere in the Delamerian
Orogen e.g., [35,47,48].

4. Results

4.1. Peak P–T Conditions

The peak assemblage in sample 14-RDC-04 of plagioclase + biotite + orthopyroxene + cordierite +
spinel + magnetite + ilmenite occurs at conditions of 1.0–4.4 kbar and 790–860 ◦C (Figure 4a). Mineral
abundance contouring of this pseudosection indicates that peak P–T conditions would have likely
occurred between 2–4 kbar, where the modelled mineral modal abundance contours best correspond
to the observed mineral abundances in thin section (Figure 4b). Observed abundances of minerals in
thin section (determined through point counting) are provided in Table 1.

4.2. Melt Reintegration

Melt was reintegrated into the residual pelite composition in two stages (Figures 5 and 6), for a
total of 12%. The addition of 12% melt results in a solidus that is water saturated at peak metamorphic
conditions (1.0–4.4 kbar; Figure 6), with ~1.4 mol% H2O present at 3.5 kbar. The addition of 12%
melt results in a decrease in the temperature of the solidus at 3.5 kbar from ~810 ◦C to ~750 ◦C.
After the reintegration of 12% melt, the peak assemblage above the solidus is still present and occurs
at similar P–T conditions, but subsolidus assemblages have been significantly changed. However,
notably, subsolidus equilibria calculated using the H2O content of the melt reintegrated composition
do not contain andalusite (Figure 6a). The H2O content of the melt reintegrated composition also
does not allow for a free H2O phase at temperatures below 570–670 ◦C (with increasing pressure).
However, if H2O is set to excess below the solidus, which is an approach commonly used for modelling
subsolidus rocks, then mineral assemblages containing andalusite can be produced at temperatures
below ~570 ◦C using the melt reintegrated composition (Figure 6b). Setting H2O to be in excess also
supresses the modelled stability of orthopyroxene.
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Figure 6. Calculated P–T pseudosections after the second melt reintegration (12% melt reintegrated).
The bulk composition (in mol%) was calculated with the addition of a further 6% melt into the
composition after the first melt reintegration (Figure 4a) and is given above each pseudosection.
The bold black line represents the solidus. (a) H2O was not set to excess below the solidus, instead
subsolidus equilibria were calculated using the H2O content of the melt reintegrated composition.
(b) H2O was set to excess below the solidus. Setting H2O to excess allows calculation of equilibria
with a free water phase at subsolidus temperatures and results in significant changes to the stability
of andalusite.
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5. Discussion

The aim of this study is to test the veracity of melt reintegration calculations by reintegrating
melt into a compositionally residual rock whose precursor mineralogy is partly known. We interpret
andalusite to have been present during the subsolidus prograde evolution of the rock, based on blocky
mineral aggregates cored by sillimanite that are rimmed by cordierite–spinel intergrowths, as well as
the widespread presence of andalusite in lower grade stratigraphic equivalents. Sillimanite cores in the
cordierite–spinel coronae are rare throughout the rock and were likely no more than metastable relics
of the andalusite porphyroblasts that were unable to be completely replaced during metamorphism to
higher temperatures due to sluggish diffusion of Al e.g., [49,50]. However, they do indicate that blocky
domains of cordierite–spinel symplectites likely represent the complete replacement of andalusite
porphyroblasts along the prograde path. As such, the localised occurrence of spinel–cordierite
symplectites in the sample used in this study can be used to estimate the abundance of subsolidus
andalusite. On this basis approximately 5% andalusite was present, allowing for volume loss associated
with melt loss in the subsolidus protolith.

The P–T pseudosection calculated for the original residual composition already has stable
andalusite prior to any melt reintegration (Figure 7a). However, it is well established that residual
bulk compositions are not appropriate for modelling the prograde evolution of a rock [12,18,51].
The melting and melt loss that has occurred in the field area would have altered the composition of the
rocks so that the subsolidus part of the pseudosection does not represent real prograde assemblages.
Therefore, we have used the presence of ~5% subsolidus andalusite as a target to evaluate the viability
of the melt reintegration procedure for predicting subsolidus assemblages.
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P–T pseudosection (Figure 4a) prior to melt reintegration. (b) TCInvestigator [45] plot of the modal
proportion of andalusite present in the ds55 P–T pseudosection after 12% melt reintegration and with
H2O in excess.

