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Abstract: The correlation between aspirin sensitivity, asthma, and nasal polyposis was recognized
in the early 20th century. Today, this classic triad of symptoms, eponymously named Samter’s
Triad, is known as aspirin exacerbated respiratory disease (AERD). Aspirin exacerbated respiratory
disease affects approximately 0.3–0.9% of the general population in the USA and approximately 7% of
asthmatic patients. The management of AERD is challenging as no single modality has proven to have
high rates of symptom control. Consequently, disease management typically involves a multimodality
approach across both medical and surgical disciplines. This review describes the epidemiology of
AERD and the current state-of-the-art as it relates to the underlying pathophysiologic mechanisms of
this disease process. A significant proportion of the review is focused on the appropriate diagnostic
workup for AERD patients including the utility of aspirin provocation testing. The spectrum of
medical treatments, including aspirin desensitization and recently introduced immunotherapies,
are discussed in detail. Furthermore, surgical approaches to disease control, including advanced
endoscopic techniques, are reviewed and treatment outcomes presented.

Keywords: aspirin exacerbated respiratory disease; AERD; Samter’s Triad; chronic rhinosinusitis;
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1. Introduction

Hypersensitivity reactions to aspirin were described as early as 1902 but it was not until 1922 that
Widal et al. first described the correlation between aspirin sensitivity, asthma, and nasal polyposis [1].
Subsequently, in 1968, Samter and Beer described the full clinical characteristics of aspirin sensitivity
and elucidated the classic triad of symptoms, eponymously named Samter’s Triad [1,2]. Samter’s Triad
is defined as chronic rhinosinusitis with nasal polyposis (CRSwNP), bronchial asthma, and reactions
to aspirin or cyclooxygenase-1 (COX-1) inhibitors [3–6]. Since its first description by Widal, there has
been considerable literature published on the epidemiology, pathophysiology, and treatment of what
is now termed aspirin exacerbated respiratory disease (AERD).

2. Epidemiology

A defining characteristic of AERD is an upper and lower respiratory tract reaction triggered by the
ingestion of aspirin (acetylsalicylicacid, ASA) or other COX-1 inhibitors including many non-steroidal
anti-inflammatory drugs (NSAIDs) [3,6]. The aspirin or NSAID-induced hypersensitivity reaction
results in the rapid onset of symptoms including rhinorrhea, sneezing, nasal congestion, ocular tearing,
bronchospasm, skin flushing, hives, and hypotension [7]. It is less common for concurrent respiratory
and cutaneous symptoms to occur in patients [8].

It has been difficult to ascertain the prevalence of AERD in the general population [9]. Current
estimates suggest that AERD affects approximately 0.3–0.9% of the general population in the USA,

Med. Sci. 2019, 7, 45; doi:10.3390/medsci7030045 www.mdpi.com/journal/medsci

http://www.mdpi.com/journal/medsci
http://www.mdpi.com
https://orcid.org/0000-0003-2626-0604
http://www.mdpi.com/2076-3271/7/3/45?type=check_update&version=1
http://dx.doi.org/10.3390/medsci7030045
http://www.mdpi.com/journal/medsci


Med. Sci. 2019, 7, 45 2 of 18

with a higher prevalence noted among asthmatic patients (3–20%). A 2014 meta-analysis of clinical
trial data demonstrated that AERD was evident in approximately 7% of asthmatic patients [10].
The prevalence of AERD is likely higher in asthmatics who also harbor nasal polyposis with estimates
ranging from 30 to 40% [11]. Interestingly, there appears to be a female predominance with incidence
ratios of up to 3:2 between females and males, respectively [12]. Furthermore, females tend to have
earlier symptom presentation and greater disease severity [5,6]. Generally, AERD manifests in the third
or fourth decade of life [13] with much lower rates diagnosed in children [14]. There is no convincing
evidence of familial inheritance in AERD [13].

