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Abstract: Digital investigations of the real world through point clouds and derivatives are changing
how curators, cultural heritage researchers and archaeologists work and collaborate. To progressively
aggregate expertise and enhance the working proficiency of all professionals, virtual reconstructions
demand adapted tools to facilitate knowledge dissemination. However, to achieve this perceptive
level, a point cloud must be semantically rich, retaining relevant information for the end user.
In this paper, we review the state of the art of point cloud integration within archaeological
applications, giving an overview of 3D technologies for heritage, digital exploitation and case
studies showing the assimilation status within 3D GIS. Identified issues and new perspectives are
addressed through a knowledge-based point cloud processing framework for multi-sensory data,
and illustrated on mosaics and quasi-planar objects. A new acquisition, pre-processing, segmentation
and ontology-based classification method on hybrid point clouds from both terrestrial laser scanning
and dense image matching is proposed to enable reasoning for information extraction. Experiments
in detection and semantic enrichment show promising results of 94% correct semantization. Then, we
integrate the metadata in an archaeological smart point cloud data structure allowing spatio-semantic
queries related to CIDOC-CRM. Finally, a WebGL prototype is presented that leads to efficient
communication between actors by proposing optimal 3D data visualizations as a basis on which
interaction can grow.

Keywords: point cloud; data fusion; laser scanning; dense image-matching; feature extraction;
classification; knowledge integration; cultural heritage; ontology

1. Introduction

Gathering information for documentation purposes is fundamental in archaeology. It constitutes
the groundwork for analysis and interpretation. The process of recording physical evidence about the
past is a first step in archaeological study for a better understanding of human cultures. In general,
the goal is to derive spatial and semantic information from the gathered and available data. This is
verified in various sub-disciplines of archaeology that rely on archaeometry [1]. In this setting, remote
sensing is particularly interesting as a means to not only safely preserve artefacts and their context for
virtual heritage [2], but also to complement or replace techniques presenting several limitations [3].

An archaeological breakthrough given by this technique is the moving of interpretation from
the field to a post-processing step. The possibility to gather massive and accurate information
without transcripts interpretation or in situ long presence is a revolution in archaeological workflows.
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It started with stereo-vision and photogrammetry to derive 3D information, but recent development
deepened the representativity of digital 3D data through higher resolution, better accuracy and possible
contextualization [4]. The study of materials is often linked with on-site related information, forever
lost if not correctly transmitted. Digital preservation is therefore necessary to document a state of
the findings, and this at different accessible temporal intervals. Visions shared by [5,6] for the digital
documentation and 3D modelling of cultural heritage states that any project should include (1) the
recording and processing of a large amount of 3D multi-source, multi-resolution, and multi-content
information; (2) the management and maintenance of the 3D models for different applications; (3) the
visualization of the results to share the information with other users allowing data retrieval “through
the Internet or advanced online databases”; (4) digital inventories and sharing “for education, research,
conservation, entertainment, walkthrough, or tourism purposes”. In this paper, we propose such
a solution.

The information as we see it is mostly 3D: “when we open our eyes on a familiar scene, we form
an immediate impression of recognizable objects, organized coherently in a spatial framework” [7].
Therefore, tools and methods to capture the 3D environment are a great way to document a 3D state of
the archaeological context, at a given time. Analogous to our visual and cognitive system, 3 steps will
condition the completeness of the surveyed object. First, the perception, i.e., how the visual system
processes the visual information to construct a structured description of the shape of the object/scene.
Second, the shape recognition or how the product of the perceptual treatment will contact stored
representations in the form of known objects (it will construct a perceptual depiction that will be
a representation of the same nature stored in memory). Finally, the identification (labelling), i.e., when
a stored structural representation is activated, it will in turn activate the unit of meaning (concept) that
corresponds to it, located in the semantic system. Sensors are the analogue to our perception, and aim
at extracting the visual stimuli it is sensitive to (spatial information, colour, luminance, movement,
etc.). At this stage, neither the information on the shape of the object nor the label is extracted. In
the case of 3D remote sensing, the quality of observation is therefore critical to enable high quality
and relevant information extraction about the application. As such, the sensory perceptive processing
capable of extracting visual primitives must be as objective and complete as possible, making sensors
for point cloud generation favourable. Constituted of a multitude of points, they are a great way to
reconstruct environments tangibly, and enabling further primitive’s extractions (discontinuity, corners,
edges, contour„ etc.) as in our perceptive visual system (described in [7]). However, their lack of
semantics makes them a bona-fide [8] spatial representation, thus of limited value if not enhanced.

Deriving semantic information is fundamental for further analysis and interpretation. This step
is what gives a meaning to the collected data, and allows to reason on sites or artefacts. All this
information must be retained and structured for a maximum interoperability. In an archaeological
context, many experts must share a common language and be able to exchange and interpret data
through ages, which necessitate the creation of formalized structure to exchange such data. Multiple
attempts were made, and the CIDOC Conceptual Reference Model (CRM) is a formalization that goes
in this direction. “It is intended to promote a shared understanding of cultural heritage information
by providing a common and extensible semantic framework that any cultural heritage information
can be mapped to. It is intended to be a common language for domain experts and implementers to
formulate requirements for information systems and to serve as a guide for good practice of conceptual
modelling. In this way, it can provide the semantic glue needed to mediate between different sources
of cultural heritage information, such as that published by museums, libraries and archives”. It is used
in archaeology such as in [9] and provides semantic interoperability. Ontologies offer considerable
potential to conceptualize and formalize the a-priori knowledge about gauged domain categories [10]
that relies primarily on expert’s knowledge about real world objects. If correctly aggregated and linked
to spatial and temporal data, digital replicas of the real world can become reliable matters of study that
can survive through times and interpretations, which reduces the loss or degradation of information
related to any site study in archaeology.
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However while promising structures and workflow provide partial solutions for knowledge
injection into point clouds [11,12], the integration, the maturation state as well as the link between
semantic and spatial information is rudimentary in archaeology. Concepts and tools that simplify
this process are rare, which complicates the merging of different experts’ perceptions around cultural
heritage applications. Being able to share and exchange contextual knowledge to create a synergy
among different actors is needed for planning and analysis of conservation projects. In this context,
we explore ways to (1) better record physical states of objects of interest; (2) extract knowledge from
field observations; (3) link semantic knowledge with 3D spatial information; (4) share, collaborate and
exchange information.

This paper is structured in a dual way to provide both a background of 3D used techniques
in archaeology, and technical details of the proposed point cloud workflow for quasi-planar
heritage objects.

In the first part, we carefully review the state of the art in digital reconstruction for archaeology.
This serves as a basis to identify research perspectives and to develop a new methodology to better
integrate point clouds within our computerized environment.

Secondly, we propose a framework to pre-process, segment and classify quasi-planar entities
within the point cloud based on ontologies, and structure them for fast information extraction. The
methodology is illustrated on the case of the mosaics of Germigny-des-Prés (France) and then applied to
other datasets (façade, hieroglyphs). Finally, the results are presented, and we discuss the perspectives
as well as data visualisation techniques and WebGL integration.

2. Digital Reconstruction in Archaeology: A Review

3D digital exploration and investigations are a proven way to extract knowledge from field
observations [13,14]. The completeness and representativity of the 3D data gathered by sensors are
critical for such digitalization. Equally, methodologies, materials and methods to “clone” a scene
are important for the extensiveness of any reconstruction. The 3D-capturing tools and software
drastically evolved the last decade; thus, we review the current state of the art in digital reconstruction
for archaeology.

2.1. Archaeological Field Work

Even if an increasing number of archaeological contributions deal with 3D and related
management of information, archaeologists are still sceptical about 3D technologies and often use
manual drawings for cautious observations and first analyses on the field [15]. The literature
gravitates around a controversial or diverging hypothesis which illustrates this reticence to adopt
new technologies in remote sensing [14,16]. During an empirical recording of monuments or sites,
measurements are taken (by hand), taking distances between characteristic points on the surface of the
monument. The definition of the coordinates is done on an arbitrary coordinate system on a planar
surface of the structures. The method is simple, reproducible and low-cost but limiting factors such as
limited accuracy, time demand and necessary direct contact makes it unfavourable in many scenarios
including for inaccessible areas. However, archaeologists will often use such an approach over remote
sensing to gather insights that are otherwise considered incomplete. The 3D methods are frequently
regarded as intricate, expensive and not adapted to archaeological issues [17]. On most sites, for
buildings studies or in excavations, the data gathering and acquisition are made with drawings and
pictures in 2D. In some cases, 3D can come after the analyses process and is used as a “fancy” means
to present results and rebuilt a virtual past. As noticed by Forte [18]: “there was a relevant discrepancy
between bottom-up and top-down processes. The phase of data collecting, data-entry (bottom-up)
was mostly 2D and analogue, while the data interpretation/reconstruction (top-down) was 3D and
digital”. However, the new possibilities given by 3D remote sensing extend the scope of possible
conservation and analysis for digital archaeology, and can progressively move to post-processing
a part of the interpretation process, making the underlying data (if complete) the source on which
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different reading and conclusions can be mined. Yet, such techniques cannot replace a field presence
when complementary semantics (from other senses such as hearing, taste, smell, touch) are necessary.

