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Abstract: In recent years, two drought monitoring systems have been developed in the Czech
Republic based on the SoilClim and AVISO soil moisture models. The former is run by
Mendel University and Global Change Research Institute (CAS), while the latter, by the Czech
Hydrometeorological Institute. SoilClim is based more on real soil properties and aimed primarily at
agriculture, while AVISO complements the system with more theoretical presumptions about soil,
showing, rather, climatological potential. Both soil moisture models were complemented by forecasts
on a daily basis, taking meteorological inputs from NWP (Numerical Weather Prediction) models
and thus giving short- to mid-range outlooks up to 9 days ahead. Validation of the soil moisture and
drought intensity prediction was performed and is presented in this article showing its prediction
reliability and potential. In the analysis, we focus mainly on the past year, 2017. The tool has strong
predictive power for soil moisture and drought intensity so it is suitable for farmers who need to
make decisions about irrigation and production activities. The presented system is fully functional
and can be applied in the coming years.

Keywords: drought prediction; soil moisture models; SoilClim model; AVISO model; medium
range forecast

1. Introduction

Drought forecast is important for various fields of human activity, such as agriculture, hydrology,
the energy sector, human health, etc. (e.g., [1–3]). There are many existing drought monitoring
systems in the world nowadays. An overview of some of these can be found on the National Drought
Mitigation Center web pages (http://drought.unl.edu/MonitoringTools/InternationalEarlyWarning.
aspx). The focus and target audience of those services may differ to quite an extent, as drought itself
is a complex phenomenon. Some of the systems include a forecast component as well. In general,
to predict drought conditions, one can either consider statistical or dynamical methods [4]. The former
are based on the long-term correlation of global circulation patterns with the regional weather, while
the latter utilize the numerical weather prediction (NWP) models and their ensembles. The simplest
drought forecast includes information on air temperature and precipitation and their anomalies within
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the course of several days to months. Meteorological parameters can be further combined into basic
drought indices or included in the input of hydrological, agricultural, or other models. The various
applications or needs regarding drought forecasting and warming were recently published in a special
issue of Hydrology and Earth System Sciences (e.g., [5–7]). An overview of principles of the drought
prediction over different time scales was discussed by [8]. There are three main components of
drought forecasting: a set of input variables, methodologies, and the outputs obtained. The selection
of input variables depends on what kind of drought should be forecasted. The input variables may
include basic hydro-meteorological parameters, e.g., precipitation, air temperature, evaporation, soil
moisture or streamflow, their combination in a form of drought indices, or climate indices related to
large-scale atmospheric or oceanic circulation, e.g., El Nino-Southern Oscillation (ENSO). A range of
methodologies is very wide and again strongly dependent on whichever drought is to be forecasted.
These methods include different statistical approaches, e.g., regression models, time series models, or
neural network models. For more details on individual methods we refer to [8]. The last component of
the drought forecasting is the final output that may include information on the onset and termination
of the drought, its severity, or its probability of occurrence. Many of the contemporary approaches
developed for drought forecasting aim to deliver an outlook on longer time scales from weeks to
months. When the interest goes to shorter time frames of days and weeks, the weather forecast
delivered by NWP models plays a key role in the drought prediction.

The outputs of weather models are always influenced by an uncertainty that grows over time
and decreases the forecast accuracy on different spatial scales: earlier on the local scale, later on the
global scale. Errors in the NWP forecast stem from several sources that are related to, for instance,
the NPW models themselves (settings of model dynamics and physics, numerical methods) or the
initial condition at the beginning of each forecast (availability, accuracy, spatial homogeneity of
meteorological observations, data assimilation, and interpolation to the model grid). The validation
of NWP models is an important step needed to understand the reliability of forecasts based on the
NWP model. In general, the validation can be a complex process and includes, for instance, testing the
assumptions on which the model is built. However, the most frequently used part of the validation
process in meteorology is the comparison of model outputs with real observations. There are many
datasets of weather observations against which the NWP models and forecasts can be tested. These
include the ground weather stations, upper air soundings, satellite observations, and many others,
often combining data from more independent sources, like re-analysis. In this study, we validate the
forecasts of the NWP model and the skill of the soil model against the station measurements carried
out and provided by Czech Hydrometeorological Institute. The validation data and methods are
described in the following chapters.

Within the last years, two drought monitoring systems were developed in the Czech Republic
in part in collaboration with neighboring countries. These two systems complement each other.
The system primarily based on the SoilClim soil moisture model has been developed and is being
run by the Global Change Research Institute (GCRI) of CAS (Czech Academy of Sciences), Mendel
University, and State Land Office using data support of the Czech Hydrometeorological Institute
(CHMI). It has been designed to target agriculture drought, including impacts [9]; besides soil moisture
model relies on remote sensing and drought reporting data. Most detailed information at highest
resolution covers Czech Republic and Slovakia using SoilClim (Figure 1a) as the primary tool. Due to
the use of remote sensing data it is able to provide contextual information on the ongoing drought
episode from a much wider area of Central Europe (Figure 1b). The system based on the AVISO
soil moisture model, run by the Czech Hydrometeorological Institute (CHMI), is focused on soil
and meteorological drought. Both systems work with daily data. The SoilClim weather inputs are
interpolated to 500 m grid, and the model differentiates the upper (0–40 cm profile) and lower soil
layers (40–100 cm), while AVISO works with one soil layer (1–100 cm) and relies on the station approach.
After several years of tuning both models, they are now also being utilized for a soil moisture (drought)
forecast for several days ahead. For the SoilClim model, a long-term statistical forecast (8 weeks ahead)
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based on analogs also exists. In this paper, we deal only with the short to medium range forecasts.
Thanks to common activities (national projects, etc.), there are plans for both monitoring systems,
initially developed separately, to be presented in one place (a web portal), taking advantage of mutual
cooperation and covering meteorological and agricultural drought. The website will provide users
with more robust information about various aspects of drought, validation of the predictions, etc.
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Figure 1. (a) Diagram of data processing in the soil moisture and drought intensity model SoilClim;
(b) current area of interest covered by the weekly drought monitoring efforts.