Melt was reintegrated into the original residual composition in two separate batches of 6%,
for a total of 12% melt until the solidus was H2O saturated at peak conditions (1.0–4.4 kbar,
and up to pressures of 6 kbar). The solidus in the final melt reintegrated bulk composition
remains at a high temperature (750 ◦C at 3.5 kbar), which likely reflects the absence of quartz
above 650 ◦C. It is common practice for petrologists to model subsolidus equilibria with H2O in
excess. Evidence of decreasing H2O content with increasing metamorphic grade at subsolidus
conditions can be found in most metamorphic terranes, suggesting that H2O is typically lost
from the system during prograde dehydration reactions, prior to melting [52–55]. Therefore,
when the rock reaches the solidus, it is likely to contain very little free H2O, and less H2O
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than was present during the development of the lower temperature mineral assemblages [56].
Subsolidus andalusite could not be produced using the H2O content of the final melt reintegrated
composition except at very low temperatures; however, when H2O was modelled to be in excess
below the solidus, the reintegrated bulk composition was able to produce subsolidus assemblages
that include andalusite (plagioclase–biotite–staurolite–chlorite–ilmenite–andalusite–quartz–H2O,
plagioclase–biotite–chlorite–ilmenite–andalusite–quartz–H2O and plagioclase–biotite–cordierite–
chlorite–ilmenite–andalusite–quartz–H2O) with an andalusite abundance of 1–5%. The absence of
andalusite in a fluid-undersaturated system suggests that H2O plays a large role in its stability, at least
using the dataset and activity models used in this study [8–10,43]. It should be noted that the use
of different activity–composition models can result in differences in mineral stability [57]. Whereas
modelling with subsolidus H2O saturation arguably represents a closed system from which H2O
produced from dehydration reactions is unable to escape [56], a fluid-rich composition appears to be
necessary to reproduce the subsolidus andalusite that we interpret was present. Therefore, to model
the subsolidus andalusite-bearing mineral assemblages melt was reintegrated until a wet solidus was
reached and H2O was then assumed to be in excess below the solidus.

5.1. Limitations of the Modelling

While the modelling of melt reintegrated composition predicts the presence of prograde andalusite,
there are several limitations to the modelling that was undertaken in this study. Some limitations
relate to the uncertainties associated with the internally consistent thermodynamic data [43] and
the activity–composition models [8–10] used in THERMOCALC to calculate the mineral stability
fields e.g., [10]. The simplifications that are necessary to model phase equilibria in naturally complex
chemical systems are also a limiting factor. The model chemical system used in this study does not
take into account minor components, such as chlorine and fluorine in biotite and ZnO and Cr2O3 in
spinel, which are present in minor amounts, see Table 1, [58,59]. Although the effects of these minor
components are unlikely to greatly influence the outcomes of the modelling, they are real and will
slightly modify of the positions of reactions in P–T space [5]. The uncertainties in determining the
effective chemical composition that relates to the formation of the peak mineral assemblages are also a
limitation. The composition obtained by whole-rock geochemistry was not appropriate to model to the
development of the pelitic orthopyroxene-bearing domains, as these occur in thin, discontinuous layers
within metapsammitic rock. Instead, a composition for the purposes of phase equilibria modelling
was determined by combining mineral abundances and average chemical compositions of minerals.
A two-dimensional domainal composition is necessarily limited, but for the purposes of modelling we
have assumed that it is a realistic composition.