3. Pathophysiology

Aspirin exacerbated respiratory disease is characterized by a non-immunoglobulin E
hypersensitivity reaction to ASA/COX-1 inhibitors that is commonly comorbid with but not due
to underlying allergic disease [15]. Aspirin exacerbated respiratory disease is thought to be due to
abnormalities in arachidonic acid biosynthesis [3,4]. Arachidonic acid can be metabolized through two
different pathways: the 5-lipoxygenase (5-LO) pathway and the COX-1 pathway (Figure 1). The 5-LO
pathway produces cysteinyl-leukotrienes (Cys-LTs) from arachidonic acid, specifically leukotriene C4,
D4, and E4 (LTC4, LTD4, and LTE4) while the COX-1 pathway produces prostacyclins, prostaglandins,
and thromboxanes. The underlying defect in AERD is thought to relate to constitutive overproduction
of Cys-LTs with a concomitant decrease in downstream products of the COX-1 pathway, the latter of
which have an inherent inhibitory effect on Cys-LTs [4,16,17]. The release of this physiologic brake,
coupled with Cys-LT overproduction, creates a proinflammatory milieu. Indeed, Cys-LTs have been
implicated in the development of rhinitis and AERD through three mechanisms (Figure 2): (1) increased
vasodilation and permeability of the nasal vasculature leading to mucosal edema, manifesting clinically
as nasal congestion, (2) increased inflammation at the level of the sinonasal epithelium resulting in
more mucus production and rhinorrhea, and (3) augmented inflammation through the recruitment
of inflammatory cells [16]. The elevated level of Cys-LTs found in the urine, sputum, exhaled breath
and peripheral blood of AERD patients supports this theory [3,16]. However, there is still ongoing
investigation into the mechanism underlying the constitutive overproduction of Cys-LTs.

To this end, Steinke et al. have further elucidated the roles of interferon-gamma (IFN-γ)
and interleukin (IL)-4 in the pathogenesis of AERD. The cytokine milieu in AERD is notable for
elevated levels of IFN-γ as compared to asthmatic or eosinophilic sinusitis. This is evidenced by the
increased levels of IFN-γ mRNA transcripts and protein. Interferon-gamma is typically associated
with a lymphocyte T helper 1 (Th1) response, and the authors postulate that these Th1 cells act to
prevent the IgE class-switch recombination, possibly explaining the lack of allergy and atopy in AERD
patients [18]. The increased IFN-γ has also been shown to stimulate differentiation of eosinophils
through interferon consensus sequence binding protein, a transcription factor, leading to a dramatic
upregulation in the number of infiltrating eosinophils [19]. These IFN-γ differentiated eosinophils
also have significantly increased levels of LTC4 synthase (LTC4S), possibly explaining the increased
levels of Cys-LTs in AERD. Moreover, eosinophils also secrete numerous cytokines and chemokines
including IL-4. Both IL-4 and IFN-γ have also been shown to upregulate the Cys-LT1 receptor on
multiple cell lines including eosinophils and mast cells (Figure 2) [18,20]. Therefore, IL-4 and IFN-γ
both have a role in the constitutive overproduction of Cys-LTs and the overexpression of the Cys-LT1
receptor observed in AERD.

There is growing evidence that AERD may also involve an innate Th2 mucosal immune response
and that this response is distinct from allergen-specific etiologies evidenced by AERD occurrence in
non-atopic patients who paradoxically show elevated levels of total serum IgE [5,21]. Though there
is an eosinophilic predominance in AERD, mast cells may be playing a central role in the observed
hypersensitivity reactions. The role of mast cells was first suspected during oral aspirin challenges
where a subset of AERD patients showed substantial reductions in FEV1 despite prophylaxis with
a Cys-LT1 receptor antagonist while simultaneously showing increased levels of tryptase, a marker of
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mast cell activation. It has been found that the level of tryptase is inversely correlated with the change
in FEV1, and activated mast cells release a host of inflammatory mediators such as prostaglandin D2
(PGD2), which induces inflammation of the respiratory epithelium through recruitment of eosinophils
and Th2 cells and also harbors highly bronchoconstrictive properties. Moreover, since these patients
were given Cys-LT1 receptor antagonists, the results point towards a potential function for Cys-LTs at
other receptors [22–24].