The aim of the system is, among others, to improve decision-making processes through reliable
forecasts, particularly in the agricultural sector, and thus to increase both the economical and ecological
effectiveness of agriculture production.

In this article, we present both soil moisture models; we then present the NWP models used as
input into these models to retrieve the soil moisture forecast, and in the end, we give the results of the
validation of the outputs (drought characteristics forecast) of both systems.
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2. Materials and Methods

2.1. SoilClim

The SoilClim model (Figure 1a) is designed to study root-zone soil moisture content (from the
surface down to 1.0 m or less in shallow soils) using the modelling approach suggested by [10], which
was partially modified by [11] and validated, e.g., by Ref. [12]. Only the soil moisture available
to plants (i.e., above wilting point) was considered when soil moisture was expressed in mm or in
relative terms. In the latter case, the total volume of water that would be available to plants was
calculated as the difference between soil moisture at field capacity and wilting point multiplied by
layer’s depth. SoilClim was applied for each grid and accounted not only for the soil water holding
capacity but also for the type of vegetation cover, phenology development, root growth, or snow cover
accumulation/melting [13]. The module for actual evapotranspiration (ETa) and soil water content
estimates considers two soil layers: the topsoil layer (from the ground surface to 0.4 m depth) and
the subsoil layer (between 0.4 and 1.0 m). The cascading approach for transferring water from the
topsoil to subsoil layers is used when the topsoil is less than 50% saturated. In the case of higher soil
water content in the topsoil, proportion of soil water in the topsoil is allowed to seep into the subsoil,
mimicking the macropore and preferential water transport. While the model allows one to estimate
runoff and interception, the study considered only the latter part, as it did not consider precipitation
data correction through wind-speed. The Czech Hydrometeorological Institute, as the official data
provider, uses unshielded Hellman-type raingauges and does not carry out the precipitation data
correction routinely. The precipitation is likely underestimated by 5–10% on an annual basis (e.g., [14])
and even more in particular events depending on the wind-speed. This was indirectly confirmed
when observed soil moisture and SoilClim estimates (not considering run-off) were compared at sites
with known actual evapotranspiration, finding no systematic overestimation by SoilClim. SoilClim
has dynamically simulated vegetation cover that allows for changing parameters of the canopy (e.g.,
root depth or crop height) during the growing season based on the thermal time and vernalization
requirement (in case of winter crops and perennials). Therefore, the crop parameter Kc [10], as well as
root growth dynamics, varies for individual vegetation covers and throughout the year (or vegetation
season). The model also accounts for the interception by vegetation depending on the vegetation type
and phenological stage, as well as for the soil water percolation below the subsoil layer.

The input climatological data were complemented with values of the maximum soil water holding
capacity (MSWC) for both soil layers in each grid cell, which is of critical importance for the dynamic
of the actual soil water content. The MSWC for each grid was estimated using a combination of
digitalized maps of soil types (1:500,000), detailed soil physics data from 1073 soil pits collected by the
Czech National Soil Survey, and data derived from digital maps provided by the Research Institute
for Soil and Water Conservation (http://www.vumop.cz/ (accessed on 20 February 2013)) and the
European Soil Database [15]. The MSWC was calculated assuming a 1.3 m soil profile unless soil
database indicated shallower soil depth. The topsoil (0–0.4 m) and subsoil (0.41–1.0 m or maximum
rooting depth when it is shallower) layers had their properties defined separately based on the soil
data available. The number of soil layers was limited by the available soil data, which would not allow
for meaningful description of more soil layers than top and subsoils. Finally, areas were identified that
have at least some part of their growing season influenced by high underground water tables (that
are likely to be reached by roots for natural subsurface irrigation) and therefore respond to drought
differently (both in terms of the stress magnitude and timing) compared to other rain-fed grid cells.
The soils with an observed gleyic process, within close proximity (and at the same altitude) of water
bodies and peat and bog areas, were treated differently in the course of soil moisture calculations,
and the soil moisture depletion rate was slowed significantly compared to neighboring grids without
such influence. This approach (relying on the observed soil properties and detailed elevation and land
use models) is, in our opinion, better than using the [16] global dataset, which still requires ground

http://www.vumop.cz/
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verification in the Czech Republic and also has a coarser spatial resolution. In total, 9.5% of the study
area was influenced by high underground water table.

Vegetation cover of the Czech territory was divided into the following categories: (i) arable land
(46.2% of the area), (ii) permanent grasslands (7.6%), (iii) conifer forest (20.3%), (iv) deciduous forest
(3.1%), (v) mixed forests (6.0%), (vi) other agricultural areas (8.7%), and (vii) grids where no calculation
was performed (i.e., urbanized areas (7.0%) and water bodies (1.1%)). The information about the land
cover relied on the Corine land cover (CLC2006) 100 m (version 12/2009). Assessment of the annual
water balance is made more difficult by the fact that arable land (which dominates the landscape)
consists of an ever-changing mixture of crops. In these grids, we considered a 5:4:1 mixture of spring
and winter C3 crops (based on present spring barley and winter wheat cultivars) and spring C4 crops
(maize)—i.e., calculations on these grids were performed for all three crop types and then a weighted
mean was used. The 5:4:1 ratio is based on the mean cultivation area of each crop group between 1961
and 2012. Soil moisture dynamics were then determined as the weighted mean of moisture estimates
under all three covers within the given season and grid and have been used also in Ref. [17] or Ref. [18].

