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Abstract: Terrestrial laser scanning (TLS) is a non-destructive testing method for the technical
assessment of existing structures. TLS has been successfully harnessed for monitoring technical
surface conditions and morphological characteristics of historical buildings (e.g., the detection of
cracks and cavities). TLS measurements with very high resolution should be taken to detect minor
defects on the walls of buildings. High-resolution measurements are mostly needed in certain
areas of interest, e.g., cracks and cavities. Therefore, reducing redundant information on flat areas
without cracks and cavities is very important. In this case, automatic down-sampling of datasets
according to the aforementioned criterion is required. This paper presents the use of the Optimum
Dataset (OptD) method to optimize TLS dataset. A Leica ScanStation C10 time-of-flight scanner
and a Z+F IMAGER 5016 phase-shift scanner were used during the research. The research was
conducted on a specially prepared concrete sample and real object, i.e., a brick citadel located on the
Kościuszko Mound in Cracow. The reduction of dataset by the OptD method and random method
from TLS measurements were compared and discussed. The results prove that the large datasets
from TLS diagnostic measurements of buildings and structures can be successfully optimized using
the OptD method.
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1. Introduction

Terrestrial laser scanning (TLS) is a remote sensing technique mainly used in geodesy and
civil and structural engineering. TLS is successfully applied in numerous fields, e.g., survey
geotechnical displacements [1–4], technical diagnostics of structures and buildings [5–10], roads and
motorways [11,12], archaeological and cultural heritage sites [13–15], and many others. The product
of TLS measurements is a 3D high-density point cloud. Additionally, TLS can register the intensity
of the laser beam for each point simultaneously. It should also be noted that by classifying the point
cloud by the intensity value one can detect surface wall discontinuities, e.g., defects and cracks [16,17],
or saturation and moisture movement in buildings [18,19]. Most of the old buildings and structures in
Central Europe are made of brick and mortar or concrete. Many of these buildings require technical
inspection. Remote data acquisition without physical access to the building is of special interest
in diagnostics of buildings and structures. TLS is a non-destructive testing (NDT) method for the
health analysis of structures such as buildings, bridges, and other large and small structures [20–22].
A symptom of the poor condition of a building or other structure is usually the presence of cracks and
cavities. The deterioration of the technical condition of historical buildings is caused by environmental
factors, meteorological conditions, and atmospheric pollution [23]. The point clouds obtained from the
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measurement of a building not only allow its geometry to be determined, but also the discontinuity of
its surface to be detected. The ability to detect visible cracks or measure crack characteristics (e.g., length
and width) is very useful in the technical diagnostic of a building object. Therefore, the registration
of high-density point clouds on cavities and cracks is a very important issue. High density 3D
point clouds allow the easier and more accurate detection of small defects in building walls. In the
study of Laefer et al. [24] one can find the geometric basis for the limitations on crack detection
from data obtained by the TLS technique. Very often, an excessively high density of point clouds
makes post-processing difficult, and reducing such large datasets is therefore necessary. An optimal
reduction of point clouds should consider the physical surface characteristics, such as roughness
and surface discontinuities. Many researchers deal with the down-sampling of large datasets using
different approaches. For instance, Lin et al. [25] used a strategy that removes redundant points within
planar neighborhoods through the integration of an adaptive down-sampling. Additionally, Du and
Zhuo [25] presented a mathematical approach based on the reduction of point clouds on the basis of
the surface curvature radius. Furthermore, in Mancini et al. [26], the authors used the aforementioned
curvature method to reduce the point clouds from the measurement of coastal rocky cliffs. Moreover,
a down-sampling technique based on a Growing Neural Gas (GNG) network was used in [27,28].
In this paper, we propose a new approach, namely the Optimum Dataset (OptD) method, for the
down-sampling of the point clouds from measurements of buildings and other structures.