There is increasing evidence for the role of alarmin cytokines such as IL-25, thymic stromal
lymphopoeitin (TSLP), and IL-33 in the pathogenesis of the Th2 immune response through activation
of group 2 innate lymphoid cells (ILC2s) [25]. Eastman et al. previously demonstrated that ILC2s are
both recruited to the nasal mucosa by COX-1 inhibitor induced reactions in AERD patients and are
directly correlated with symptom severity [26]. Bucheit et al. found that TSLP also activates mast cells
and generates PGD2 in vivo, and in combination with IL-33, led to a synergistic increase in PGD2
production [27]. Interleukin-33 is known to induce activation of mast cells and is typically released
from necrotic cells, but infections due to viruses, fungi, and helminthes have also been shown to release
IL-33 from epithelial cells [28–30]. Moreover, surgically removed nasal polyps in AERD patients were
found to have substantially more IL-33 expression than baseline. Cys-LTs were also found to induce
IL-33 expression in murine models, and Pan et al. found that IL-33 stimulates mast cells to generate
PGD2, thromboxane B2 (TXB2), and Cys-LTs, and requires COX-1 activity. This suggests that IL-33
could be a bridge between the Cys-LT overexpression and mast cell activation that is typical in AERD
and may be a target for future pharmacotherapies [31]. Liu et al. also found that LTE4 is responsible
for activation of mast cells through an IL-33 dependent pathway. Previously, LTE4 has been found
to cause accumulation of eosinophils, basophils, and Th2 lymphocytes and can directly stimulate
Th2 lymphocyte cytokine production [32,33]. Leukotriene E4 stimulation of mast cells has also been
shown to substantially upregulate production of PGD2 through both a Cys-LT receptor pathway
and a peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent pathway leading to
upregulation of COX-2 (Figure 2) [34].

Laidlaw et al. found that platelet-adherent leukocytes are also effectors of AERD and lead to
increased Cys-LT levels. They noted that platelet-adherent eosinophils, neutrophils, and monocytes
were markedly increased in AERD patients relative to aspirin-tolerant controls and that urinary LTE4
correlates strongly with the frequency of platelet-adherent neutrophils, eosinophils, and monocytes.
Moreover, their experiments found that adherent platelets expressed more than half of the peripheral
blood granulocyte LTC4S activity [35]. Previous studies have also shown that activated platelets release
arachidonic acid in large quantities and augment 5-LO function through the release of granulocyte
macrophage-colony-stimulating factor (GM-CSF) [36,37]. Therefore, the authors concluded that
platelets are likely contributing to the basal Cys-LT levels and increased levels of LTC4S found
in AERD.

Finally, lipoxins also play an important role in the pathogenesis of AERD [35]. Lipoxins are
endogenous anti-inflammatory mediators that typically act to inhibit inflammomodulatory cells and
downregulate expression of proinflammatory cytokines such as IFN-γ, IL-5, IL-6, etc. by competing
competitively at the Cys-LT1 receptor. Two important lipoxins, LXA4 and LXB4, are generated as
a product of arachidonic acid metabolism. It is interesting to note that although there are upregulated
Cys-LT1 receptors in patients with AERD, there is a simultaneous downregulation in the production
of lipoxins, leading to inadequate competition for receptors with the Cys-LTs [38,39]. Therefore,
in AERD, there may be an underlying dysregulation causing deficiency of lipoxins, contributing to the
Cys-LT-driven pathophysiology [40].
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Figure 1. Arachidonic acid pathway (left panel) with associated impact of aspirin/non-steroidal anti-
inflammatory disease (NSAID) therapy and inhibition (right panel). COX-1/2 – cyclooxygenase 1/2; 
PGD2 – prostaglandin D2; PGE2 – prostaglandin E2; PGF2 – prostaglandin F2; PGG2 – prostaglandin 
G2; PGH2 – prostaglandin H2; PGI2 – prostaglandin I2; TXA2 – thromboxane A2; 5-HPETE – 5-
hydroxyeicosatetranoic acid; LTA4 – leukotriene A4; LTB4 – leukotriene B4; LTC4 – leukotriene C4; 
LTD4 – leukotriene D4; LTE4 – leukotriene E4; ASA – acetylsalicylic acid.. 