The SoilClim model showed very good ability to replicate seasonal dynamics of soil moisture, as
well as actual evapotranspiration and long-term trends [12]. The SoilClim model was able to reproduce
actual daily evapotranspiration (ETa), explaining between 74% and 80% of the variability. SoilClim
also performed well at the lysimetric station Hirschstetten in Austria (in the period 1999–2004) for all
three soils, explaining up to 63% (topsoil) and 74% (subsoil) of observed soil moisture variability. Even
better results were reported for the Domanínek station (2 seasons under grass cover), in which the
SoilClim model explained 63% of topsoil and 74% subsoil soil moisture variability. Ref. [12] showed
that SoilClim estimates reproduce fairly well changes in the long-term soil moisture dynamics in the
topsoil for the AMJ and JAS periods. In both considered periods, the model underestimated the soil
moisture trend on 3 sites and overestimated it also on 3 sites.

2.2. AVISO

Primarily, the AVISO model was designed to analyze soil water content with regard to the
influence of climate conditions and the actual course of meteorological elements. Due to the purpose
of its utilization at CHMI and also with regard to the need for a uniform comparison of the areas
within the Czech Republic with the dominant consideration being the influence of climate conditions,
the modeling process and the outputs used are subject to a certain degree of simplification and
generalization. This allows comparison of the impacts of changing weather conditions during the
season in the different regions in terms of soil water content. It also helps with complication due to the
fact that the soil conditions in the Czech Republic are very varied, even in the wider neighborhood of
climatological stations where the meteorological elements are measured.

The Czech Hydrometeorological Institute currently conducts the monitoring of meteorological
and agricultural drought using its own agrometeorological model, AVISO. The characteristics of
evapotranspiration, basic water balance, and soil water content are modeled and analyzed in general
to establish the influence of weather processes and climate conditions on the state and development
of drought.

The AVISO agrometeorological model is based on the English model MORECS (“The
Meteorological Office Rainfall and Evaporation Calculation System“), version I. and II. [19–23].
Currently, the core of the model, with computational algorithms, was reprogrammed into the R
language environment. The additional modules for the preparation of various data inputs, spatial
calculation, creation of maps, and also input forecast data processing are made in Python.

The main output is the calculation of evapotranspiration, which is then combined with an amount
of precipitation data, information about soil conditions, and phenological data for estimation of soil
water content. The AVISO agrometeorological model is applied globally for the whole area of the Czech
Republic, with the outputs produced in daily steps and primarily for the grasslands. Nevertheless,
the information for other agricultural crops and types of land covers are processed too [10].
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For the evaluation of loss of water from the upper soil profile by evapotranspiration, the modified
(for the specific conditions of the Czech Republic) Penman-Monteith equation, with the temperature of
evaporating surface correction and an evaluation of air humidity by means of vapor pressure, was
applied [24]. The calculation of evapotranspiration is processed separately for the day and night
parts of the day and the resulting value is given by their sum. The daily values of air temperature,
water vapor pressure, wind speed, precipitation total, and sunshine duration served as inputs to the
model. For actual soil water condition expression, the specific moisture characteristics (hydrolimits as
available water capacity, field moisture capacity, wilting point) for the analyzed locality are necessary.
In accordance with soil condition simplification and uniformity for the most common soil types
throughout the Czech Republic, three groups of soil types (by clay particles) [25] are used:

- light soil (sandy to loamy-sandy, c.p. 0–20%), AWC (available water capacity) = 70 mm/1 m
- heavy soil (clayey-loamy to clayey, c.p. 45–75%), AWC = 120 mm/1 m
- medium-heavy soil (sandy-loamy to loamy, c.p. 20–45%), AWC = 170 mm/1 m

In the case of the calculation of the soil water content in the AVISO model [26], a simplified
two-layer model of water movement in the soil with its constant drainage in the whole active profile,
which means the soil profile to the depth of active sprouting is used.

As one of the results, the actual soil water deficit is computed as a sum of the difference between
precipitation and evapotranspiration of the actual day and soil water deficit at the end of the last day.
The soil water content in percent of available water capacity is then calculated by means of the actual
soil water deficit value between of two main hydrolimits: field moisture capacity and wilting point
(Figure 2).
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At present, this model is also experimentally used to process data from the numerical weather
forecast (Figure 3) in order to predict future development of soil moisture content and the potential
occurrence and intensity of drought. The source data of the deterministic forecast comes from
the numerical forecast model, IFS-ECMWF. The possible uses and reliability of the forecast are
analyzed by comparing them with datasets from the previous seasons. This includes an analysis
of the differences between agrometeorological characteristics derived from measured and modeled
data and the differences are also assessed for particular locations.
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2.3. NWP Models

Numerical weather prediction models are the backbone of contemporary weather forecasting.
They offer time series of a wide range of meteorological quantities, covering the period and
(geographical) area of interest. These time series are usually available on a rectangular grid at the
surface and also on the vertical levels of the atmosphere. While the computational time step of
numerical models is generally few minutes, the results are offered in longer intervals: usually in one-
or three-hour steps.

Our project utilizes global versions of numerical weather prediction models and a deterministic
setup of their forecasts (in contrast to the ensemble setup also produced by the models). A deterministic
setup offers significantly higher resolution compared to ensemble forecasts, which are the preferable
choice for the relatively small area of the Czech Republic. Global models are our choice due to the
longer forecasted periods compared to regional/limited area models, whose forecasts are usually
available only up to 2–3 days. In Table 1 below, all five utilized models are lined up in descending
order. The uppermost model has the highest weight, while the lowermost model has the smallest
weight when averaging their results (using the weighted average method for individual forecasted
quantities). The table also contains information on meteorological centers operating individual models,
frequency of model output, spatial resolution, and forecast length.

Table 1. Summary of the global forecast models and parameters of the forecast outputs.

Forecast Producer Model Horizontal
Resolution (km)

Frequency of
Outputs (h)

Forecast
Length (d)

ECMWF Integrated Forecast System (IFS) 12 3 7
Météo France ARPÉGE 10 1 4
UK Met Office Unified Model Global (GUM) 16 1 6
NOAA NCEP Global Forecasting System (GFS) 25 3 14

Canadian Meteorological Centre Global Earth Model (CMC) 25 3 6

There are also other global models available being operated by German, Brazilian, or Japanese
meteorological services, as examples. Their outputs, however, are not available in sufficient temporal
or spatial resolution or do not perform sufficiently for our region.