The different data types from these remote sensing platforms played a vast role in complexifying
the diversification in methodologies to derive the necessary information from the data (data-driven).
However, the 3D spatial data extracted from the bottom-up layer for most of these techniques are
surveyed points, in mass, creating point clouds. They are driven by the rapid development of reality
capture technologies, which become easier, faster and incur lower costs. Use cases in archaeology
show the exploration and acceptation of new techniques, which are assessed not only in regard to their
accuracy, bust mostly in accordance to their fit to a specific context, and the associated costs. Following
the categorization defined in [16], we distinguish “(1) the regional scale, to record the topography of
archaeological landscapes and to detect and map archaeological features, (2) the local scale, to record
smaller sites and their architecture and excavated features, and (3) the object scale, to record artefacts
and excavated finds”. In their article, the authors reviewed some passive and active sensors for 3D
digitization in archaeology at these different scales. They conclude that the principal limiting factor
for the use of the different remote sensing technologies reviewed (Synthetic Aperture Radar (SAR)
interferometry, Light Detection and Ranging (LiDAR), Satellite/Aerial/Ground imagery, Terrestrial
Laser Scanning (TLS), Stripe-projection systems) is the ratio added value of a digital 3D documentation
over the time and training that inexperienced users must invest before achieving good results. In their
paper, [19] state that 3D recording is the first step to the digitization of objects and monuments (local
and object scales). They state that a 3D recording method will be chosen depending on the complexity
of the size and shape, the morphological complexity (Level of Detail—LoD), and the diversity in
materials. While this is accurate looking purely at a technical replication, other factors such as user
experience, available time or budget envelope will constrain the instrument or technique of choice.
They propose a 9-criteria choice selection as follows: cost; material of digitization subject; size of
digitization subject; portability of equipment; accuracy of the system; texture acquisition; productivity
of the technique; skill requirements; compliance of produced data with standards. While this extends
the global understanding and 3D capture planning, it lacks a notion of time management (implied
in productivity) or constraints in line with contextual laws and regulations (no contact survey only,
etc.). Although they separate “accuracy” from “texture acquisition”, both can be related, as well as
additional features provided by the sensors (e.g., intensity) that can extend the criterion table.

We note a large discrepancy between scales of the remote sensing and related costs/methods
tested for point cloud generation.

At a regional scale, airborne LiDAR is sparsely used in archaeology, mostly as a 2.5 D spatial
information source for raster data analysis. It is a powerful tool to analyse past settlement and
landscape modification at a large scale. Use cases such as in [20–23] helped remove preconceptions
about settlements size, scale, and complexity by providing a complete view of the topography and
alterations to the environment, but while it provided new research and analysis directions, the
LiDAR data did not leverage 3D point clouds considered too heavy and too raw to provide a source
of information.

At both the local scale and the object scale, several use cases exploit active sensoring, specifically
terrestrial laser scanners (TLS) using phase-based and time-of-flight technologies [24]. Archaeological
applications vary such as in [25] to reconstruct a high-resolution 3D models from the point cloud of
a cave with engravings dating back to the Upper Palaeolithic era, in [26] to study the damage that
affected the granitic rock of the ruins of the Santo Domingo (Spain), or in [27] for the 3D visualization
of an abandoned settlement site located in the Central Highlands (Scotland). More recent procedures
make use of TLS to reconstruct the Haut-Andlau Castle (France) [28], or in [29] to map the Pindal
Cave (Spain). These showed that to capture fine geometric details, laser-scanning techniques provide
geometric capabilities that have not yet been exceeded by close-range photogrammetry, especially
when concave or convex forms need to be modelled. Rising from the static concept, Mobile laser
scanning (MLS) [30] has scaled up the data rate generation of TLS by allowing dynamic capture
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using other sensors including GNSS position and inertial measurements for rapid street point cloud
generation and public domain mapping. New concepts and technology including Solid State LiDAR
and simultaneous localization and mapping (SLAM) have pushed dynamic acquisition for quickly
mapping with a lower accuracy the surroundings, extending cases using HMLS (Hand-held mobile
laser scanning) [31], MMS (Mobile Mapping System) [32], or more recently MMBS (Mobile Mapping
Backpack System) [33]. At the object scale, active sensors namely for active triangulation, structured
light and computer tomography for 3D modelling is widely used due to its high precision, and
adaptation to small isolated objects [34]. Moving to ground technologies, surveys are precise in
detecting sub-surface remains. Different geophysical processing techniques and equipment (such
as ground penetrating radar (GPR), magnetometry and resistivity) are usually integrated together,
to increase the success rate of uncovering archaeological artefacts, for example in [35] to delineate the
extent of the remains of a small town that has been submerged (Lake Tequesquitengo, Mexico).

Passive sensing gained a lot of attention in the heritage community following terrestrial use
cases and image crowdsourcing, allowing a wide range of professionals and non-expert to recreate
3D content from 2D poses (exhaustive software list from [36–46]). The rapidly growing interest for
light aerial platforms such as UAV (Unmanned Aerial Vehicle) based solutions and software based on
multi-view dense image matching [47,48] and structure from motion [49] swiftly provided with an
alternative to active sensoring. Use cases for 3D archaeological and heritage reconstruction are found at
the object scale through terrestrial surveys [4,14,50,51] and the local scale through light aerial platforms,
making this technique a favourable way to obtain quick and colour balanced point clouds. Moreover,
the cost and accessibility (hardware and software) of dense-image matching reconstruction workflows
have allowed its spread in archaeological studies. For example, in the Can Sadurní Cave (Spain),
Nunez et al. [52] successfully reconstructed an object via dense-image matching and georeferenced
the obtained 3D model using TLS point cloud data of the Cave. They state that capture from different
positions is fundamental to generate a complete model that does not lack important information.

While reconstruction accuracy is increasing [53], remote sensing via active sensors is favoured
in the industry for local scales. There are discussions in which computer vision would replace
LiDAR [28,54]; however, practical cases tend to a merging of both (Reconstruction of the Amra and
Khar-anah Palaces (Jordan) [55], the castle of Jehay (Belgium) [56]), and predilection applications for
each techniques, combining strength of natural light independence with low-cost and highly visual
image-based reconstruction [56]. Particularly in the case of mosaics, decorations and ornaments, the
combination of features from sensors generating accurate and complementary attributes permits the
overcoming of limits arising from a small set of features. Indeed, use case such as in [57] results in
a high richness of detail and accuracy when combining TLS and close range photogrammetry which
was not achievable otherwise. Thus, multisensory acquisition provides an interesting method that will
be investigated.

The high speed and rate generation of 3D point clouds has become a convenient way to obtain
instant data, constituting datasets of up to Terabytes, so redundant and rich that control operation can
take place in a remote location. However, they often go through a process of filtering, decimation and
interpretation to extract analysis reports, simulations, maps, 3D models considered as deliverables.
A common workflow in archaeology concerns the extraction of 2D profiles and sections, 2D raster to
conduct further analysis or to create CAD deliverables, particularly looking at ornaments, mosaics or
façades. This induces several back and forth movements within the pipeline, and the general cohesion,
storage system often lack extensibility. This challenge is particularly contradictory, and a solution
to automate recognition such as [58] in the context of mosaics would therefore provide very solid
ground for tesserae detection, extended to 3D by combining many more sets of features. This will be
specifically studied in Section 3.

While all the reviewed literature specifically points out the problems linked with data acquisition
and summarize the strength and weakness of each regarding the recorded spatial information, few
specifically link additional semantic information. Gathered in situ or indirectly extracted from the
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observation, the measurements often rely on specific interest points. While this is handy looking at
one specific application for one archaeologist, this practice is dangerous regarding the problematic
of curators and conservation. Indeed, preserving at a later stage the interpretation through sketches,
drawings, painting or text description based on interest points makes any possible data analysis
impossible from the raw source. Therefore, 3D point selectivity should not arise at the acquisition
step, but in a post-processing manner, to benefit of the flexibility given by 3D data archives, which was
impossible before the emergence of automatic objective 3D capturing devices.

We postulate that when designing data processing workflow, specific care must be given to the
objectivity linked with the spatial data, which multisensory systems and point clouds specifically
answer. As such, they can constitute the backbone of any powerful spatial information system, where
the primitive is a 0-simplex [59]. Their handling in archaeology, however, is a considerable challenge
(often replace by 3D generalization such as meshes, parametric models, etc.) and thus presents many
technical as well as interpretation difficulties.