 
Figure 2. Schematic diagram depicting the role of Cys-LT1 activation and mast cell activation in 
pathogenesis of aspirin exacerbated respiratory disease (AERD) symptoms. INF-γ – interferon-
gamma; IL-4 – interleukin-4; Cys-LT – cysteinyl-leukotriene; Cys-LT1 – cysteinyl-leukotriene 1; LTC4 
– leukotriene C4; LTD4 – leukotriene D4; LTE4 – leukotriene E4; IL-33 – interleukin-33; PGD2 – 
prostaglandin D2. This figure incorporates free publicly available images [41–44]. 

Figure 1. Arachidonic acid pathway (left panel) with associated impact of aspirin/non-steroidal
anti-inflammatory disease (NSAID) therapy and inhibition (right panel). COX-1/2—cyclooxygenase
1/2; PGD2—prostaglandin D2; PGE2—prostaglandin E2; PGF2—prostaglandin F2;
PGG2—prostaglandin G2; PGH2—prostaglandin H2; PGI2—prostaglandin I2; TXA2—thromboxane
A2; 5-HPETE—5-hydroxyeicosatetranoic acid; LTA4—leukotriene A4; LTB4—leukotriene B4;
LTC4—leukotriene C4; LTD4—leukotriene D4; LTE4—leukotriene E4; ASA—acetylsalicylic acid.
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Figure 2. Schematic diagram depicting the role of Cys-LT1 activation and mast cell activation in
pathogenesis of aspirin exacerbated respiratory disease (AERD) symptoms. INF-γ—interferon-gamma;
IL-4—interleukin-4; Cys-LT—cysteinyl-leukotriene; Cys-LT1—cysteinyl-leukotriene 1;
LTC4—leukotriene C4; LTD4—leukotriene D4; LTE4—leukotriene E4; IL-33—interleukin-33;
PGD2—prostaglandin D2. This figure incorporates free publicly available images [41–44].
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The ingestion of ASA or COX-1 inhibiting NSAIDs by AERD patients further skews Cys-LT
production through the inhibition of the COX-1 pathway leading to further shunting of products
down the 5-LO pathway [4] (Figure 1). This is evidenced by detection of 5-LO pathway enzyme
upregulation in the lungs, sinuses, and nasal polyps in AERD patients, thought to be mostly due to
the infiltrating eosinophils and resident mast cells [17]. Furthermore, PGE2 normally has inhibitory
effects on eosinophils and mast cells, preventing Cys-LTs from being released. ASA inhibition of PGE2
production additionally skews arachidonic acid production towards the 5-LO pathway.

AERD symptoms tend to develop gradually, beginning with the upper and lower respiratory
tract. Typically, nasal congestion and rhinorrhea are the first symptoms. These symptoms persist
and progress to hyposmia, nasal polyp formation, and chronic rhinosinusitis (CRS) [12]. On average,
asthma developed in patients two years after the initial respiratory tract symptoms appeared, and ASA
sensitivity developed within five years of onset [5].