3. Results

The SoilClim system gives information in 500 m resolution grids, while AVISO currently gives its
outputs for station locations (reflecting the measurement network of CHMI). For general comparison
(which is also used on the webpage of www.drought.cz), the results are shown for the whole Czech
Republic. In the case of SoilClim, we use aggregated values (averages) over all grids in the Czech
Republic, while in the case of AVISO, we used an average over all stations (198 automatic stations) in
the system.

www.drought.cz
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In the case of SoiClim, the NWP outputs are bias corrected (by means of the DAP method based
on quantile mapping, [27,28]), applied on daily values, taking station measurements as reference
series, and, at the same time, the NPW model grid points are localized into station locations. From
such station-located series, maps for each meteorological element are created, which serve as input
into the SoilClim model. Interpolation is performed based on DEM with 500 m × 500 m resolution.
Predictors for the interpolation were selected taking into account conditions appropriate for a given
day. The predictors applied are: altitude, longitude, latitude, slope, exposition, and roughness.

The following validation results are based on the year 2017. It does not make much sense to go
deeper into the past, since NWP models change quite frequently (their releases), e.g., during 2016 the
IFS model was much improved (its resolution among others). In other words, if we were to process
data from several years ago, we would have to take worse results into account. It is for these reasons
we decided to assess just the last year.

3.1. Validation of NWP Outputs, Grid-Based Approach (SoilClim)

Among the most important meteorological elements for drought forecast by means of SoilClim
(www.drought.cz) are maximum and minimum air temperature, precipitation sum, relative humidity,
wind speed, and sunshine duration. Validation of the forecast is carried out through comparison of
the forecast of these meteorological elements with the reality—the measured values in the network
of meteorological stations. The bias of the forecast increases with the length of the forecast, and this
bias is pertinent to a given NWP model, as well as a meteorological element and a given part of a year
(season). IFS can be regarded as the best NWP model, which shows the lowest model bias for most
of the meteorological elements for all the days ahead. On the contrary, the least reliable results are
provided by the GFS model.

Air temperature belongs among the best predicable meteorological elements. For maximum air
temperature, all the NWP models have a tendency to overestimate values, and this happens mainly
in the spring and summer months, which are the most important months for drought monitoring.
This may mean a tendency towards slower drying. For the third day ahead, a prediction error
(MAE, mean absolute error) varies from 1.19 to 2.10 ◦C (Table 2). For 9 days ahead, the error for
the IFS model is around 3 ◦C. As for minimum air temperature, some models overestimate it, while
others underestimate it. Error for the third day ahead is slightly lower than in the case of maximum
temperature. For 9 days ahead, the best model—IFS—has an error of only around 2.5 ◦C.

Precipitation sum is a problematic element. For it, bias increases mainly in the summer months
during thunderstorm events when NWP models are not able to determine the exact location and
time of its occurrence. Generally, NWP models overestimate precipitation sum falling in the area of
the Czech Republic. The error is quite low—around 0.5 mm for 3 days ahead. For the 9 days ahead
forecast, the errors are higher than 2.5 mm. Wind speed is among the worst predicable meteorological
elements, which is influenced to a large extent by local effect. NWP models possess quite a big bias:
they predict by 0.5 to 1.0 m/s higher wind speed compared to station measurements. This is caused by
the fact that the models do not contain the roughness of the terrain (or obstacles) to such extent as is
reality in the case of the station neighborhood. This is also the reason why wind speed according to
models may be closer to reality for drought prediction compared to station measurements. Sunshine
duration is difficult to predict during inversions (autumn and spring), when big differences between
nearby locations may occur; for this reason, the models show very big positive bias. For the third day,
this stands between 3 and 6 h. Relative humidity is overestimated by the models, with exception of IFS.
For the third day, the error is from 4 to 8% (Table 2). The least reliable model with regard to relative
humidity is GFS.

Further in this chapter, we focus only on some specifics of 2017. The forecast for maximum
temperature predicted by meteorological models were lower than in reality for all days ahead. The
highest negative bias occurred from June to August, especially during days that were warmer than
average. Negative bias was from 2 to 4 ◦C (Figure 4). The beginning and end of the year showed lower
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bias in terms of maximum air temperatures. What was remarkable was a prediction of the GUM model
from 1st September that began to show a significant negative bias for the 1 and 3 days ahead forecasts,
but on the other hand, was correct for 2 and 4 days ahead.

Table 2. Validation characteristics (bias and MAE—mean absolute error) of 5 NWP (numerical weather
prediction) models for individual seasons (green and asterisk = the best model, red and dash = the
worst, estimated based on MAE for annual values) for 3 days ahead.

YEAR DJF MAM JJA SON

Element Model BIAS MAE BIAS MAE BIAS MAE BIAS MAE BIAS MAE

Maximum
temperature

ARPEGE −0.69 1.33 −0.61 1.29 −1.00 1.47 −0.13 1.29 −1.12 1.28
CMC −1.78 1.91 −1.95 2.16 −2.01 2.13 −2.12 2.22 −1.01 1.13
GFS −0.90 1.53 −0.62 1.47 −1.70 1.90 −1.59 1.86 0.34 0.89

GUM - −1.60 2.10 −0.59 1.46 −1.76 2.05 −1.61 1.98 −2.50 2.97
IFS * −0.68 1.19 0.00 1.06 −1.36 1.63 −1.08 1.46 −0.14 0.66

Minimum
temperature

ARPEGE - 0.99 1.69 0.45 1.55 0.69 1.49 2.54 2.56 0.06 1.02
CMC −0.58 1.38 −2.36 2.70 0.10 0.95 0.29 0.90 −0.36 0.97
GFS −0.19 1.22 −0.56 1.47 −0.46 1.09 −0.35 1.28 0.60 1.05