In general, existing commercial TLS uses two different principles of distance measurement.
The first type of laser scanning technology is phase-shift (PS) and the second type is time-of-flight
(TOF) [29,30]. The main differences between PS scanners and TOF scanners are the speed of data
acquisition, maximum measurement range, and accuracy of distance measurement. Note that other
technical parameters of TLS, e.g., laser beam divergence, laser spot size, and maximum scan density,
are also very important parameters in building and structure diagnostics [31]. A smaller laser beam
spot size and smaller laser beam divergence, combined with a higher scan resolution, allow the
detection of minor defects on building surfaces. In general, PS scanners are faster, more accurate,
and have shorter ranges than TOF scanners. Today, the scope of phase-shift based technology has
grown to above 300 meters, and the data acquisition rate is over 1 million points per second (e.g.,
scanner Z+F IMAGER 5016). Therefore, PS scanners are better devices for the remote detection of
defects in building objects than TOF scanners. On the other hand, TOF scanners are more suitable for
long-range scans than PS scanners; however, TOF scanners can also be successfully used in building
and structure diagnostics [32,33]. In this research, both types of scanners were used.

The goals of this paper were: (1) to optimize TLS dataset; and (2) to investigate the potential of
using the OptD method for down-sampling point clouds for the technical diagnostics of buildings
and structures. Applications of the OptD method can improve the automatic detection of cracks and
cavities. The OptD method is fully automatic; the user declares only the number of points in the output
dataset or the percentage value of the input dataset. So far, the OptD method has not been used to
reduce point clouds for these purposes. In this paper, the reduction of TLS dataset by the OptD method
and random method were compared.

2. Motivation

In order to register cracks and cavities in the surface of buildings and structures, a very
high-resolution scan should be utilized. Currently, the TLS technique allows measurements to be made
with millimeter scan resolution. A high scan resolution provides more detailed data that allows the
detection of small cracks and cavities. However, these datasets are very large and very difficult to
process. In such cases, automatic down-sampling of point clouds is required. Different commercial
software allows the reduction of datasets, usually in a random way or spatial way (minimum space
between points), e.g., down-sampling point clouds using Leica Cyclone and Z+F Laser Control
software [34]. However, this results in the loss of important data, such as points on cracks and cavities.
The best solution is to reduce the dataset on the flat areas (which lack cavities and cracks) and leave
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the data in the recesses. It should also be noted that there are software packages, such as Autodesk
and Geomagic Suite, which consider the analysis of physical surface characteristics in down-sampling.
The software uses a curvature method to reduce the point clouds. In this work, the OptD reduction
method is used. This method was developed to reduce datasets from the Light Detection and Ranging
(LIDAR) measurement for building Digital Terrain Models (DTMs) [35]. The goal of the current study
is to carry out tests and check the suitability of the OptD method in the reduction of dataset from the
scanning of building objects. In the authors’ opinion, harnessing the OptD method for the reduction of
datasets from diagnostic measurements of building objects using TLS can be a good solution.

3. Optimization of Large Datasets Based on Using OptD Single Method

The OptD method is a reduction method that is fully automated and gives an optimal result due
to the optimization criteria. The OptD method can be conducted in two ways:

Option 1: OptD method with single-objective optimization (OptD-single) [35];
Option 2: OptD method with multi-objective optimization (OptD-multi) [36].
These methods differ in the number of optimization criteria and the time needed to perform the

reduction. Furthermore, several solutions can be obtained in the OptD-multi method. In this paper,
we decided to use the OptD-single option. The number of points in datasets was important during
processing, and therefore one criterion in the form of percentage points was used. The steps and
scheme of this method were presented in detail in [36]. In that paper, the OptD-single method was
tested on data from Airborne Laser Scanning (ALS). The results showed that, with the OptD-single
method, the preparation of the data for DTM construction is less time-consuming. The time required
for the implementation of the OptD method can be considered as negligible in the whole process of
preparing the data for the DTM construction. For a file size of 682,344 KB (about 20 million points),
the OptD method lasted for about 72 s (for 50% reduction) and 105 s (for 90% reduction) [37]. It allows
for effective DTM generation and reducing the time and cost of LIDAR point cloud processing, which in
turn enables the conduction of efficient analyses of acquired information resource.