2.2. Integration of 3D Data

As demonstrated in [60], the evolution of remote sensing for archaeological research and the
acceptance in archaeology has grown linearly since 1999 looking at the number of publications (Sources
SCOPUS, ScienceDirect & Web of Science search engines) related to remote sensing per year. While
this provides new possibilities, the reliability and heterogeneity of the spatial information are issues in
heritage for the conservation, interoperability and storage of data. 3D GIS linked to archaeological
databases have been thought and proposed for the management of this information at different scales
and on different type of sites such as large excavated sites [61–64]. In their paper [62], the authors
discuss the possibility and the ultimate goal of having a complete digital workflow from 3D spatial
data, to efficiently incorporate the information into GIS systems while relying on formal data model.
After stating the limits and difficulties of integrating efficiently 3D data (as well as time variations),
they interestingly express the domain specifications and formalization through ontologies. Within a
knowledge system, standards and procedures are key to warrant the consistent meaning of collective
contents and to trace the “history” of the processed data [63]. In their use case, they create a 3D model
segmented regarding semantic information to allow the independent manipulation as well as GIS
query between elements. They claim to provide new standards in 3D data capture to be usable by all
archaeologist, but their method is empirically defined and the integration of knowledge sources is
blurry regarding segmentation and semantic injection. Building archaeology is also a field where 3D
applications are used mainly for conservations purpose [65–67]. In these contributions, the authors
highlight two characteristics of archaeological cases: the heterogeneity of data and the difficulty of
processing 3D spatial entities from irregular archaeological objects (artefacts, buildings, layers, etc.).
Several solutions have been offered in the mentioned papers and specific software have been designed
(see [68] for a relevant 3D GIS use case and [69] for the most recent summary). In these studies, the
definition of archaeological facts rests on their representation as raster data, specific point of interest,
polygons and 3D shapes, but never the direct source of spatial information: point clouds.

At this step, several criterions should be considered to choose the most suitable spatial data
model. Many researchers proposed 3D grid representation (voxels) as the most appropriate data
format for handling volumetric entities and visualizing continuous events [70,71]. Generalizing
point cloud entities by volume units such as a voxels allows 3D GIS functionalities such as object
manipulation, geometry operations and topology handling regarding [72]. Although Constructive
Solid Geometry (CSG) and 3D Boundary representations (B-rep) can roughly depict a spatial entity, the
level of generalization of the underlying data has an impact on the accuracy and representativity of
GIS functionalities’ results. Thus, point cloud brings an additional flexibility by giving the possibility
to recover the source spatial data information. The limits with available commercial and open source
database GIS systems (which are mostly used by archaeologist) made point clouds a secondary support
information for primarily deriving 3D model generalizations. This of course limits the conservation
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potential of archaeological findings, as the interpretation behind data modelling workflows is unique
and irreversible (one-way). As such, to our knowledge, no 3D archaeological GIS system is directly
based on 3D point cloud. They are rather considered heavy and uninterpretable datasets. Furthermore,
the constitution and leveraging of knowledge sources is still limited, with some experiences by manual
injection reviewed in [61–64]. This of course constitutes a major issue that needs to be addressed
for scaling up and generalizing workflows. The different literature involved in the constitution of
3D GIS delineates the need of standardization, especially regarding the variety of data types. In
this direction, one specific use case in [62] demonstrated that the main advantage of the 3D GIS
methodology is the link between attribute information to discrete objects defined by the archaeologist.
Their implementation is done regarding the CIDOC-CRM ISO 21127 standard and the design patterns
from the ontological model of the workflow of the Centre for Archaeology to achieve semantic
compatibility. As opposed, the approach presented in [73] allows linking of 3D models of buildings
and graph-based representation of terms. It describes its domain-linked morphology to provide new
visual browsing possibilities. In this approach, one expert creates a graph for one specific application.
This allows the comparison of semantic descriptions manually established by experts with divergent
perspectives but lacks extensibility to match general rules. Indeed, while the description flexibility
within one field can benefit from this, it can lead to interoperability problems when a formalization
needs to be established, especially regarding geometrical properties or for structuring the semantics
according to a pattern. Even though there are several works dedicated to ontology-based classifications
of the real-world entities, the ontologies developed so far are rarely integrated with the measurements
data (physical data). As such, [74] proposes an observation-driven ontology that plays on ontological
primitives automatically identified in the analysed data through geo-statistics, machine-learning, or
data mining techniques. These provide a great standpoint to semantic injection and will be further
studied. In particular, the possibility to specialize the ontology through extensions such as CIDOC
CRMba (an extension of CIDOC CRM to support buildings archaeology documentation) or CIDOC
CRMgeo (an extension of CIDOC CRM to support spatiotemporal properties of temporal entities and
persistent items) provides new solutions for higher interoperability.

The literature review showed a shift at an acquisition phase toward better means to record
physical states of an environment, an object. TLS and dense-image matching showed an increase in
popularity, and their combination provide new and promising ways to record archaeological artefacts
and will thus be investigated. However, both methods generate heavy point clouds that are not joined
directly with knowledge sources or structured analogously to GIS systems. Rather, their use is limited
to providing a reference for other information and deliverables (2D or 3D). While this is a step forward
toward higher quality documentation regarding other reviewed field methods, this is not a long-term
solution when we look at the evolution of the discipline, the quantity of generated data and the ensuing
ethics. The identified problem concerns the link between domain knowledge and spatial information: it
evolves in parallel, partially intersects or is hardcoded and manually injected. Moreover, the flexibility
regarding possible analysis is often null due to interpreted documents that force a vision over elements
that no longer physically exist, or which were poorly recorded. Therefore, a strong need for ways to
integrate knowledge to point clouds is essential. This “intelligence spring” is categorized regarding 3
sources as identified in [11], being device knowledge (i.e., about tools and sensors), analytic knowledge
(i.e., about algorithms, analysis and their results) and domain knowledge (i.e., about a specific field of
application). Their rapprochement to point clouds is, however, a bottleneck that arises early in the
processing workflow. If we want to better integrate point clouds as intelligent environments [75], we
must correctly assemble knowledge sources with the corresponding “neutral” spatial information.
This relies on different procedures to (1) pre-process the point cloud; (2) detect the entities of interest
within the initial point clouds and (3) attach the knowledge to classify and allow reasoning based
on the classification. As such, our work proposes to leverage the use of ontologies as knowledge
sources, as well as defining a workflow to directly process and integrate point clouds within 3D GIS
systems, creating virtual heritage [2]. In the next part, we describe our technical method for integrating
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knowledge within reality based point-clouds from TLS and close-range photogrammetry. While the
following methodology can be extended to different applications with examples such as in Section 5,
it is illustrated and applied to quasi-planar objects of interest.

3. Materials and Methods

The applied workflow of object detection and classification is organized as follows: in the data
pre-processing step, the different point clouds are treated using the procedure described in Section 3.1
(Step 1, Figure 1). Subsequently, point cloud descriptors as well as object descriptors such as the extent,
shape, colour and normal of the extracted components are computed (Step 2, Figure 1) and imported
into the next classification procedure using a converter developed in this study (Step 3, Figure 1). In the
last step, the objects are classified based on the features formalized in the ontology (Step 4, Figure 1).
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to ontology.

The process to identify features of interest within the signal is the foundation for the creation
of multi-scale ensembles from different datasets. The work described in [76] extensively reviews
data fusion algorithms defined by the U.S department of Defense Joint Directors of Laboratories
Data Fusion Subpanel as “a multilevel, multifaceted process dealing with automatic detection,
association, correlation, estimation and combination of data and information from single and multiple
sources to achieve refined position and identify estimates, and complete and timely assessments
of situations and threats and their significance”. The combination of different sensors generating
complementary signatures provides pertinent information without the limitations of a single use and
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creates a multisensory system [77]. Thus, following the postulate of the state of the art, we decide to
adopt a multi-sensory workflow for maximizing information (Section 2.1).

3.1. Point Cloud Data Acquisition and Pre-Processing

A pre-processing step is necessary to obtain a highly representative signal of the value measured
as defined in [78]. Indeed, to avoid external influential sources that degrade the information, this step
demands adapted techniques to minimize errors including noise, outliers and misalignment. Filtering
the data strongly depends on device knowledge [11].

Several sets of data from various contexts were acquired to perform different tests. The Carolingian
church located in Germigny-des-Prés (Loiret, France) houses ancient mosaics dating from the 9th
century, composed of about one hundred thousand tesserae (the average surface of a tessera is 1 cm2,
square of 1 cm by 1 cm). The preserved works offer a unique opportunity for the study of mosaics
and glass. Indeed, the tesserae that composes it are mainly made in this material, which is rare in the
archaeological context of the early Middle Ages [79]. However, part of the mosaic was restored in the
19th century; therefore, tesserae are from two periods; thus, we must first distinguish the different
tesserae types (based on their age) for accessing alto-medieval glass information. The study could
reveal important predicates, considering each tessera taken independently or by analysing different
properties, while conjecturing with expert’s domain knowledge. The mosaic of the vault culminates at
5402 m above the ground, presenting many challenges for 3D capture from active and passive sensors.
The dome is protected, and the limited accessibility tolerates only a light scaffolding, too narrow for
the positioning of tripods, illustrating the need to adapt means to the context Figure 2.