GUM 1.37 1.62 1.75 2.08 0.99 1.13 1.41 1.42 1.34 1.89
IFS * 0.62 1.11 −0.46 1.12 0.26 0.87 1.46 1.49 0.64 0.91

Precipitation

ARPEGE 0.27 1.10 0.40 0.63 0.45 1.07 0.12 1.74 0.11 0.88
CMC - 0.43 1.16 0.48 0.61 0.20 0.96 0.43 1.84 0.63 1.22

GFS 0.65 1.12 0.56 0.71 0.66 1.10 0.72 1.49 0.68 1.16
GUM 0.35 1.08 0.48 0.69 0.47 1.01 −0.17 1.52 0.62 1.08
IFS * 0.17 1.03 0.20 0.45 0.48 1.10 −0.28 1.28 0.38 1.04

Sunshine
duration

ARPEGE * 2.84 3.01 1.68 1.88 3.88 4.17 3.28 3.42 2.45 2.52
CMC 4.03 4.12 2.92 3.04 4.94 5.10 4.22 4.28 4.04 4.04
GFS - 5.56 5.68 3.10 3.46 6.67 6.78 6.04 6.08 6.30 6.30
GUM 2.71 3.15 1.65 2.14 3.60 4.07 2.66 3.28 2.95 3.09

IFS 3.67 3.77 2.24 2.38 4.59 4.76 3.96 4.06 3.48 3.50

Humidity

ARPEGE 4.14 6.32 6.69 6.87 6.61 7.73 0.29 6.08 3.09 4.41
CMC 4.78 5.49 5.27 5.70 6.20 6.58 4.44 6.06 3.16 3.59
GFS - 5.37 7.99 5.12 8.98 10.53 10.74 7.98 8.73 −2.33 3.45
GUM 6.26 6.65 6.02 6.23 8.42 8.80 7.17 7.86 3.16 3.41
IFS * −1.45 3.91 −2.67 4.54 2.09 4.02 −1.97 4.05 −2.91 3.34

Wind speed

ARPEGE * 0.19 0.49 0.42 0.59 0.15 0.44 −0.13 0.44 0.37 0.48
CMC 0.60 0.76 0.54 0.70 0.65 0.75 0.33 0.67 0.88 0.92
GFS - 0.88 1.00 0.31 0.78 1.36 1.36 0.91 0.92 0.91 0.91
GUM 0.49 0.70 0.57 0.69 0.53 0.72 0.19 0.60 0.69 0.79

IFS 0.48 0.62 0.59 0.65 0.49 0.60 0.23 0.54 0.68 0.71

In January 2017, a significant cold episode occurred in the Czech Republic, with minimum
temperatures dropping below −20 ◦C. Models for one to four days ahead responded differently. Some
models were warmer than was the reality (ARPEGE, GUM), while CMC gave temperature lower by
more than 4 ◦C. In the 9-day forecast, model errors most often ranged from −5 to +5 ◦C. The difference
between the medium-term forecast and the reality of around 10 ◦C was not an exception. The biggest
deviation occurred in the beginning of February for CMC, which expected minimum temperature to
be colder by 20 ◦C.

Practically throughout the whole year, the GFS model showed higher precipitation than occurred
in reality (mainly for the 1–4 days ahead forecast). This was most striking at the beginning of July
2017 during a storm situation. The GFS model is generally a wetter model. At the beginning of the
dry episode in May 2017, in predictions for 9 days ahead, models consistently believed the following
period would have more rain than was the case in reality.

The prediction of relative humidity for 2017 was overestimated according to most of the models
(see Figure 5). Closest to reality was the IFS model. In the period of the most severe drought, i.e., from
May to July, the predicted relative humidity for 3 days ahead and for the IFS and CMC models was the
same low as in reality. On the contrary, other models gave values that were higher by 10–15%, which
could lead to underestimation of drought in their cases.
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Figure 5. (Top left): maximum temperature (in ◦C) predicted by five meteorological models for 3 days
ahead and reality (black) in the Czech Republic in the year 2017. (Top right): maximum temperature
differences of the NPW outputs with regard to reference series (reality based on station data interpolated
into maps). Thick lines: values smoothed with 30-day low-pass Gaussian filter. (Bottom): the same as
above but for relative humidity (in %).
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3.2. Validation of NWP Outputs, Station-Based (AVISO) Approach

In the case of the AVISO model, which works with the station network of CHMI, the validation
has been performed for the station locations, and only the IFS model has been evaluated (the best NWP
model in the sense of predictability bias, as well as in the sense of length—days ahead: comparison
with other four NWP models is given above). On the basis of the prepared database of measured
meteorological elements from the CHMI station network and the predicted data from the IFS model, the
differences were determined for the individual predicted days between the forecast and the measured
data (notice the difference between SoilClim and AVISO; while SoilClim works with maps, AVISO
works with stations).

The analysis of the forecast data from IFS showed, first of all, a rather significant systematic
error caused by a different orography of the predictive model versus reality. The values of the air
temperature and the wind speed have the most noticeable dependence of deviations on altitude, and
in the case of wind speed, the surrounding area also plays a big role, more precisely, in the openness of
the landscape. Other elements have lower dependence on the relief configuration. Despite the fact
that the absolute deviations increase with the prediction length, average errors are only very slightly
different from zero for the whole season and for all stations. In the case of air temperatures, average
deviations vary between +1 and −1 ◦C, but of course, extremes of difference may also occur in certain
situations, but this applies only to extreme situations and to the predictive length of 6 or more days.
Air humidity is also a highly variable feature with high sensitivity to local conditions and altitude
dependence. The amount of global radiation is then systematically underestimated by up to 12% by
the IFS model on bright days in the summer months, and the wind speed is greatly underestimated in
the case of strong wind at higher altitudes. Precipitation totals have the most variations in the 0 to
2 mm category, but only due to the large number of non-precipitated cases. Average daily precipitation
total deviations show a trend of higher overestimation at lower altitudes and underestimation of
precipitation at higher altitudes. This is determined by the IFS model properties.