4. Diagnostic Workup

The diagnosis of AERD is made through clinical suspicion and appropriate testing. AERD is
suspected if patients have historical upper or lower airway clinical symptoms after ingestion of ASA
or NSAIDs, chronic nasal obstruction and watery rhinorrhea, or severe asthma attacks requiring
hospitalization with no apparent trigger [45]. Additionally, clinical signs such as nasal polyposis
or radiologic findings such as pansinusitis on computed tomography (CT) raise the suspicion
for AERD [6]. However, definitive diagnosis is only achieved through ASA provocation testing.
The goal of provocation testing is to generate a hypersensitivity reaction in a safe, controlled
environment with increasing doses of ASA. These hypersensitivity reactions consist of a constellation
of possible symptoms including nasal and ocular itching, sneezing, conjunctivitis, wheezing, coughing,
chest tightness, and a drop in forced expiratory volume (FEV1). Additional non-classical symptoms
such as laryngeal tightening, stridor, vomiting, urticaria, and angioedema are also possible [13].

There are four types of ASA provocation tests: oral, bronchial, nasal, and intravenous [46].
Oral provocation testing is most commonly used in the US and has a higher sensitivity as compared
to the bronchial test. The typical dose of ASA for oral provocation is from 30 to 150 mg (average
60–75 mg) [6]. The bronchial provocation test uses an inhaled L-lysine-ASA and is safer with fewer
systemic reactions and is faster to perform compared to the oral challenge. Nasal provocation, typically
used in Europe, also uses L-lysine-ASA and is usually reserved for patients who mainly have nasal
symptoms or severe asthma contraindicating use of oral or bronchial provocation [46]. Intravenous
provocation testing is rarely used outside of Japan. As oral provocation is the most commonly used,
its testing protocol will be discussed below.

Provocation testing is classically carried out though accelerated regimens performed over the
course of a single day are increasingly being used. In the classic two- or three-day Scripps protocol,
a baseline forced expiratory volume in one second (FEV-1) is measured on Day 1 and the challenge
is carried out if FEV-1 is at least 70% of the predicted value. Current provocation challenges are
commonly preceded by pretreatment with one week of leukotriene modifiers such as montelukast
or zileuton. This is due to their efficacy in decreasing the occurrence of severe lower respiratory
reactions without inhibiting upper respiratory symptoms. Initial dosing for AERD patients is typically
20 to 40 mg and most bronchial and naso-ocular reactions occur in the dose range of 45 to 100 mg
and typically appear within 30–60 min of dosing [47]. A typical oral ASA challenge usually follows
a sequential dosing regimen of 30, 45, 60, 100, 150, and 325 mg spaced apart by 3 h. The larger 650 mg
dose was found to not elicit additional reactions and has been discontinued from protocols [47].

Forced expiratory volume in one second is measured every 30 min up to 120 min after final
dosing and patients are observed for the hypersensitivity reactions mentioned above. A positive
reaction is defined as either a decrease in FEV-1 greater than 20% of baseline or if severe extrabronchial
hypersensitivity reactions such as profound rhinorrhea and nasal blockade appear, even without
a drop in FEV-1 below 20% of baseline. A negative reaction is defined as reaching the maximum dose
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of ASA without a drop in FEV-1 greater than 20% of baseline or if hypersensitivity symptoms do
not appear [46,48]. Provocation tests can also measure urinary LTE4 levels which are correlated with
severity of ASA reaction [49]. Increased levels of urinary LTE4 itself is not sufficient for diagnosis of
AERD, but when elevated in the context of clinical parameters such as asthma exacerbations and nasal
polyposis it nearly doubles the odds of AERD diagnosis [50].

A newer modified challenge protocol utilizes nasal ketorolac before oral ASA challenge and has
been shown to be faster than traditional challenge, while still being safe and effective. On Day 1,
this challenge protocol gives four escalating doses of ketorolac tromethamine given as nasal sprays
30 min apart with measurement of FEV1 and peak nasal inspiratory flow (PNIF). If symptoms appear,
they are treated and the provoking dose is repeated. If no reaction occurs, one hour is allowed to
pass before proceeding to oral ASA challenge. The first dose of ASA given is 60 mg and the patient is
subsequently monitored for 90 min, wherein if no reaction is elicited, the 60 mg dose is repeated and
the patient is monitored for another 90 min. On Day 2, patients are given a 150 mg and a 325 mg dose
of ASA spread apart by 3 h. However, if these patients had a reaction to the second 60 mg dose on Day
1, another 60 mg dose is given before proceeding to the 150 mg and 325 mg ASA doses. Most patients
finish ASA challenge by the early afternoon on Day 2, considerably faster than traditional ASA
challenge testing [51,52]. New ASA challenge protocols are continuing to be developed and increase
the efficiency of diagnosis. For example, DeGregorio et al. recently demonstrated that a one-day ASA
challenge utilizing a 90-min dose escalation protocol at a starting dose of 40.5 mg was effective in
desensitizing AERD patients with stable asthma and baseline FEV-1 greater than or equal to 70% [53].