Geosciences 2017, 7, 96  9 of 32 

 

demands adapted techniques to minimize errors including noise, outliers and misalignment. 
Filtering the data strongly depends on device knowledge [11]. 

Several sets of data from various contexts were acquired to perform different tests. The 
Carolingian church located in Germigny-des-Prés (Loiret, France) houses ancient mosaics dating 
from the 9th century, composed of about one hundred thousand tesserae (the average surface of a 
tessera is 1 cm2, square of 1 cm by 1 cm). The preserved works offer a unique opportunity for the 
study of mosaics and glass. Indeed, the tesserae that composes it are mainly made in this material, 
which is rare in the archaeological context of the early Middle Ages [79]. However, part of the mosaic 
was restored in the 19th century; therefore, tesserae are from two periods; thus, we must first 
distinguish the different tesserae types (based on their age) for accessing alto-medieval glass 
information. The study could reveal important predicates, considering each tessera taken 
independently or by analysing different properties, while conjecturing with expert’s domain 
knowledge. The mosaic of the vault culminates at 5402 m above the ground, presenting many 
challenges for 3D capture from active and passive sensors. The dome is protected, and the limited 
accessibility tolerates only a light scaffolding, too narrow for the positioning of tripods, illustrating 
the need to adapt means to the context Figure 2. 

 
Figure 2. The vault of Germigny-des-prés being captured for dense-image matching processing. 

The first sample was acquired using a phase-based calibrated terrestrial laser scanner: the Leica 
P30. The different scans were registered using 1338 reflective targets, of which 127 were shot by a 
total station (Leica TCRP1205, accuracy of 3 mm + 2 ppm) and used for indirect georeferencing 
afterwards. The mean registration error is 2 mm, and the mean georeferencing deviation is 2 mm 
(based on available georeferenced points measured from the total station). Two point cloud segments 
of the same zone (mosaic) were extracted: one unified point cloud that includes measurements from 
8 different positions with varying range and resolutions, and one high resolution point cloud (HPC) 
from one optimized position by using an extended mounted tribrach. A comparison emphasized the 
influence of the angle of incidence and the range over the final resolution, precision and intensity of 
the point cloud. Thus, we chose the HPC for its higher representativity (Figure 3). 

Figure 2. The vault of Germigny-des-prés being captured for dense-image matching processing.

The first sample was acquired using a phase-based calibrated terrestrial laser scanner: the Leica
P30. The different scans were registered using 1338 reflective targets, of which 127 were shot by
a total station (Leica TCRP1205, accuracy of 3 mm + 2 ppm) and used for indirect georeferencing
afterwards. The mean registration error is 2 mm, and the mean georeferencing deviation is 2 mm
(based on available georeferenced points measured from the total station). Two point cloud segments
of the same zone (mosaic) were extracted: one unified point cloud that includes measurements from
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8 different positions with varying range and resolutions, and one high resolution point cloud (HPC)
from one optimized position by using an extended mounted tribrach. A comparison emphasized the
influence of the angle of incidence and the range over the final resolution, precision and intensity of
the point cloud. Thus, we chose the HPC for its higher representativity (Figure 3).Geosciences 2017, 7, 96  10 of 32 
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through (1) higher quality features (i.e., better colour transcription, better precision, etc.); (2) specific 
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Figure 3. Point cloud of the church of Germigny-des-Prés. Top View (left) and zone of interest (right).

The TLS was operated at 1550 nm for a maximum pulse energy of 135 NJ. Initial filtering was
conducted such as deletion of intensity overloaded pixels (from highly retro-reflective surfaces) and
mixed pixels to flag problematic multi-peak scan lines and keep the right return via full-waveform
analysis. The final accuracy of a single point at 78% albedo is 3 mm. The final HPC is composed of
30,336,547 points with intensity ranging from 0.0023 to 0.9916, and covers solely the mosaic. Several
pictures were taken at different positions to obtain a 3D point cloud of the mosaic. These pictures were
shot using a Canon EOS 5D mark III camera equipped with a 24–105 mm lens. In total, 286 pictures
of 5760 × 3840 in RAW, radiometrically equalized and normalized, were used to reconstruct the
photogrammetric point cloud (Figure 4).
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The knowledge around the acquisition methodology provides important information as
missing/erroneous data, misadjusted density, clutter and occlusion are problems that can arise from
an improper or impossible capture configuration on the scene [80], resulting in a loss of transmitted
information or data quality. Combining different sensors with diverse acquisition methodologies
allows the overcoming of this challenge and provides a better description of the captured subject
through (1) higher quality features (i.e., better colour transcription, better precision, etc.); (2) specific
and unique attribute transfer; (3) resolution and scale adaptation, sampling or homogenizing [81]. The
knowledge extracted from a device, analytical knowledge or a domain formalisation constitutes the
fundamental information repository on which a multi-level data structure is constructed (Section 3.2).

The first step is therefore to correctly reference point clouds, known as data registration. The
method is derived from previous work to perform accurate attribute transfer [56]. The main idea is
that a priority list processing is established and influences data fusion regarding knowledge. When
combining different point clouds, their geometry and attributes in overlapping areas are then properly
addressed. The complementary information needs to be combined from the different available sources
if relevant, keeping the most precise geometry as a structure. Avoiding heterogeneous precisions is
essential, leading to point deletion rather than point caching and fusing. Once correctly registered,
every point cloud data source goes through a pixel and attribute level fusion (if not previously fused
at the sensory level).

3.2. Knowledge-Based Detection and Classification

Our approach for object extraction relies on domain knowledge that relays through point
cloud features. Segmentation [82] and feature extraction are well studied areas within point
cloud processes. However, the integration of knowledge is still rare, with few example of hybrid
pipelines [83,84]. Our proposed approach constitute a hybrid method inspired by previous
work in shape recognition [85–88], region growing pipelines [80,89,90] and abstraction-based
segmentation [91–95] relying on 3D connected component labelling and voxel-based segmentation. As
such, different features presented in Table 1 constitute the base for segmentation.

Table 1. Point features computed from the point cloud data after data fusion, before segmentation.

Type Point Features Range Explanation

Sensor desc.
X, Y, Z Bounding-box Limits the study of points to the zone of interest

R, G, B 1 Material Colour Limited to the colour range that domain
knowledge specifies

I Clear noise and weight low intensity values for signal
representativity

Shape desc. RANSAC 2 - Used to provide estimator of planarity

Local desc. Nx, Ny, Nz 3 [−1, 1] Normalized normal to provide insight on point and object
orientation

Density 4 - Used to provide insights on noise level and point
grouping into one object

Curvature [0, 1] Used to provide insight for edge extraction and break lines

KB 5 Distance map
Amplitude of the spatial error between the raw

measurements and the final dataset

Structure desc. 6 Voxels - Used to infer initial spatial connectivity
1 [96]; 2 [97]; 3 [98]; 4 [98]; 5 Knowledge-based; 6 [11].

The point cloud data processing was implemented using the programming interfaces and
languages MATLAB, Python, SQL, SPARQL, OWL, Java as well as the C++ Library CCLib from
CloudCompare [93] and the software Protégé [99].

First, the point cloud is segmented regarding available colour information by referring to the
database table containing float RGB colour ranges for each material composing the dataset. Then, the
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gap is enhanced by superimposing intensity values over colour information (this allows us to refine
and better access point filtering capabilities) as in Equation (1).

Re = R × I, Ge = G × I, Be = B × I (1)

A statistical outlier filter based on the computation of the distribution of point to neighbour
distances in the input dataset similarly to [100] is applied to obtain a clean point cloud. This step can
be avoided if the colour range and the datasets are perfectly in line.

The segmentation developed is a multi-scale abstraction-based routine that decomposes the 3D
space in voxels at different abstraction levels and by constructing an octree structure to speed up
computations. The three-dimensional discrete topology (3DDT) proposed by [101] generates a voxel
coverage by intersection with another representation model (parametric or boundary) of an object.
This is possible by playing on the different configurations of voxel adjacencies. A voxel has 6 neighbour
voxels by one face, 18 neighbour voxels by a face or an edge and 26 neighbours by a face, an edge
or a vertex. Our approach is based on a 26-connectivity study that groups adjacent voxels if not
empty (i.e., voxels containing points). It is conditioned by the analytical knowledge where the density
information constrains the initial bounding-box containing the point cloud. An initial low-level voxel
structure is then computed, retaining the number of points as attribute. Let vi ∈ R3 be a voxel. Let vi

be its neighbour voxel. We define VCEL as the connected element (segment) as in Equation (2):

∀ vi ∈ R3, ∃ vj= n(v i) | VCEL =
[
vi, vj

]
↔ vj 6= ∅ (2)

where n(v i) is the neighbour voxel of and vi, VCEL is the group segment from a 26-connectivity
adjacency study.