The OptD method was developed in such a way that it takes into account different levels of
reduction in the individual parts of the processing area. As a result, there are more points in detailed
parts of the scanned object. In the case of uncomplicated structures or areas, the number of points
is much smaller. Only those points that are significant will remain. A very important advantage of
the method is the fact that during the processing the user has total control over the number of points
in the dataset. Such advantages of the method can be very useful during the technical inspection of
buildings, especially during the detection of defects and cracks.

The OptD method is a reduction method, which means that the real measurement points will
remain in the dataset. This is important, since in the case of reducing the size of the dataset by the
generation method, in the resulting dataset one obtains interpolated coordinates [38,39].

The OptD method uses linear object generalization methods, however the calculations are performed
in a vertical plane, which allows the elevation component to be accurately controlled. The generalization
approach used in the OptD method are the Douglas–Peucker [40], Visvalingam–Whyatt [41],
and Opheim [42] methods.

During the operation of the method, the following parameters are selected: width of the measuring
strip and tolerance used in the generalization method. The values of these parameters are calculated
without user intervention and changed in the iterative process in such a way that the optimization
criterion is met.

The assumption of using the OptD-single method was that reducing the dataset would not disturb
the nature of the object, and, in particular, leaves more points in the cracks, crevices, and cavities.
To this point, a methodology for the down-sampling of TLS data taking into account the OptD-single
method was developed. The simplified diagram of the OptD-single methods is presented in Figure 1.



Geosciences 2019, 9, 70 4 of 14Geosciences 2019, 9, x FOR PEER REVIEW  4 of 14 

 

 
Figure 1. The simplified diagram of the OptD-single methods. 

The OptD-single procedure has been used in original software, and proceeds in the following 
stages: 
step 1: Input TLS data with cracks, crevices, and cavities. 
step 2: Determination of the optimization criterion (f), here: percentage of points in dataset after 
reduction. This is the only step that requires input from the user. 
step 3: Determination of the initial width of the measuring strip (L). The measuring strips are the 
narrow parts of the point cloud on the wall of building. The number of points that will be included 
in one strip depends on the width of the strip and scan density. Parameter L does not depend on the 
user, but rather, on optimization criterion. Successive values of the measuring strip are determined 

Figure 1. The simplified diagram of the OptD-single methods.

The OptD-single procedure has been used in original software, and proceeds in the following stages:
step 1: Input TLS data with cracks, crevices, and cavities.
step 2: Determination of the optimization criterion (f), here: percentage of points in dataset after

reduction. This is the only step that requires input from the user.
step 3: Determination of the initial width of the measuring strip (L). The measuring strips are the

narrow parts of the point cloud on the wall of building. The number of points that will be included in
one strip depends on the width of the strip and scan density. Parameter L does not depend on the user,
but rather, on optimization criterion. Successive values of the measuring strip are determined in the
iterative process and are changed with a fixed interval. The division of the area covered by points into
measurement strips (nL) in X0Y horizontal plane (in the wall coordinate system).
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step 4: Selection of points for each measuring strip.
step 5: Selection of the cartographic generalization method, here: Douglas–Peucker (D-P) method.

The scheme of the D-P method is presented in Figure 2.
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Figure 2. Principle of operation of the Douglas–Peucker (D-P) method (source: study based on Douglas
and Peucker (1973) [40]).

step 6: Determination of the distance of tolerance range value (t) in the D-P method. The t value
is determined in the iterative process and increases or decreases at every fixed interval.