5. Medical Treatment

The treatment of AERD currently incorporates an algorithm of multiple medical and surgical
modalities that progress in a stepwise manner. Treatments include the use of oral and inhaled
corticosteroids, leukotriene modifiers, ASA desensitization, and endoscopic sinus surgery [15].

5.1. Corticosteroids

Corticosteroids have been a mainstay therapy for aspirin-tolerant asthma and, although the
pathophysiology differs from AERD, both inhaled and systemic corticosteroids have been found
to help with subjective and objective symptoms. Specifically, it is useful in treating the symptoms
of rhinosinusitis associated with aspirin hypersensitivity. Intranasal corticosteroids like fluticasone
propionate have been shown to decrease the number of inflammatory cells including eosinophils
and mast cells [54]. A 1997 double-blind crossover, placebo-controlled study focused on the effect of
inhaled fluticasone propionate on chronic eosinophilic rhinosinusitis in AERD patients. Outcomes
were measured by metrics such as nasal inspiratory peak flow and symptom scores (0–3 points)
for morning and evening nasal congestion, rhinorrhea, sneezing and loss of smell. On the last day
of the treatment period, L-ASA challenge was repeated. This study found the beneficial effects of
fluticasone propionate appeared during the first week and showed a statistically significant increase
in nasal inspiratory peak flow and a statistically significant decrease in the nasal symptom scores.
The authors also found that fluticasone propionate completely prevented ASA-precipitated nasal
reactions in 8 of 13 participants as measured by negative ASA provocation tests in previously positive
individuals compared to 2 of 12 in the placebo arm. These results suggest that fluticasone propionate
and other topical glucocorticoids are effective in treating rhinosinusitis in AERD [54]. Regardless of
route, long-term corticosteroid use is associated with many negative side effects including endocrine,
electrolyte, musculoskeletal and neurological disorders [55]. Therefore, other treatment modalities are
used in order to reduce the dosage of corticosteroids necessary [56].

5.2. Leukotriene Modifiers

Leukotriene modifiers have also been widely used to treat aspirin-sensitive asthma, and due
to the dysregulation of the 5-LO pathway in AERD, these drugs have become an integral treatment
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option [56]. Typically, anti-leukotrienes such as montelukast work at the level of the Cys-LT1 receptor,
acting as a competitive antagonist. This directly leads to decreased production of Cys-LTs, compared
to corticosteroids, which do not directly affect the synthesis of leukotrienes [57].

A 2002 multicenter randomized, double-blind, placebo-controlled trial studied the efficacy of
montelukast as an additional treatment to AERD in 80 patients, most of whom were already treated
with moderate to high doses of corticosteroids. The authors measured FEV-1 and peak expiratory
flow rate in addition to asthma symptoms and quality-of-life metrics before and after treatments.
The authors noted that improvement from montelukast was observed after one day of treatment.
At the end of the trial, FEV-1 showed a statistically significant improvement of 10.2% on average,
and patients had an improved peak expiratory flow rate difference of 28 L/min in the morning and
23.1 L/min in the evening. The montelukast arm also showed statistically significant decreases in
the number daytime asthma symptoms (12.7%), rescue inhaler use (27.7%), nocturnal awakenings,
(35%) and asthma exacerbations (54%). Finally, these patients also experienced significant improvement
in the pooled asthma specific quality-of-life questionnaire score. This trial successfully showed that
leukotriene antagonists like montelukast improved pulmonary function and asthma control above
conventional corticosteroid therapy alone and is a valuable therapy to use in combination with other
drug modalities [56].