Comparing the deviations of the meteorological elements in the daily scale with synoptic situations
can serve as a guideline within which situations large differences in forecasts can be expected. The
biggest problems are logically found during cyclonic and dynamic weather types. During storm
situations, there may be significant underestimation of precipitation sums in the forecast, as well as
inaccurate localization of intense rainfall events. On the other hand, for example, the highest frequency
of significant deviations in the forecast of air temperature is typical for anticyclonic weather patterns.

3.3. Validation of Drought Characteristics, SoilClim Outputs

Again, as in the case of input meteorological elements, the following comparison is given with
regard to a general overview for the whole Czech Republic (spatial values aggregated from maps, i.e.,
interpolated values), focusing mainly on the past year, 2017.

It is only a combination of individual meteorological elements that shows real reliability of the
outputs of a given NWP model. For the whole soil profile of 0–100 cm, differences among NWP models
for the first four days ahead are very small. As for AWR—relative soil saturation (in which 0% stands
for saturation at wilting point and 100% for field capacity), we again find again IFS to be the best NPW
model, with an error (relative MAE) of about 0.5% for the first day ahead forecast and 1.08% for the
third one (Table 3). In medium-range outlook (9 days ahead), the individual NWP models give more
different results. The IFS NWP model still holds the best results with MAE of about 4.7%. The other
two long forecasts (CMC and GFS) give an average difference from reality of 5.5%. Most of the models
have a tendency to rather overestimate soil moisture, and this is especially valid for fifth to ninth day
ahead. There is a noticeable difference in forecast accuracy for relative humidity between upper and
deeper soil layers. The upper soil layer is very sensitive and shows higher deviations compared to
reality, which is caused mainly by higher uncertainty in precipitation estimation. MAE values for the
0–40 cm profile are between 2.07% and 2.83% for the third day ahead (see Table 3 and Figure 6). For the
40–100 cm profile, the MAE is between 0.54% and 0.74%.
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Table 3. Validation characteristics of the SoilClim outputs (AWR—relative soil saturation) for individual
seasons and 5 NWP models as input (green and asterisk = the best model, red and dash = the worst,
estimated based on MAE for annual values) and for the three days ahead forecast. Individual NWP
models are explained in Table 1.

YEAR DJF MAM JJA SON

Element Model BIAS MAE BIAS MAE BIAS MAE BIAS MAE BIAS MAE

AWR 0–100 cm

ARPEGE - 0.54 1.42 0.93 0.95 0.93 2.04 −0.12 1.47 0.69 0.92
CMC 0.10 1.21 0.15 1.19 0.20 1.50 −0.44 1.33 0.54 0.84
GFS 0.67 1.30 0.30 1.12 1.21 1.95 0.52 1.26 0.47 0.83

GUM 0.18 1.30 0.56 0.61 0.46 1.46 −0.10 1.34 0.02 1.37
IFS * −0.05 1.08 0.54 0.57 0.40 1.40 −0.88 1.26 0.30 0.83

AWR1 0–40 cm

ARPEGE - 1.37 2.83 2.02 2.09 2.52 3.40 0.00 3.55 1.41 1.77
CMC 0.40 2.31 0.24 2.76 1.04 2.29 −0.76 2.83 1.03 1.62
GFS 1.62 2.66 0.63 2.60 3.01 3.55 1.53 2.97 0.83 1.56

GUM 0.47 2.29 1.20 1.34 1.39 2.07 −0.32 3.00 0.05 2.18
IFS * 0.18 2.07 1.30 1.36 1.36 2.25 −1.54 2.64 0.72 1.58

AWR2 40–100 cm

ARPEGE −0.02 0.61 0.20 0.20 −0.14 1.19 −0.20 0.42 0.21 0.40
CMC −0.10 0.56 0.09 0.15 −0.36 1.05 −0.23 0.44 0.21 0.38
GFS * 0.04 0.51 0.07 0.15 0.00 0.96 −0.15 0.36 0.24 0.40

GUM - −0.02 0.74 0.13 0.13 −0.17 1.11 0.05 0.47 −0.01 0.89
IFS −0.20 0.54 0.04 0.07 −0.24 0.96 −0.45 0.48 0.02 0.43
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The drought episode was most intensive from half way through June to the middle of July. In 
this period, most of the prediction models forecast (1–9 days ahead) more intensive drought than in 
reality (see Figure 7 for an example of the IFS model). The exception was the GFS model, which 
overestimated convective precipitation and therefore predicted quicker soil moisture replenishment. 
On the contrary, at the beginning of the dry period from May to June 2017, models tended to predict 
more soil moisture than there actually was in the upper soil profile. In the deeper profile, the model 
forecast for 1–8 days ahead was drier than in reality from the beginning of May 2017. The situation 
at the beginning of November 2017 was interesting, when the models anticipated a quicker 
replenishment of soil moisture in the profile of 40–100 cm than actually happened in reality. 

Figure 6. Relative MAE (mean absolute error), as difference of forecast and AWR (relative soil
saturation) in two depths: (left) upper (0–40 cm) soil profile, and (right) deeper (40–100 cm) soil profile.

The results for other drought characteristics are similar to AWR. Drought intensity is divided
into 6 categories. The evaluation of a forecast is quantified as the percentage difference between the
averaged category of drought over the Czech Republic and that forecast. For the whole soil profile
of 0–100 cm, the NWP model, IFS, is again the most accurate one, with its reliability almost 98% for
three days ahead and almost 97% for 9 days ahead. A general rule about whether the NWP models
overestimate or underestimate drought was not found in our results; NWP models differ among
themselves, and there is also a difference among the individual seasons. Thus, the results are pertinent
to random fluctuations, this fact being caused also thanks to relatively low errors in drought prediction.

The prediction of drought by means of the relative soil saturation (AWR), a category of the
intensity of drought (AWP) and the deficit of soil moisture (AWDMED) in the year 2017, gave similar
and very good results. In the surface profile up to 40 cm, the difference between the prediction and
reality was bigger in the first half of the year 2017, when drought was more intense. On the contrary,
in the second half of the year, the land was fully saturated, and the share of conventional rainfall
declined, so the prediction was very similar to reality.