step 7: Application of the selected method of generalization in the Y0Z vertical plane.
Each measuring strip is processed separately. Points in the measuring strip are projected onto the Y0Z
plane. In this way, a 2D image of the points is obtained and the line generalization method is possible.
The result of the reduction in the example strip is presented in Figure 3. This is only a general example
to show the algorithm operation.
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step 8: Verification, whether obtained in the step 7 dataset, fits the specified criterion optimization.
If so, the reduction process is completed, and the obtained dataset from step 7 is optimal. If not,
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steps 6–8 are repeated, wherein in step 6 the value of tolerance parameter is changed. If repeating
steps 6–8 does not give a solution, go back to step 3 and change the width of the measuring strip.

step 9: Output the obtained result as an optimal dataset.
The algorithms of the OptD-single method were implemented in the Java programming language

(v.9). The application was tested with both Oracle and OpenJDK runtime environment.

4. Materials and Experiments

4.1. Equipment

In this investigation, two types of terrestrial laser scanner system with different specifications were
used. The first was a Leica ScanStation C10. This scanner is based on the time of flight principle, and its
laser source emits visible impulses at a wavelength of 532 nm. The maximum instantaneous scan
rate is up to 50,000 points per second. The laser spot size is equal to 4.5 mm for FWHH-based model
(Full Width at Half Height) and 7 mm for Gaussian-based model for the range 0–50 m. The maximum
measuring range is 300 m at 90% albedo and 134 m at 18% albedo, respectively. The second scanner
used in this study was a Z+F IMAGER 5016. This scanner uses the phase-shift technique to achieve
distance measurement. The maximum measurement range is 365 m. The maximum scan rate is up to
1.1 million points per second. The laser spot size is equal to 3.5 mm for Gaussian-based model and the
laser beam divergence is equal to 0.3 mrad.

4.2. Data Acquisition

The research program covered experiments on two different samples. The first experiment was to
scan a specially prepared concrete specimen with a crack (Figure 4). The crack width was approximately
5 mm. The measurement was made with the Leica ScanStation C10 impulse scanner from a distance
of 10 m. During the research, the maximum scanning resolution was set. The second phase of the
research program consisted of measurements of a real object—the Kościuszko Mound in Cracow,
Poland. The location of the monument is the natural Blessed Bronisława Hill. A brick citadel around
the Mound was built between 1850 and 1854. Currently, some parts of the citadel are characterized by
poor technical condition (Figure 4). The Z+F IMAGER 5016 scanner was used for the second phase of
the research. The measurement was made from a short distance of 7 m, and a super high resolution
was set in the scanner.
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4.3. Data Processing

The Leica Cyclone and Z+F Laser Control software were used for the pre-processing of data.
The optimization of the dataset was carried out in original program implemented in the Java (v.9)
programming language. The CloudCompare software was used to visualize and present the reduced
dataset. The dataset from the TLS measurement of the concrete sample was processed in two ways.



Geosciences 2019, 9, 70 7 of 14

In the first approach, the OptD method was applied. The optimization criterion was the percentage
of points left in the resulting dataset. Each reduced dataset was called “i dataset”, where i is the
percentage of points that are left in the dataset after optimization. Ultimately, in addition to the original
dataset, five reduced datasets were obtained (50%, 20%, 10%, 5%, and 2% datasets). In the second
approach, the random way to reduce the dataset was applied. In the random way, the CloudCompare
simply picks the specified number of points in a random manner [43]. Similarly, as in the case of the
OptD method, a reduction was made to create five new datasets.

The purpose of analyzing TLS data from building diagnostic measurements is to identify defective
parts in the building wall. For the automatic detection of defects on flat surfaces, the Mean Sum Error
(MSE) method can be used [32]. The MSE method uses the distance of each point (di) from the reference
plane (π) as the criterion to identify the cavities and cracks. In order to find an aforementioned optimal
reference plane, the regression of three variables is used. Next, a predetermined tolerance value (ε)
needs to be manually assigned for the research area. The tolerance value mainly depends on the tested
object (object properties) and the used TLS (the scanner mechanism). Ultimately, the detection of
defects on the flat surfaces is carried out by comparing the determined distance of each point with the
tolerance value (di > ε).