The topological grouping also permits us to clean the remaining noise N from difficult colour
extraction regarding the equations Equations (3) and (4). Let pn ∈ R3 be the n-th point of VCEL. There
exists PCEL as follows:

∀ p1, . . . , pn ∈ R3, ∃ PCEL | P CEL = {p1, . . . , pn}
1 (3)

PCEL = N ↔ SNumber_CEL < d(PCEL)×min(Sm) & SSize_CEL < min(Vm)2 (4)

1 where p is a point (x, y, z) in space, 2 where N is the remaining noise, SNumber_CEL is the number
of points in PCEL, d(P CEL) is the point density of PCEL, min(S m) is the minimum of the surface
of the material Sm, SSize_CEL is the voxel volume occupancy of the CEL, min(V m) is the minimum
of the volume of the material Vm; therefore, N is the group composed of fewer points than the
knowledge-based assumption from the density achievable from the sensor, the minimum surface of
the object and the minimum volume of the object.

Then, our multi-scale iterative 3D adjacency algorithm at different octree levels recursively
segments under-segmented groups (detected by injecting analytical knowledge regarding minimum
bounding-box size of processed material as in Equation (4)), refining the voxel-based subdivision until
the number of generated voxels is inferior to the density-based calculation of estimated voxel number.
When subgroups dimensions correspond to material’s available knowledge, segments are added to
the “Independent Tesserae” segments. Otherwise, a convolution bank filter is applied regarding the
longest side of the calculated best fit P.C.A Bounding Box. For absorbent materials or objects sensitive
to the sensor emitting frequency (implies low intensity, thus high noise), the 3D distance map as in
Table 1 is used to detect points that belong to each object of interest. The accuracy of the extracted
segments is assessed by ground truth manual counting of different samples.

Then, on each detected segment, every point is projected on the RANSAC best fit plane, and
we extract the 2D outline through the convex hull of the projected points pi to constrain the plane.
Let PpCEL be the projected points of PCEL onto the best fit plane. Then, we obtain Conv

(
PpCEL

)
as in

Equation (5):
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Conv
(
PpCEL

)
=


|PpCEL|

∑
i=1

αi×pi| ∀ pi ∈ PpCEL, ∀ αi ≥ 0) :
|PpCEL|

∑
i=1

αi = 1

 (5)

where Conv(PpCEL) is the convex polygon of PCEL as a finite point set (x, y) in R2 (x, y, z). It can be
extended to 3D, nD if necessary.

We calculate the compactness (CS) and complexity (CP) of the generated polygon in regard to the
work of [102], as well as its area, and its statistically generalized (gaussian mixture) colour (Table 2).

Table 2. Segment features computed from the extracted segments.

Type Point Features Range Explanation

Sensor
generalization

Xb, Yb, Zb barycentre Coordinates of the barycentre

Rg, Gg, Bg 1 - Material unique colour from statistical generalization

I - Intensity unique value from statistical generalization

Shape desc.
CV 2 - Convex Hull, used to provide a 2D shape generalization of the

underlying points

Area - Area of the 2D shape, used as a reference for
knowledge-based comparison

CS, CP [0, 1] Used to provide insight on the regularity of the shape envelope

Local
generalization Nx, Ny, Nz 3 [−1, 1] Normalized normal of the 2D shape to provide insight on the

object orientation
1 [96]; 2 Convex-hull; 3 [98].

The final classification of the delineated objects is based on the available and constituted domain
ontology of point cloud features for archaeology. The idea behind the ontology is that the integrated
cultural information from a variety of sources is brought together into an integrated environment
where we can ask broader questions than we can ask from individual pieces.

Ontologies can be expressed using different knowledge representation languages, such as
the Simple Knowledge Organization System (SKOS), the Resource Description Framework (RDF),
or the Web Ontology Language 2 (OWL2) specification. These languages contrast in terms of the
supported articulateness. The SKOS specification, for instance, is widely used to develop thesauri,
the CIDOC CRM is mainly used for describing heritage sites, the Basic Formal Ontology [103] at
a higher conceptualization level to incorporates both 3D and 4D perspectives on reality within a single
framework. The OWL2 ontology language is based on the Description Logics (DL) for the species of the
language called OWL-DL. DL thus provides the formal theory on which statements in OWL are based
and then statements can be tested by a reasoner. The OWL semantics comprise three main constructs:
classes, properties and individuals. Individuals are extensions of classes, whereas properties define
relationships between two classes (Object Properties), an individual and a data type (Data Properties).

We used the OWL and the RDF languages to define ontologies for their high flexibility and
interoperability within our software environment (Protégé & Java). As for the study of mosaics,
the ontology is set upon the point cloud data and its attributes, thus indirectly leveraging domain
ontologies. Indeed, sensor related knowledge is needed to understand the link between features and
their representativity. The following meta-model is formalised in UML and provides a conceptual
definition for implementations. We therefore used the model to provide a clear vision and
comprehension of the underlying system, but the ontology creation slightly differs from privilege
performances; therefore, adaptations are made at the relation scheme modelling level.

The characterization (knowledge representation and data modelling) in Figure 5 is a Level-2 domain
meta-model, that can plug to a Smart Point Cloud structure [104]. The general idea is that different
hierarchical levels of abstraction are constituted to avoid overlapping with existing models and to
enhance the flexibility and opening to all possible formalized structure. The core instruction is that the
lower levels are closer to a domain representation than higher levels (level-0 being the higher level), but
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they impose their constraints. The overall structure is a pyramidal assembly, allowing the resolution of
thematic problems at lower levels with reference to constraints formally imposed by the higher levels.Geosciences 2017, 7, 96  14 of 32 
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simple relationship from domain (Tessera) to Range (Properties). 

The ontology is then populated with the domain knowledge as detailed in Figure 7, and the 
different predicates are established to obtain a final classification of the point cloud. Note that a 
tolerance of 20% regarding the definition of geometries was used to allow relative variations within 
one tesserae family. Analogously, any quasi-planar object may be substituted and described by the 
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Figure 5. UML meta-model of the ontology. Tesserae have one or multiple geometries, which are
characterized by their regularity (determined by the ontological reasoning framework), and an area.
Tesserae also have a temporality (characterized as a time interval, being placed at early Middle Ages
or during a restoration at the 19th century) and different materials. These materials retain various
properties including light sensitivity.

The ontology implementation was structured as triplets. Each triplet corresponds to a relation
(subject, predicate and object), which expresses a concept. The end goal is to reason based on the
constituted ontology to extract information about the tessera geometric regularity, its material and
temporal classification (ClassifiedTessera) as in Figure 6.
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Figure 6. Sub-ontology for the classification of point cloud tessera objects. Blue arrows represent links
regarding the tree structure (these are “subClassOf”). The oranges links represent the “hasProperty”
relationship that we created to describe the relationship between a Tessera and its properties. It is
a simple relationship from domain (Tessera) to Range (Properties).

The ontology is then populated with the domain knowledge as detailed in Figure 7, and the
different predicates are established to obtain a final classification of the point cloud. Note that
a tolerance of 20% regarding the definition of geometries was used to allow relative variations within
one tesserae family. Analogously, any quasi-planar object may be substituted and described by the
afore-mentioned properties, thus extending the provided ontology.
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Figure 7. Detailed ontology for the classification of the mosaic's point cloud. The yellow lines are
the links of sub-assumptions, of reasoning. They are in fact links of equivalence between a class and
its definition.

The different results allow to classify the point cloud, after determining the regularity of the 2D
outline regarding different constraints (examples in Table 3).

Table 3. Example of tessera classification using RDF constraints.