The drought episode was most intensive from half way through June to the middle of July. In this
period, most of the prediction models forecast (1–9 days ahead) more intensive drought than in reality



Geosciences 2018, 8, 104 13 of 19

(see Figure 7 for an example of the IFS model). The exception was the GFS model, which overestimated
convective precipitation and therefore predicted quicker soil moisture replenishment. On the contrary,
at the beginning of the dry period from May to June 2017, models tended to predict more soil moisture
than there actually was in the upper soil profile. In the deeper profile, the model forecast for 1–8 days
ahead was drier than in reality from the beginning of May 2017. The situation at the beginning of
November 2017 was interesting, when the models anticipated a quicker replenishment of soil moisture
in the profile of 40–100 cm than actually happened in reality.Geosciences 2018, 8, x FOR PEER REVIEW  14 of 20 
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With the AVISO model, we analyzed the forecasts for the period of 2014–2016 retrospectively, 
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Figure 7. Relative MAE for IFS for individual seasons, upper soil profile (left) and deeper soil
profile (right), for 10 days ahead (black line: YEAR, blue—DJF—winter, green—MAM—spring,
red—JJA—summer, purple—SON—autumn).

Figure 8 shows the deviation from the reality of the forecast for soil moisture deficit for the whole
profile of 0–100 cm for the 3 days ahead during the year 2017. It is evident that deviations of the
forecast from reality have not been overcome; in the daily scale, a difference of more than 15 mm, and
in the 30-day average, 3 mm of soil moisture deficit for whole profile, with similar results also achieved
in the upper profile. The deeper soil profile shows even lower deviations.

The fluctuations are similar when we compare the results for the whole soil profile (0–100 cm) or
the upper profile (0–40 cm), while for the deeper profile (40–100), the values are much smoother. At the
same time, various drought characteristics show similar fluctuations for a given soil profile (there
are only small differences between each other), which is why we showed results only for selected
drought characteristics.
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Figure 8. (Left) Comparison of the meteorological forecast of the soil moisture deficit in the whole
profile (0–100 cm) provided by 5 NWP models for 3 days ahead and reality (black) in the Czech Republic
in the year 2017. (Right) Differences of the NPW outputs with regard to reference series (reality based on
station data interpolated into maps). Thick lines: values smoothed with 30-day low-pass Guassian filter.
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3.4. Validation of Drought Characteristics, AVISO Outputs

As mentioned above, AVISO is paired with the IFS model, having this in common with the
SoilClim model, so the results are well comparable in this sense. While previous validation was
performed on a 500 m grid (for SoilClim), here, we give the information again in the form of stations.

With the AVISO model, we analyzed the forecasts for the period of 2014–2016 retrospectively, and
for 2017, continuously (but still in experimental test mode). The database contains an input data set of
actual meteorological data measured at 198 stations of CHMI and the forecast IFS data in daily steps
for four years (eight days ahead in 2014, 2015 and nine days in 2016, 2017).

The evapotranspiration as deficit component is needed for soil water content determination.
The potential evapotranspiration is used primarily and for general assessment of the influence of
climatic conditions in the Drought monitoring system at CHMI. From the assessment of the mean
differences in potential evapotranspiration calculated from the measured and predicted data, there is a
clear increase in the forecast deviation with each predicted day, as shown in Figure 9. These differences
are low for the year and the spring season (MAM); more significant differences are evident in the
forecast for the sixth and next days and also in the summer season (JJA). In accordance with bias, the
forecast generally overestimates the evaporation. In the spring months, the prediction of potential
evapotranspiration is underestimated on average.

The prognosis of the state of the soil water content is calculated from the starting current state
on the calculation day and is followed in the daily steps of balancing the consumption and supply of
water to the soil based on the calculation of the model from the forecast data. As a result, the increasing
number of days of prediction leads to increasing mean values of the deviations of predictions and real
values. As shown in Figure 10b, the average daily difference of soil water content for the 9th day of
the forecast in the summer period is about 7% AWC. In the spring season and throughout the year,
average differences are lower. The BIAS analysis (Figure 10a) shows that the forecast tends to predict
higher soil water content in the spring months and lower values in the summer.
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Figure 9. BIAS (a) and MAE (mean absolute error) (b) evaluated from daily differences of values of
potential evapotranspiration calculated from forecast data and real measured data for year (YEAR),
spring (MAM—March, April, May) and summer season (JJA—June, July, August) from the 1st to 9th
day of the forecast in the year 2017.

An example of the soil water content change on the agrometeorological observatory Doksany
calculated from operative and forecast data is shown in Figure 11 (to illustrate the difference for a
particular location). With a dynamic type of weather, the results of the calculation from the forecast
data and calculation from the measured can also differ significantly. Precipitation has a large impact
on soil water content. Unfortunately, it is difficult to predict precipitation in terms of total and time
and location of occurrence in some types of weather conditions. In the graphs, this can be observed by
gauging the results of the model for operational and predictive data. For this reason, it is appropriate
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to use a set of models for the optimal medium-term precipitation prediction. In the optimal case,
an improved estimation of precipitation leads to the correct determination of the water content in
the soil.
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Figure 10. BIAS (a) and MAE (mean absolute error) (b) evaluated from daily differences of values of
soil water content (in % AWC, grassland, 1 m soil depth with AWC = 170 mm) calculated from forecast
data and real measured data for year (YEAR), for the spring (MAM—March, April, May) and summer
season (JJA—June, July, August) from the 1st to 9th day of the forecast in the year 2017.
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Figure 11. The course of soil moisture content (in % AWC) calculated from measured meteorological
station data and forecast data for the 5th (a) and 9th (b) day of the forecast in the evaluated part of the
year 2017 at Doksany station.