In this research, the reference plane was determined based on the original dataset, i.e., the point
cloud of the research area. The tolerance value ε for the concrete sample was taken as 5 mm. The data
processing was performed separately for each dataset. The locations of cracks were determined by
analyzing the distance (di > 5 mm). The results of the analysis for the OptD method and random
method are presented in Figures 5 and 6, respectively. The red colour indicates a separate dataset on
the crack. The quantitative comparisons between the original and reduced point clouds are presented
in Tables 1 and 2.
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Table 1. Results of processing with the OptD method—concrete sample.

Total Number
of Points

No Damage (di ≤ 5 mm) Damage (di > 5 mm)

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

original dataset 32938 30704 93.2 100% 2234 6.8 100%
50% dataset 16352 14720 90.0 47.9% 1632 10.0 73.1%
20% dataset 6594 5310 80.5 17.3% 1284 19.5 57.5%
10% dataset 3316 2201 66.4 7.2% 1115 33.6 49.9%
5% dataset 1653 983 59.5 3.2% 670 40.5 30.0%
2% dataset 659 456 69.2 1.5% 203 30.8 9.1%

Table 2. Results of processing with the random method—concrete sample.

Total Number
of Points

No Damage (di ≤ 5 mm) Damage (di > 5 mm)

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

original dataset 32938 30704 93.2 100% 2234 6.8 100%
50% dataset 16352 15221 93.1 49.6% 1131 6.9 50.6%
20% dataset 6594 6134 93.0 20.0% 460 7.0 20.6%
10% dataset 3316 3104 93.6 10.1% 212 6.4 9.5%
5% dataset 1653 1543 93.3 5.0% 110 6.7 4.9%
2% dataset 659 610 92.6 2.0% 49 7.4 2.2%

The analyses of all datasets from the TLS measurement of the brick wall were carried out in
the same way as for the concrete sample. The tolerance value ε for the brick wall was taken as
15 mm. The tolerance value ε increased in this case, as the brick wall fits the flat surface worse
than a concrete element. Figures 7 and 8 present images of the distribution of points for the OptD
method and the random method, respectively. The red colour indicates a separate dataset on the
damage area. Additionally, Tables 3 and 4 summarize the number of points in each dataset and their
percentage values.
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Table 3. Results of processing with the OptD method—brick wall.

Total Number
of Points

No Damage (di ≤ 15 mm) Damage (di > 15 mm)

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

original dataset 456556 444096 97.3 100% 12460 2.7 100%
50% dataset 229167 218999 95.6 49.3% 10168 4.4 81.6%
20% dataset 91514 83434 91.2 18.8% 8080 8.8 64.8%
10% dataset 45569 38478 84.4 8.7% 7091 15.6 56.9%
5% dataset 22661 16547 73.0 3.7% 6114 27.0 49.1%
2% dataset 9182 6520 71.0 1.5% 2662 29.0 21.4%

Table 4. Results of processing with the random method—brick wall.

Total Number
of Points

No Damage (di ≤ 15 mm) Damage (di > 15 mm)

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

Number
of Points

% Original
Dataset

Relation to
the Original

Dataset

original dataset 456556 444096 97.3 100% 12460 2.7 100%
50% dataset 229167 222827 97.2 50.2% 6340 2.8 50.9%
20% dataset 91514 88997 97.2 20.0% 2517 2.8 20.2%
10% dataset 45569 44312 97.2 10.0% 1257 2.8 10.1%
5% dataset 22661 22063 97.4 5.0% 598 2.6 4.8%
2% dataset 9182 8933 97.3 2.0% 249 2.7 2.0%

5. Results and Discussion

Usually, when the number of points in a dataset decreases evenly, then the details achieved from
the data are significantly reduced. Thus, excessively low resolution of the point cloud does not allow
the correct identification of wall damages (cavities and cracks). Such a situation can be seen in the
reduction of data by the random method.