RDF Triple Store Effect

((CS some xsd:double[> “1.1”ˆˆxsd:double]) or (CS some xsd:double[<
“1.05”ˆˆxsd:double]))
and (CP some xsd:double[> “4.0E-4”ˆˆxsd:double])*

Tessera is irregular (1)

(CP some xsd:double[<= “4.0E-4”ˆˆxsd:double])
and (CS some xsd:double[>= “1.05”ˆˆxsd:double, <= “1.1”ˆˆxsd:double]) Tessera is square

(1) and (hasProperty some ColorGold)
and (hasProperty some NonReflective)

and (Area some xsd:double[<= “1.2”ˆˆxsd:double])
Tessera is alto-medieval

(hasProperty some ColorWhite)
and (Area some xsd:double[>= “16.0”ˆˆxsd:double, <=

“24.0”ˆˆxsd:double])
Material is Faience

The domain knowledge including size, geometry and spatial distribution leads to object
classification. For enhancing its interoperability, the developed DSAE (Digital Survey-based
Architectural Element) ontology can directly be extended using the well-established CIDOC-CRM
formal ontology. Indeed, the CIDOC-CRM is purely descriptive, and does provide only “factual”
tests (a node is linked to an arc, which is linked to another node). The provided DSAE ontology can
reason based on complex declaration of conditions (such as AND, OR, ONLY, etc.), thus is much more
structured than the CIDOC-CRM, and allows to reason. As such, it permits automatic classification
that can be plugged to the CIDOC-CRM enabling archaeologists to better understand the underlying
point cloud data. In the case of tesserae, each tessera material is then considered as a E57 Material
specialization which comprises the concept of materials (Specialization of E55 Type), LightProperties
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and Color can be seen as S9 Property (it describes in a parametric way what kind of properties the
values are) and Area, CP and CS as SP15 Geometry attributes (which comprises the union of geometric
definitions and the linked declarative places) from the extension CIDOC-CRMgeo (based on the
ontology GeoSPARQL), as in Figure 8.
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Finally, semantic information is transferred to the point cloud that can be used for information
extraction. Once extracted semantics have been successfully linked to the spatial information, we
address structuring for interaction purposes. The data structuration is made in regard to [104].
The main idea is that the structure is decomposed in three meta-models acting at three different
conceptual levels to efficiently manage massive point cloud data (and by extension any complex 3D
data) while integrating semantics coherently. The Level-0 describes a meta-model to efficiently manage
and organise pure point cloud spatial data information. The Level-1 is an interface between the level-0
and the level 2 (specific domain-based knowledge). As such, the data integration methodology relies
on incorporating the point cloud data in the Smart Point Cloud data structure [104] in regard to the
workflows described in Section 3. The structuration therefore follows the object decomposition, where
points of each object are grouped together to form world objects (i.e., Independent Tesserae) once
concepts and meaning have been linked. This constitutes the entry point of the ontology which acts as
a Level-2 specialization to inject relevant knowledge. To facilitate the dissemination of information,
query results from specific queries need to be visualized properly. For users to access and share
a common viewpoint result of a semantic query, we enhanced the approach in [105] by applying
over each object (i.e., tessera) one unique colour per instance for each class (e.g., faience pieces); all
non-requested tesserae are coloured in black as in Figure 9.

For each class of object, we compute a bounding box and we locate its centre. The bounding
box centre becomes the centre of the sphere on which the camera will move to determine the optimal
camera position. The coordinates of the camera on the sphere are computed according to the following
formulae [105]:

X = xcenter + r× cos(φ)× cos(θ), Y = ycenter + r× sin(φ), Z = zcenter + r× cos(φ)× sin(θ)1 (6)

1 where X, Y and Z are the camera coordinates, xcenter, ycenter and zcenter are the coordinates of the
centre of the sphere, r is the radius of the sphere, φ is the vertical angle, θ is the horizontal angle.

From each camera position, we compute the number of visible tesserae from the user request
observed in the produced image. Since each instance of one sort of tesserae is coloured uniquely, the
algorithm performs by counting the number of different pixels colours. Hence, the number of distinct
colours in the image corresponds to the number of tesserae seen from this camera position. The camera
position that maximises the view of requested tesserae corresponds to the optimal viewpoint. If two
camera locations present the same number of observed tesserae, we apply a maximisation criterion
regarding the pixels to determine the optimal camera position.
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4. Results

We tested the method on different samples from different zones of the mosaic to identify the
influence of the segmentation and the classification in different scenarios, as well as another point cloud
from terrestrial laser scanner captured in Jehay (Belgium). To assess the quality of the segmentation,
knowledge-based tessera ground truth was extracted from the point cloud and compared to the
segmentation method extracts. Results (Table 4) show an average 95% segmentation accuracy for point
cloud gold tesserae, 97% for faience tesserae, 94% for silver tesserae and 91% for coloured glass.

Table 4. Segmentation accuracy of tesserae samples.

Tesserae Segmentation
Number of Points Accuracy

Ground truth Tesserae C.
Gold

Sample NO. 1 10,891 10801 99%
Sample NO. 2 10,123 11,048 91%
Sample NO. 3 10,272 10,648 96%
Sample NO. 4 11,778 12,440 94%

Faience
Sample NO. 1 27,204 28,570 95%
Sample NO. 2 23,264 22,978 99%
Sample NO. 3 23,851 24,440 98%
Sample NO. 4 22,238 22,985 97%

Silver
Sample NO. 1 1364 1373 99%
Sample NO. 2 876 931 94%
Sample NO. 3 3783 3312 88%
Sample NO. 4 1137 1098 97%

C. Glass
Sample NO. 1 1139 1283 87%
Sample NO. 2 936 1029 90%
Sample NO. 3 821 736 90%
Sample NO. 4 598 625 95%



Geosciences 2017, 7, 96 18 of 32

The tesserae recognition pipeline including segmentation, classification and information extraction
was conducted over 3 different representative zones of the point cloud to be exhaustive and to be
able to count manually each tessera for assessing the results. In the first zone containing 12,184,307
points, three types of tesserae were studied: 138 Gold tesserae from the 19th century renovation (NG),
239 ancient gold (AG) and 11 faience pieces (FT) (Figure 10). The automatic segmentation correctly
recognized all FT (100% accuracy) and 331 golden tesserae (GT) (88% accuracy), remaining ones being
5% of under-segmentation (in groups of 2/3 tesserae), 7% of tesserae not detected. The classification
correctly labelled respectively 100% FT, 98% NG, and 99% AG.
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In the second zone containing 12,821,752 points, 313 gold tesserae (195 NG and 118 AG) and
269 silver tesserae (ST) were processed. In total, 284 (91%) golden tesserae were correctly segmented,
of which 93% were correctly labelled NG and 95% AG, and 93% of ST were correctly segmented,
of which 87% were correctly labelled. The third larger sample composed of 34,022,617 points includes
945 gold tesserae and 695 CG (coloured glass) tainted in black. The other tesserae in the sample
had an insufficient resolution for ground truth generation. In total, 839 (89%) golden tesserae were
correctly segmented, of which 86% were correctly labelled NG and 95% AG. Concerning CG, (494)
71% were correctly segmented, and 98% were correctly labelled. While classification results are very
high, segmentation is heavily influenced by the quality of the data; hence, CG shows lower results
because of its harsh sensor representation (tesserae are not easily discernible).

Globally, 59,028,676 points and 2610 tesserae were processed; 2208 (85%) were correctly detected
and segmented, of which 2075 (94%) were correctly labelled (Table 5).

Table 5. Recapitulation of tesserae detection results.

ID
Tesserae Segmentation Classification Res.

Type Nb Nb % Nb % Nb
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comprises around 95 million points and has an uneven density due to the acquisition set-ups. The
segmentation allowed us to correctly detect calcareous stones as in Table 6, as well as openings
regarding the surface of reference (best fit plane through convolutional bank filter) and the full
limestone bay frames.

Table 6. Segmentation accuracy of the façade of the castle of Jehay over calcareous stones.

Elements Segmentation
In Number of Points Accuracy

Ground truth Method

Calcareous Stones
Sample NO. 1 37,057 35,668 96%
Sample NO. 2 30,610 27,100 88%
Sample NO. 3 34,087 32,200 99%
Sample NO. 4 35,197 30,459 86%

The same reasoning engine was used based on the DSAE ontology. The DSAE-based classification
first studied the material Limestone (related to the property colour, same as S9 from CIDOC-CRM)
and the geometry regularity (related to SP15 attribute from geometry) in regard to CS, CP and Area (in
the case of 3D objects, the area was extended to a volume feature by taking into account every spatial
dimension.), then differentiated openings through dimension-based predicates (SP15 Geometry) as
presented in Figure 11. The CIDOC-CRM and its extension CIDOC-CRMba [106] provide an added
descriptive value for archaeologists that can be directly plugged as in Figure 11.
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The detected segments are classified, with 85% accuracy for independent calcareous stones, and
100% for woodworking openings (differentiated by size and geometric regularities) and limestone
bay frames. The results over the Renaissance façade recognition pipeline are illustrated in Figure 12.
We notice the fine detection for each element and the irregularity for some stones due to the uneven
quality of the point cloud colorization. Calcareous stones classification was largely impacted by the
segmentation inaccuracy within certain zones that led to over-segmentation and thus incorrect labels
due to shape irregularity. These influential factors are discussed in Section 5.
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It is interesting to note that the DSAE ontology can be further used for distinguishing wide
woodworking openings from smaller ones based on Area (or Volume) properties, and their geometric
regularity. However, their label is considered weak for archaeological purposes, and extending the
ontology as in Section 5 would provide a better automatic characterization for archaeological analysis.

The established data infrastructure gravitate around a client-server protocol that allows maximum
flexibility and extensibility in regard to the 4 prerequisites of digital archaeology as defined in [5,6].
The platform can scale up to multiple simultaneous connexions and handles multi-source datasets.
Every client that connects to the server as in Figure 13 benefits of functionalities from both the ontology
reasoner and SQL statements (e.g., in Section 4). The implementation was made using PostgreSQL
DBMS enhanced with plugins (PostGIS and pgPointCloud). The software Protégé alongside the
programming toolkit JENA (Java) was also used to create and link ontologies.