In the Czech Republic, the labour week starts on Monday. This is why the weather forecast from
Monday is important for agriculture and field work planning. Thursday is also important for planning
Friday’s work, when the weather is going to change dramatically on the weekend. With this in mind,
the figures below (Figure 12) show the AVISO output (soil water content in % of available water
capacity) computed from measured data and forecast data from Monday and Thursday for four and
nine days. The SoilClim–based drought forecast is issued by www.drought.cz operationally (daily),
and for practical reasons it was decided to issue the AVISO forecast daily as well to avoid decay in the
forecast reliability.

www.drought.cz
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4. Discussion

The novelty of the presented approach is, first of all, the creation of the ensemble prediction system
for estimation of soil moisture and drought intensity based on several NWP models. Adding to these
different NWP models, we apply two different models of soil moisture, SoilClim and AVISO. This gives
a user a wide range of outputs, from which the uncertainty in future development can be seen (when
the results do not coincide, but depart). Thanks to the fact that not only are drought characteristics
given to users but also input meteorological elements (air temperature, precipitation, wind speed,
relative humidity, and sunshine duration), such wider context helps to better understand the current
situation. The research questions related to the drought forecasting featured also in the recent set
of priority topics [9] in particular: How well have the current climate forecast systems done in predicting
recent droughts over short to seasonal timescales? and What are the predictabilities of droughts and are these
regionally specific? The presented study provides answers specific for the Czech Republic and Central
Europe in General. The early drought warning has been implemented in some of developed economies
in an effort to cut on enormous damages that drought can cause, e.g., to extensive rangelands in
the US mid–west (e.g., [29]). The forecast and prediction efforts take various forms from long–term
forecast, through medium–term forecasting [29] to short–term high resolution forecast considering an
ensemble of numerical weather prediction models like those presented in this paper. Whilst, Ref. [30]
showed that in some world regions severe drought conditions are associated with more than 70%
of ENSO events; this is not the case in the region presented in this study, and, currently, seasonal
and even annual drought forecasts are not sufficiently accurate to guarantee their use. However,
given general atmospheric circulation patterns, other atmospheric factors are may be able to explain
drought occurrence at regional scales (for example, storm track frequency and direction and blocking
conditions [31–34]).

The year 2017 can be considered as an ideal case for the validation of the drought forecast system
and evaluating its assets. The drought conditions in the Czech Republic in 2017 showed regionally very
diverse pattern. Drought affected different regions during different times of the year, with a few dry
events consisting of several shorter episodes. Central Moravia was hit by drought in spring, southern
Bohemia and Moravia in summer. Wrong forecast of these individual events would negatively affect
the forecast score on the national level. Despite regional differences among the individual NWP
models, the prediction of soil moisture and drought intensity–based IFS model of ECMWF is the
most successful in the long term, and users should rely on it most. Other NWP models (GFS, CMC,
ARPEGE, and GUM) show lower forecast scores that vary for individual parameters during different
parts of the year. To consider this fact in the forecast system, we present biases of all models within
last 1 and 3 weeks on the web portal (www.drought.cz). This allows users to check the most recent
reliability of the forecast for a given parameter and model.

www.drought.cz
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The forecast from June to August 2017 shows increased bias. It is caused by high precipitation
amounts due to the local convective precipitation that is able to significantly affect soil moisture.
The reliability of the drought forecast is high, even higher than forecast for the individual
meteorological parameters. This is due to the fact that relatively large amount of precipitation (or
energy) is required to change the state of the soil.

The drought monitoring system itself offers a wide range of other characteristics related to drought
as well, and the combination with the remote sensing data provides another hope for the forecast
accuracy improvement. However, it is beyond the scope of this article to analyze all of these other
drought characteristics, and we only limit ourselves to a mention of their possible use in the forecast.
Our aim was to present the skill of the forecast system for soil moisture and drought intensity and
demonstrate its sense for user decision making.

It is, however, obvious that the presentation of the forecast in the form of understandable maps
is fully compatible with the original product, as the SoilClim (and its 500 m grid) is much more
user friendly compared to the station–based approach of AVISO, which accounts for 198 individual
weather stations. The validation of the forecast system could be also performed for these individual
regions/stations. The preliminary analysis performed on the smaller scales indicates that while biases
grow, the reliability and rank of the individual NWP models remains the same.

5. Conclusions

We have created an ensemble prediction system consisting of five global NWP models and two
soil models, SoilClim (www.drought.cz) and AVISO (www.chmi.cz), to forecast soil moisture and
drought intensity. The system offers a wide range of products whose level of (dis)agreement informs
users about the uncertainty of the forecast. To obtain a wider context and better understating of the
drought development up to several days, the system provides a forecast of drought characteristics and
meteorological variables too. The results may be thus interesting, not only for users from agricultural
communities but for other sectors as well. The development and implementation of the system have
been started through suggestion of farming community, which demanded not only near-real time
product but a future oriented approach, which allows sufficient time for drought response.

The application of both soil models leads to comparable results in the forecast. Among the NWP
models, the ECMWF IFS model shows the best score in the forecasted parameters. The scores of the
models vary among parameters and periods. Users of the forecast system are thus informed of the
most recent biases within the last 1 and 3 weeks together with the forecast itself.

The validation has been primarily performed using relative soil saturation—AWR (%) and the
deficit of soil moisture—AWDMED (mm). For these two variables, we compared the soil model
estimates based on NWP driven forecasts with the model runs based on observed data (i.e., via the
hind-casting model). AWR and AWDMED are used, as they can be compared more-or-less directly with
measurements and allow independent ground verification of the system. However, the main output
used by the stakeholders is the intensity of drought (AWP). This represents probabilistic interpretation
of the actual AWR value in relation to all AWR values occurring at the given grid between 1961 and
2010 during the same period of year. The AWP values are then provided as the principal forecast map
(www.drought.cz), as they allow for the interpretion of the current soil moisture situation with respect
to the values that should be expected.

In this paper, we have shown that the developed ensembles prediction system delivers accurate
and reliable forecasts of the drought conditions up to several days, and it can be used as a basis for
decision making by user groups ranging from individual farmers to experts of local and notional
authorities in various sectors.
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