As shown in Figure 5, e.g., 10% regarding concrete sample reduction of the dataset by the OptD
method, a significantly greater number of points are left in the recesses. In the case of reduction of
the dataset by the random method, the dataset lost too many points in the crack to provide reliable
interpretation of data (Figure 6). By visually evaluating the 10% dataset, it can be concluded that a
reliable interpretation of the crack is possible. By comparing the results of two different reduced 10%
dataset (Tables 1 and 2), one can see the number of points on the crack. The OptD method preserved
1115 points, while the random method only preserved 212 points, i.e., approximately five times more
points on the crack. For the 10% dataset (Table 1), only around 50% of the points on the crack were
reduced. Therefore, the OptD method provides significant benefits for this case.

Similar to the previous example, the 10% reduced dataset on the brick wall was analyzed.
By making a visual evaluation of this dataset (Figures 6 and 7), it can be concluded that the OptD
method left more points on the defects of wall than the random method. The obtained results, shown in
Tables 3 and 4, show the number of points that were left on the wall defects for the OptD method and
random method, respectively. The OptD method preserved 7091 points, while the random method only
preserved 1257 points. This is approximately five times more points on the wall defects. The difference
for the 20% dataset is about three times more, and for the 5% dataset is about 10 times more. In the
authors’ opinion, the 2% dataset was excessively reduced.

The overarching goal of the conducted research was to indicate the usefulness of the OptD method
for the reduction of large datasets from TLS measurements of the technical condition of buildings and
structures. The conducted research proved the benefits of using the OptD method to reduce point
clouds. In the analyzed examples, the number of points on the defects for the OptD method is always
significant greater than for the random method (see Figure 9). By comparing the values of the OptD
method (blue line) and the values of the random method (red line), one can see the differences in the
number of points related to the cracks and cavities for each reduced dataset.
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Using the OptD method to reduce the dataset allows much better diagnostics of buildings and
structures compared to the random method. It should be noted that the various software for processing
point clouds do not have such an approach to reduce the datasets. Some software exists with reduction
strategies based on different criteria, such as a curvature method, random method, space method,
octree method (see software such as Leica Cyclone, CloudCompare, Z+F Laser Control, Geomagic
Suite). The OptD method is fully automatic; the user only needs to specify the optimization criterion
on the basis of point cloud resolution. Down-sampling of the OptD method allows different degrees of
reduction declared by the user. The results show that more points remained where there were cracks
and cavities, and less where there was a regular wall structure. Thanks to this, the process of automatic
crack and defect detection can be improved. It should be noted that the effective crack detection on
the building wall also depends on the type of scanner (PS or TOF) and its technical specifications,
such as maximum scan resolution, laser spot size, laser beam divergence, and measurement noise.
The measurement noise and so-called “edge effect” make data analysis difficult.

6. Conclusions

In this paper, the OptD method for the TLS point cloud down-sampling was proposed in the
context of detecting defects in a building wall. Based on the conducted research, the following
conclusions can be drawn:

• The results prove that the proposed OptD method is appropriate for reducing the TLS dataset in
the diagnostics of buildings and structures;

• The down-sampling of the point clouds from the wall measurement using the OptD method
allows more points to be left in the detailed part of the scanned object (crack or cavity) than in
uncomplicated structures or areas (even surface);

• The OptD method allows total control over the number of points in the dataset after reduction;
• The disadvantage of the proposed OptD method is that it leaves a large number of points at the

border research area.

Authors have been working to implement the OptD method in practical applications by
implementing an algorithm in point cloud data processing software. By reducing the dataset with the
OptD method, points are generally left on wall defects. Keeping this fact in mind, in the future the
authors will complement the OptD method with automatic data segmentation. The modified OptD
method will be used as a completely automatic method to detect defects on the walls of buildings
related to cracks and cavities.

Author Contributions: Conceptualization, C.S.; Data curation, C.S. and W.B.-B.; Formal analysis, C.S.;
Methodology, C.S.; Software, W.B.-B.; Visualization, W.B.-B.
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