The melt reintegration modelling is limited by simplifications to the modelled P–T path.
An isobaric P–T path at 3.5 kbar was chosen for melt reintegration modelling on the basis of peak
pressures reached by other locations during the Delamerian Orogeny and the presence of andalusite in
lower grade successions within the Kanmantoo Group. In all likelihood, the sample used in this study
would have experienced a change in pressure during prograde metamorphism, driven by the 10–20%
shortening recorded in the southern part of the Delamerian Orogen [60]. However, due to the steep
inclination of the solidus and liquid modal abundance contours (e.g., Figure 4a), minor changes in the
pressure during heating do not significantly change the results of this study.

Despite successfully recreating subsolidus assemblages with andalusite in the presence of excess
H2O after melt reintegration, a more critical issue is that the orthopyroxene-bearing subsolidus
assemblages in the final model produced in this study (Figure 6b) are unlikely to have existed,
as subsolidus orthopyroxene does not appear to occur in sub-granulite grade metapelitic rocks. If it is
assumed that the model shown in Figure 6b represents the amphibolite facies prograde metamorphic
assemblages prior to melting and melt loss, subsolidus orthopyroxene would have formed on
the prograde path. Tilley [61] described the apparent occurrence of subsolidus orthopyroxene in
metapelites in the Comrie aureole in the Scottish Highlands. However, later evidence of subtle
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partial melting was found [62], suggesting that the orthopyroxene-bearing assemblages formed under
suprasolidus conditions. Although some studies have recorded mineral assemblages with prograde
subsolidus orthopyroxene e.g., [63,64], these situations generally involve infiltration of a low H2O
activity fluid (aH2O), such as CO2-rich fluids or highly concentrated brines, and occur in rocks that
have experienced granulite facies temperatures. An example of this is the formation of fine-grained
orthopyroxene–andalusite symplectites under low aH2O conditions during retrogression of pelitic
granulites, described by Ballèvre, et al. [65]. The sources of low aH2O fluids could include magmatic
dykes, volatile-rich carbonates, or tectonic structures such as fractures or shear zones that may act as
channels for fluid to move over large distances [66–68]. However, such sources are not relevant to the
prediction of orthopyroxene as shown in Figure 6b, since the modelling does not incorporate a low
aH2O fluid and therefore it is unlikely that subsolidus orthopyroxene would form in the abundances
predicted by our models in prograde metapelites at amphibolite facies conditions.

Instead, we suggest that the appearance of subsolidus orthopyroxene in our models is an artefact
created by the absence of an activity–composition model for orthoamphibole in ds62 [10]. This means
that Mg and Al cannot be incorporated into orthoamphibole and instead stabilises other minerals,
resulting in the formation of unrealistic assemblages. Orthopyroxene can form by the breakdown
of orthoamphibole in K-poor protoliths [69]. Occurrences of orthoamphibole in andalusite-bearing
metapelites are rare; however, one such occurrence is also within the Kanmantoo Group, in the
Springton region, approximately 30 km north of Reedy Creek [70]. Although the Springton region
rocks are thought to have been metasomatised, their final bulk compositions contain low proportions
of K2O and CaO, and also contain a high Na2O/K2O ratio [70], which is similar to the composition of
the sample used in this study.