In addition to montelukast, zileuton and other 5-LO inhibitors have also been studied for therapy
in AERD patients. Zileuton directly inhibits 5-LO and offers another method to decrease the production
of Cys-LTs. In 1998, a double-blind, placebo-controlled crossover study evaluated the efficacy of
zileuton in 40 AERD patients. The patients were well controlled on corticosteroids previously and
the zileuton arm received four 600 mg doses. Outcomes measured included FEV-1, peak expiratory
flow rate, beta-agonist use, and daytime and nocturnal subjective symptoms, including loss of smell,
rhinorrhea, and congestion (scored 0–3). The zileuton arm showed a significant increase in the FEV-1
within hours (12.7% increase, p < 0.01) and this benefit lasted throughout the study period. Moreover,
there was an 18 L increase in the morning peak expiratory flow rate (p < 0.001) compared to placebo,
and beta-agonist use decreased by 0.64 puffs (p < 0.05). Daytime and nocturnal subjective symptoms
scores did not differ significantly in this study, which the authors attribute to the well-controlled
symptoms in the patient population at baseline. The authors showed that 5-LO inhibitors were
an effective therapy for the treatment of AERD [58]. Interestingly, a clinical questionnaire given
to AERD patients found that zileuton is very effective in reducing asthma symptoms compared to
montelukast. Moreover, a subgroup analysis in patients with asthma that reported symptoms with
ASA use, but were not formally diagnosed, found that zileuton led to a nearly 20% increase in FEV1,
indicating that it could be used in the treatment of asthma in AERD patients [59,60]. The efficacy of
zileuton over montelukast may be a consequence of its upstream inhibition of 5-lipoxygenase resulting
in downregulation of all downstream Cys-LTs, whereas cys-LT1 receptor antagonists, like montelukast,
would not significantly affect LTE4 [15,58]. Simultaneous use of a 5-LO inhibitor and a Cys-LT1
receptor antagonist has been suggested but not formally studied at this point [61].

Leukotriene modifiers (both montelukast and zileuton) have also been shown to provide a degree
of protection during ASA challenge testing. A 2006 study reviewed the records of 676 patients who
completed oral ASA challenges and found that patients taking leukotriene modifiers had significantly
less (10–20%) decline in FEV-1 post-provocation. The authors also found that pre-treatment with
leukotriene modifiers resulted in less severe asthmatic reactions and a decrease in lower respiratory
tract symptoms, possibly due to the abundance of Cys-LT1 receptors in the lower airways compared to
the upper airways [61,62]. Consequently, pre-treatment with leukotriene modifiers has been integrated
into many ASA challenge protocols.

5.3. Aspirin Desensitization

Corticosteroids and leukotriene modifiers are the first line therapies used to treat AERD. However,
if these are insufficient in controlling symptoms, ASA desensitization can provide added benefits.
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Some authorities believe that all AERD treatment plans should utilize desensitization [13,63]. The exact
mechanism by which ASA desensitization helps control symptoms is currently unknown, but there
has been evidence that it decreases IL-4 and STAT6 transcription, decreases production of PGD2, LTE4,
and IFN-γ, and decreases the density of Cys-LT receptors [13,17,64–66].

There are multiple protocols developed for ASA desensitization, but typically, ASA desensitization
occurs by bringing a patient to a well-equipped clinic and slowly administering increasing doses of
ASA until a reaction is elicited [64]. Then, a maintenance dose of 650 mg twice a day is established
for continual treatment. If tolerated well, after 6 months, it is reduced to 325 mg twice a day [13,47].
ASA desensitization, followed by either 325 mg twice a day or 650 mg twice a day post-endoscopic
sinus surgery with polyp removal is now the standard of care for AERD patients. Typically, the ASA
desensitization and treatment is started three to four weeks after the first sinus surgery [15,67].