As for the client-side, it was constructed to be as open and accessible as possible. As such, the
World Wide Web is a democratized way to share and exchange information. It constitutes a long-term
means to collaborate, and is independent of the location which is very important considering the need
to be able on site to work with digital copies. Indeed, an application accessible anywhere and by
multiple users at the same time is key for an archaeological 3D platform. Thus, we implemented the
application in WebGL, a JavaScript API for rendering 3D graphics within any compatible web browser.
We used Three.js, a cross-browser JavaScript library which uses the WebGL framework and enhances
it. By a simple interaction with the GUI, the users can access and share a common viewpoint result of
a semantic query. Figure 14 presents the optimal viewpoint for two classes of tesserae similarly to [12].
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The complete workflow therefore us allows to (1) pre-process multi-sensory point cloud data,
(2) compute features of interest, segment and classify the point cloud according to domain knowledge
formalized in ontologies; (3) structure the data in a server-side SPC point cloud 3D GIS; (4) disseminate
the information through a client-side app built upon WebGL with a specific visual processing engine
to provide optimal viewpoints from queries.

5. Discussion

The democratization of TLS and dense-image matching in archaeological workflows makes them
a preferred way to record spatial information. Point clouds are very interesting for their objectivity
and flexibility in interpretation processes. If the acquisition is complete, they transcript every visual
element that was observed on the field. However, other components that can arise to our other senses
such as mechano-reception (touching, hearing) or chemo-reception (taste, smell) are not captured
by these remote sensors. However, their integration and link to the point clouds can be important
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as they constitute another source for better comprehension of the observed subject. Sensors that
can capture such information as objectively as possible would be another step toward a possible
better acquisition automatization. Today, archaeologists rely mostly on field-work to extract necessary
information from human senses, eventually with the use of other sensors to detect additional patterns
(e.g., x-fluorescent characterization in Germigny-Des-Prés). Exploring combination of multisensory
surveys with sensor-level data fusion provides a great opportunity for further research and to keep a
record of a more complete context. Indeed, archaeological studies deal with more and more information
including archaeological observations but also data coming from other sciences (e.g., geology, chemistry,
physics, etc.) and all these must be organized and considered together for an optimal understanding
of the site. To avoid loss of information, recording of the fact and interpretation must be integrated in
the same process [18] and specific tools should be investigated.

Regarding spatial information, 3D point clouds constitute a very exhaustive source for further
archaeological investigations. However, their lack of integration in workflows narrows the possibilities
and interpretation work. We identified their main weakness to propose better handling and
combinatory potential between different information sources: how to coherently aggregate semantics,
spatial (and temporal information in a later stage). With respect to the number of observations (points),
autonomous processing is very important. When dealing with thousands of archaeological objects
of interest (composed of millions of points) in a scene (composed of billions of points), manually
segmenting and classifying would be a very time consuming and an error prone process. In this paper,
we presented an effective approach to automate tesserae recognition from terrestrial laser scanning
data and dense image-matching. Knowledge-based feature constraints are defined to extract gold,
silver, coloured glass and ceramic tesserae from a hybrid point cloud. Then convex hull polygons are
fitted to different segment separately. Knowledge is introduced again to generate assumptions for
problematic parts. Finally, all polygons, both directly fitted and assumed, are combined to classify
and inject semantics into the point cloud. Tests on three datasets showed automated classification
procedures and promising results (Figure 15).
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The developed method tackles data quality challenges including heterogeneous density, surface
roughness, curvature irregularities, and missing, erroneous data (due to reflective surfaces for example).
We see that in zones where the colour quality is good and blur is low, classification results exceeds 95%
accuracy. However, the method is very sensitive to 3D capture conditions and representativity such as
colour, intensity, resolution and sharpness. Therefore, segmentation will fail when the input data does
not allow correct feature extraction and abstraction-based connectivity estimation. More complete
tesserae knowledge will help to better understand and detect complex shapes and patterns. While the
classification results using domain knowledge are promising, the full point cloud labelling scheme
could be enhanced by improving specifically the segmentation step. The data quality influences the
final results. As illustrated, a challenge is brought about by varying densities and poor point-feature
quality that can lead to over-segmentation when predominant features rely on point-proximity/density
criterions. While this is not an issue for dense point clouds that describe continuous surfaces, it can



Geosciences 2017, 7, 96 23 of 32

constitute a hindrance for heterogeneous density or uneven datasets. Equally, colour/intensity that
create imprecise colorization/featuring leads to rough classification. A solution would be to move
the colour-based segmentation to the DSAE ontology to provide new discriminative possibilities.
Also, the combination of dense image matching with laser data and 3D distance map improves the
outline generation in a later stage, and allows a better shape estimation (Figure 16). Yet, an efficient
registration is mandatory for accurate results. To improve the classification results, the segmentation
can be enhanced using a watershed algorithm as well as obtaining higher representativity colour
attribute for example. These are research directions that will be investigated. Also, to improve the
robustness of the segmentation, a region-growing from a seed point located at every centroid of each
detected connected element potentially provides a solution to under-segmentation, and investigations
are necessary in this direction.Geosciences 2017, 7, 96  23 of 32 
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Language RDF Triple Store Effect 

SPARQL 

  PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-
syntax-ns#> 
  PREFIX npt: <http://www.geo.ulg.ac.be/nyspoux/> 

SELECT ?ind 
    WHERE { 
    ?ind rdf:type npt:AltoMedievalTessera 

} ORDER BY ?ind 

Return all alto-medieval 
tesserae (regarding initial 

data input) 

SQL 
SELECT name, area FROM worldObject WHERE 

ST_3DIntersects(geomWo::geometry, 
polygonZ::geometry); 

Return all tesserae which 
are comprised in the 
region defined by a 

selection polygon and 
gives their area 

SPARQL & 
SQL 

SELECT geomWo FROM worldObject WHERE 
ST_3DIntersects(geomWo::geometry, 
polygon2Z::geometry) AND area > 0,0001;  

Return all renovated 
tesserae in the region 2 

Figure 16. Classification and semantization of dark coloured glass.

The constituted ontology provides a reasoning engine based on available information that can be
further enhanced to integrate new triple stores. As such, an acquisition campaign using a portable X-ray
Fluorescent device was carried out to quantify the relative quantity of chemical component within
some tesserae. Integrating this semantic information could provide new reasoning capabilities such
as detecting every gold tesserae that contain a quantity X of Plumb. The method will also be refined
and extended to the full point cloud by implementing a machine learning framework using obtained
labelled data as training data. First results are encouraging using supervised classification [107], and
other approaches such as reinforcement learning will be investigated for they high reasoning potential
and complementarity to ontologies. However, the computer memory-demand of point clouds may
impose a link to 2D projective raster’s and to leverage existing training datasets (e.g., DeepNet).

The data structure relies on PostgreSQL RDBMS while indirectly integrating ontology reasoning
results. It allows specific queries over the classified point cloud to extract spatial, semantic or
a combination of both information. The blend of SPARQL and SQL allows us to combine efficiently
the strength of both the relational database structuration and block-wise storage capabilities with the
powerful reasoning proficiencies provided by ontologies. Different queries are therefore available,
which are big leap forward regarding point cloud processing for archaeology (e.g., in Table 7).

However, while the temporal integration was inferred, only static intervals and fixed point in
time were treated. Better integration such as continuous data or the storage and reasoning over
datasets covering one location at different time intervals has yet to be further investigated. Indeed,
new descriptors emerging from change detection could provide new insights and possibilities for
cultural heritage conservation.
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Table 7. Example of queries over the point cloud.

Language RDF Triple Store Effect

SPARQL

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npt: <http://www.geo.ulg.ac.be/nyspoux/> Return all alto-medieval

SELECT ?ind tesserae (regarding initial
WHERE { data input)
?ind rdf:type npt:AltoMedievalTessera

} ORDER BY ?ind

SQL SELECT name, area FROM worldObject WHERE
ST_3DIntersects(geomWo::geometry, polygonZ::geometry);

Return all tesserae which are
comprised in the region

defined by a selection polygon
and gives their area

SPARQL & SQL

SELECT geomWo FROM worldObject WHERE
ST_3DIntersects(geomWo::geometry, polygon2Z::geometry) AND
area > 0,0001;

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> Return all renovated
PREFIX npt: <http://www.geo.ulg.ac.be/nyspoux/> tesserae in the region 2
SELECT ?ind where the area is superior

WHERE { to 1 cm2

?ind rdf:type npt: XIXCentTessera
} ORDER BY ?ind

The proposed methodology (described in Section 3) was as general as possible to be extended to
other use cases, at the object and local scales. It provides a potential solution for bringing intelligence
to spatial data, specifically point clouds as seen in [104]. For example, we tested a point cloud from
dense-image matching captured in Denmark (Ny-Calsberg Museum) and processed using Bentley
ContextCapture (Figure 17). It constitutes an interesting object scale dataset where the interest lies in
deciphering the hieroglyphs.
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CRMba as illustrated in Section 4 is possible, and the extension to other use cases requires us to 
identify specific specializations and the level of detail within the tree depth. If we consider the 
Renaissance façade of the castle of Jehay, the CIDOC-CRM ontology as well as the CIDOC-CRMba 
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Figure 17. 3D point cloud of the statue of the Egyptian priest Ahmose and his mother, Baket-re.
Diorite. C.1490–1400 BC. 18th Dynasty. New Empire. Ny Carlsberg Glyptotek Museum. Copenhagen.
Denmark. From left to right: 3D point cloud; feature extraction and segmentation; 3D visualization.