The modelling undertaken in this study used the most recent internally-consistent thermodynamic
dataset ds62 [43]. However, our attempts to incorporate orthoamphibole into the ds62 modelling
failed to reproduce any subsolidus equilibria that could be rationalised with the incoming solidus or
mineral assemblages that could plausibly have existed at subsolidus conditions. Therefore, at this stage,
we cannot incorporate orthoamphibole into the modelling with ds62 with any confidence. It should also
be noted that low–P subsolidus equilibria involving porphyroblastic cordierite like in this study have
been known to be problematic to model in ds62 e.g., [9,57,71]. Instead, the final composition produced
after melt reintegration modelling (Figure 6b) was used to model the subsolidus assemblages in the
previous THERMOCALC dataset ds55 [72], to investigate the effects of incorporating orthoamphibole
into the modelling e.g., [69,73]. The following activity relationships were used for modelling in ds55:
silicate melt and biotite [5]; chlorite [74,75]; cordierite [72]; plagioclase [76]; gedrite [73]; orthopyroxene,
spinel and magnetite [77]; ilmenite [6]. Using ds55, the subsolidus assemblages were again modelled
with H2O in excess (Figure 8). While we acknowledge the apparent logic disconnect in using a
melt reintegrated composition created using ds62 followed by modelling in ds55, no subsolidus
orthopyroxene was found to be stable using ds55, and instead, orthoamphibole (gedrite)-bearing
assemblages were modelled to be stable (Figure 8). Despite the differences between the ds62 and
ds55 subsolidus models, the melt reintegrated composition in ds55 was able to produce a number of
assemblages containing andalusite at similar conditions to the ds62 model (1.0–4.1 kbar and 400–550 ◦C;
Figure 8) and in similar modal proportions (Figure 7b; 1–6%). Furthermore, although the melt
reintegrated composition is specific to the sample we have used, the prediction of gedrite-bearing
assemblages is consistent with the presence of orthoamphibole-bearing assemblages in lower grade
areas of the Kanmantoo Group [70], suggesting that while ds62 is now widely used, ds55 still provides
realistic predictions.
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5.2. Implications of the Melt Reintegration Modelling

Phase equilibria modelling is a powerful tool for investigating the chemical changes that occur
as a result of partial melting and melt loss during high-grade metamorphism. It is one of the
few methods that allows investigation of the petrological and chemical evolution of deep-crustal
rocks, as it provides an opportunity to define equilibrium relationships between melt and solid
mineral species for particular bulk compositions at a given set of P–T conditions e.g., [13,14]. Several
previous studies have utilised this technique to explore the effects of reintegrating melt back into
lower-crustal rocks [16,18,19,41,78,79]. However, rarely do studies attempt to assess the veracity of
the melt reintegration process to create valid subsolidus rock compositions. Reedy Creek presents an
opportunity in which a partially known subsolidus mineral assemblage can be used as a reference
point for the assessment of the outcome of melt reintegration modelling on a granulite facies rock.

The Reedy Creek metasedimentary rocks preserve intact relict, centimetre-scale sedimentary
layering. This suggests that melt loss from the rock was likely to have been incremental and efficient,
without the accumulation of large amounts of melt that would have resulted in catastrophic melt loss
and disruption of the sedimentary layering [80,81]. The melt connectivity transition approximately
7%, [46] was used as a maximum for the melt loss that would have occurred in any one melt extraction
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event. However, we acknowledge that in the presence of syn-anatectic deformation, melt extraction
may well occur at a lower threshold [5,18,81,82].

In the modelled sample, the sillimanite is not interpreted to have been part of the equilibrium
mineral assemblage at peak metamorphic conditions, or likely at any stage throughout the sample’s
prograde history. In most cases, the cordierite–spinel symplectites that are seen surrounding sillimanite
on rare occasion have completely replaced sillimanite, indicating that it is not part of the peak
assemblage. It cannot be said for certain that sillimanite was never stable throughout any of the
rock’s history. However, the models in this study (all of which were derived from the composition
of the peak mineral assemblage in the sample) are not able to form stable sillimanite at any point,
suggesting that it may not have occurred at all on the prograde path. Instead, we suggest that the
sillimanite that we observe in the sample is simply a compositional relic of incomplete continuous
reactions involving the progressive formation of cordierite and orthoamphibole at the expense of
andalusite, biotite and chlorite as the rock traversed the narrow set of fields between andalusite-bearing
assemblages and orthoamphibole–cordierite-bearing assemblages. We suggest that residual metastable
aluminosilicate in micro-compositional domains underwent a reaction that cannot be sequentially
tracked across phase fields in our P–T models. The calculation of P–T models relies on the assumption
that all phases are in equilibrium at any given point across the diagram. However, in reality, this is
rarely the case. Reactions may not proceed to completion, leaving behind minerals that should have
reacted out to play a role in new reactions and restricting the growth of new minerals. This results in
further reactions that involve metastable minerals that are not reflected on P–T diagrams e.g., [83–86].
This overstepping displaces the location of the boundary of a metamorphic reaction in P–T space,
resulting in a phase diagram that does not necessarily reflect the sequence of prograde reactions that
occurred in the rock. In this study, we interpret the small relics of aluminosilicate remaining in the
granulite to be metastable with respect to the modelled bulk compositions. However, they play a
critical role in our analysis because they allow us to confidently interpret the presence of a subsolidus
mineral. Furthermore, the spinel–cordierite symplectites form clearly delineated domains in the rock
that allow us to make an estimate of the approximate amount of subsolidus andalusite.