The methodology was applied, and each hieroglyph was successfully detected independently.
As the spatial context is conserved, we can locate the relative position of each hieroglyph regarding the
others, and using a lexicon or a structured ancient hieroglyph ontology, each sign could be detected by
shape matching (e.g., RANSAC), and a reading order extracted as in [108]. Thus, the methodology is
suitable to reason from information extraction, and possibilities are very encouraging. Deepening the
classification through well-established ontologies such as CIDOC-CRMba as illustrated in Section 4
is possible, and the extension to other use cases requires us to identify specific specializations and
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http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.geo.ulg.ac.be/nyspoux/


Geosciences 2017, 7, 96 25 of 32

the level of detail within the tree depth. If we consider the Renaissance façade of the castle of Jehay,
the CIDOC-CRM ontology as well as the CIDOC-CRMba and the CIDOC-CRMgeo add flexibility
for moving deduction capabilities from the analytic part to the ontology. This is very interesting
as it maximizes the DSAE reasoning capabilities instead of determining analytically discriminative
features (such as bounding-box “is contained in” relationship from coordinates). As an example, the
classification of the façade can be related to the specialization levels from B1 to B5 of the CIDOC-CRMba,
and directly plugged as in Figure 12. Then, specifically looking at full limestone bay frames (same
as B5 Stratigraphic Building Unit), an element that is contained within a limestone bay frame is
classified as an empty section regarding Figure 18. The topological relations are introduced with the
use of the well-known GeoSPARQL ontology to allow the detection of openings based on a AP12
“contains” relationship.
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Figure 18. CIDOC-CRM ontology for the detection of objects of interest: calcareous stones and
openings. Considering the castle of Jehay (B1), it has a building section (BP1) being the studied façade
(B2), composed of different elements such as calcareous stones (B3), embrasures (B3) and openings (B4).

Therefore, by integrating attributes such as Color and ProjectedArea of the different elements (as
well as topological “is Within” test), the ontology can be used for reasoning. Based on general axioms,
it semantically recognises building parts of a façade as in Table 8.

Table 8. Classification of elements based on numerical attributes and topological relations.

Language Equivalent To Definition Effect

OWL (Protégé)

(hasProperty some ColorLimestone)
and (hasProperty some NonReflective)
and (CP some xsd:double[<= “4.0E-4“ˆˆxsd:double]) Defines an element as
and (CS some xsd:double[>= “1.05”ˆˆxsd:double, <=

“9.0”ˆˆxsd:double]) a BayFrame

and (ProjectedArea some xsd:double[>= “0.05”ˆˆxsd:double, <=
“0.4”ˆˆxsd:double])

OWL (Protégé)

(not (hasProperty some ColorLimestone))
and (sfWithin some BayFrame)
and (BoundingBox some xsd:double[>= “2.9”ˆˆxsd:double, <=
“3.5”ˆˆxsd:double])

Defines an element as a
DoorSection
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It is interesting to note that further reasoning is made possible due to extended knowledge over
Renaissance-style mullioned windows. Indeed, double mullioned openings are a complex architectural
element present over this façade. They are 2 mullioned openings where the separation by stones is
inexistent. Each can be described regarding CIDOC CRMba as: 1 frame (B5) and 6 openings (B4 Empty
morphological Building Section). Thus, an extended ontology can recognize double mullioned
windows and a reason such as the one presented in [109] would provide extended automatization.

The final step for the visualization and presentation of the results is to share and distribute the
information to other users and relies on virtual environments with specific interaction. The perception
in 3D spaces is a dynamic phenomenon and concerns firstly behaviours and effects [110]. Data
visualization is important to explore the data, to obtain some idea of what they contain, and therefore,
to develop some intuitions about how to go about solving a problem from that data, determining what
features are important and what kinds of data are involved. Visualization is also important when
looking at the output of data science systems: data summarization for creating useful exploratory
statistics, essential to understanding what was collected and observed. Although used before for
tackling models and algorithms to avoid missing crucial information, data visualization is important
for translating what might be interpretable only to a specialist for a general audience. In the context of
point cloud, semantics and domain can highly influence the type of rendering used to directly transmit
the correct information in a correct way to the end user. New ways of interacting with the data—Virtual
reality, augmented reality, real time exploration and collaboration, holograms—are redefining possible
interactions and exploration. Remondino, 2003 [111] list different surface representations that can
be used to represent and use a point cloud, including parametric modelling, implicit and simplicial
representation, approximated and interpolated surfaces. The time-consuming task of accurate 3D
surface reconstruction from point cloud requires many steps of pre-processing, topology determination,
triangular mesh generation, post-processing and assessing. For example, Hussain, 2009 [112] propose
two simplification algorithms for LoD generation by decimating and simplifying meshes, thus reducing
accuracy and quality. The development of an Internet browser-based solution allows maximum
flexibility regarding theses identified problems, including data indexation vis-à-vis [113] to provide
streaming capabilities independently of the size of the dataset.

Based on the algorithm developed by [105], we manage the 3D viewpoint so as to determine
an optimal position and orientation of the camera for the visualisation of three kinds of tesserae
distinguished by their material: faience, gold and silver. Through the previous steps of recognition
and semantization described, we are now able to exploit the semantically rich point cloud data
structure [11] to visualise efficiently the different sorts of tesserae. To achieve this, we performed
a pre-processing step, totally transparent to users, in which we compute the optimal camera positions
on a 3D COLLADA model of the mosaic which is constituted of the minimum convex hull of each
tesserae information stored in the database. This technical implementation will be enhanced to enable
more direct integration of the geometry generalizations from the database. The algorithm looks at the
pixels of the computational display which avoids the under-object recognition phenomenon. It also
allows us to directly work on the final rendering of the 3D model which already integrates the use of
an algorithm to process hidden faces. Finally, it can be used on any kind of 3D data structure (vector,
raster or point cloud). It is worth mentioning that additional viewpoints could be computed which
depends on the initial query. For instance, we can calculate multiple optimal camera positions for one
specific sort of tesserae, depending on a needed surface, distance to rotation center, density estimate,
etc. The latest could be particularly interesting for the golden tesserae since they are quite scattered in
space. Furthermore, we can also investigate the impact of the statistical parameter used when two
viewpoints present the same number of objects (maximum, average, etc.).

To integrate the semantically rich point cloud and the viewpoint management of queried tesserae,
we developed web software using jQuery, Three.js, Potree (an Open Source JavaScript library for point
cloud rendering) and tween.js. The platform includes a tool to directly allow semantic extraction
and visualisation of pertinent information for the end users. It enables efficient information relay
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between actors. The web application is accessible on any HTML5-compatible browser. It enables real
time point cloud exploration of the mosaics in the Oratory of Germigny-des-Prés, and emphasises the
ease of use as well as performances. However, the integration of a natural language processor would
allow us to extend the possibilities for users to formulate queries that are translated into SQL and
SPARQL analogues.

6. Conclusions

In this paper, we first reviewed the state of the art in digital archaeology. We pointed out gaps
in the integration of spatial information with semantic components and the limited management of
3D point clouds within 3D GIS. The recording and processing of 3D multi-source complex data were
addressed, as well as their management, conservation, visualization and presentation for different
users. In this paper, we propose a new solution to integrate archaeological knowledge within point
cloud processing workflows. Specifically, we decompose point clouds regarding available features and
estimated geometric properties that generate ontologies to classify and reason based on information
extraction. We developed a data-driven ontology for point cloud analysis to facilitate interoperability to
other formal ontologies such as the CIDOC-CRM, and applied the workflow over different point clouds.
Quasi-planar objects (doors, windows, tesserae, calcareous stones, hieroglyphs) were successfully
detected, and an HTML-5 cross-platform web application was created to facilitate the knowledge
dissemination such as ancient mosaic located in the oratory of Germigny-des-Prés. Then, we extracted
the necessary requested information from the semantically rich point cloud data to efficiently visualise
user’s request based on computed optimal camera positions and orientations that maximise the
visibility of requested objects (e.g. tesserae). Then, the optimal viewpoints are dynamically rendered
to users through the platform on which interactions can grow.

Supplementary Materials: The ontology is available online at: http://www.geo.ulg.ac.be/nyspoux/.
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