The predicted occurrence of andalusite at subsolidus conditions indicates that melt reintegration
modelling is a viable way to reproduce protolith bulk rock compositions. However, it should be noted
that in cases where low-grade mineral assemblages are unclear or textural evidence of compositional
domains not preserved, there may still be a significant amount of uncertainty involved in selecting a
potential prograde P–T path.

An important application of melt loss modelling is the interpretation of inclusion assemblages.
A large number of studies have used inclusion assemblages to provide information about prograde
history, even in rocks that have undergone partial melting and melt loss e.g., [87–89]. While these
inclusions may offer an insight into the existence of potential prograde minerals, interpreting prograde
conditions based on modelling a bulk composition that existed prior to modification due to melt
loss is illogical, and unlikely to result in meaningful constraints. Furthermore, a number of workers
have also used the compositions of individual minerals to make inferences about prograde histories
e.g., [90–92]. Where rocks have experienced high temperature evolutions, any such compositions will
only be fortuitously the same as they were at the time of capture due to diffusion-driven compositional
modification of the inclusion. However, melt reintegration modelling does offer an avenue for the
interpretation of inclusion assemblages providing a window onto the prograde conditions of rocks,
despite extensive melt extraction compositional modification.

6. Conclusions

Phase equilibria modelling undertaken on the Kanmantoo sediments at Reedy Creek indicates
that peak P–T conditions of 790–860 ◦C and 1.0–4.4 kbar were reached. From these peak conditions,
melt reintegration modelling of the pelitic granulites was able to reproduce several viable subsolidus
mineral assemblages containing andalusite, which was known to have existed in these rocks at lower
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grade. This indicates that current melt reintegration methods may have the potential to effectively
recreate valid protolith bulk rock compositions, but do require some knowledge of the protolith to be
certain. However, the absence of orthoamphibole in the current ds62 model does, in this case, restrict
our ability to accurately predict many subsolidus reactions that may have occurred in this rock.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3263/7/3/75/s1, Mineral
compositions obtained on MicroProbe SXFive.
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Figure A1. (a) P–MO model calculated to constrain the oxidation state of sample 14-RDC-04. The bold
line represents the solidus. The field outlined in yellow represents the peak assemblage observed in
the sample. The dashed line is the composition on the x-axis that was chosen for further modelling.
(b) TCI output of modal proportion of orthopyroxene. The peak field is outlined in bold. (c) TCI output
of modal proportion of cordierite. The peak field is outlined in bold.
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line represents the solidus. The field outlined in yellow represents the peak assemblage observed in the
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A P–MO model (Figure A1a) was calculated to constrain the oxidation state (O) of the composition
of sample 14-RDC-01. The oxidation state was chosen to be to the left of the centre of the field primarily
to increase the proportion of orthopyroxene (Figure A1b) and decrease the proportion of cordierite
(Figure 1c) to better adhere to the estimated modal proportions of these minerals in the sample.
A P–MH2O section (Figure A2a) was originally calculated to constrain the H2O content of sample
14-RDC-04. However, H2O is not very sensitive to changes in P as opposed to T, and at the constant
temperature that was chosen (750 ◦C) only a H2O-saturated solidus could be achieved, meaning
that no melt reintegration could take place. A T–MH2O section (Figure A2b) was then calculated to
assess the sensitivity of H2O with changing temperature. The left part of the peak field was chosen to
represent the H2O content of the sample, as it resulted in a composition that was not H2O-saturated at
the solidus and would allow for melt reintegration modelling.
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