5.4. Monoclonal Antibodies

Monoclonal antibodies are becoming increasingly popular as a potential therapy in the treatment
of AERD. Omalizumab is a recombinant antibody originally designed for treatment of asthma through
binding of IgE receptors on mast cells and basophils [68]. Omalizumab has been shown to have mixed
efficacy in studies; some authors have found that it displayed rapid clinical effectiveness in reducing
mast cell activation and leukotriene overproduction, while others have found that the reduction is not
statistically significant [68,69].

In 2013, Gevaert et al. published a randomized, double blind, placebo-controlled trial studying
omalizumab in 24 patients with asthma and CRSwNP. The authors had primary end points of polyp size
reduction as measured by a total nasal endoscopic polyp score (TPS, scored 0–4). Secondary endpoints
were improvement in clinical symptoms measured by Lund-MacKay scores and quality-of-life
questionnaire scores including the Short Form Health Questionnaire (SF-36), Rhinosinusitis Outcome
Measuring Instrument (RSOM-31), and the Asthma Quality-of-Life Questionnaire (AQLQ). In the
omalizumab arm, polyp size and TPS score was significantly reduced by the end of the trial (−2.67,
p = 0.001), and Lund-Mackay scores were significantly improved as well (17.6 to 13.6, p = 0.02)
compared to placebo. The omalizumab arm also had significantly improved SF-36 scores for physical
health (p = 0.02) but not mental health. Rhinosinusitis Outcome Measuring Instrument scores showed
significant improvement in sleep (p = 0.03) and general symptoms (p = 0.01). The mean AQLQ score
increased 0.81 (p = 0.003). This study demonstrates that omalizumab is capable of improving both
disease severity and quality-of-life metrics. Unfortunately, this study primarily focused on CRSwNP
and not on AERD. However, within their study group, 12 of 24 patients were given a diagnosis of
aspirin hypersensitivity based on medical history. These patients were not challenged with ASA so
a definitive diagnosis of AERD could not be given. While further investigation is needed, this could
signify a role for omalizumab in AERD patients [70].

In a 2016 prospective cohort study, Hiyashi et al. found that omalizumab administration produced
a significant decrease in concentration of urinary LTE4 and a PGD2 metabolite, 9α,11β-prostaglandin F2
(PGD2M) in a post-surgical AERD population and helped to ameliorate upper and lower respiratory
tract symptoms, possibly due to mast cell stabilization. Twenty-one patients were studied and,
following administration of omalizumab, there was a 76.2% decrease in urinary LTE4 (p < 0.001) and
an 89% decrease in PGD2M (p = 0.002). In addition, they also found a 36.3% drop in eosinophil count
(p = 0.002) and a significant decrease in the number of exacerbations (p = 0.002) and hospitalizations
(p = 0.001) in a 12-month period. Finally, the Visual Analog Scale (VAS) score was significantly
improved for nasal congestion, anterior rhinorrhea, anosmia, dyspnea, wheezing, and cough (p < 0.001).
The authors demonstrated that omalizumab improved both upper and lower respiratory tract
symptoms, which was correlated with the decrease in urinary LTE4 levels [69]. However, this trial was
neither randomized nor placebo-controlled, so future studies are needed to verify the potential value
of omalizumab in the treatment of AERD.
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Mepolizumab is another monoclonal antibody that has been proposed as therapy for AERD.
Mepolizumab targets IL-5 and was originally designed to treat eosinophilic asthma, but Gevaert
et al. found in a randomized, double-blind placebo-controlled study in CRSwNP patients that
injection of two 750 mg doses significantly reduced the total polyp score (−1.30, p = 0.028) and
showed improved CT scan results in 12 of 20 patients when reviewed by three separate raters
(Fleiss κ = 0.679) [71–73]. Again, this study was not specifically designed for AERD patients but 5/20
patients in the treatment group had aspirin sensitivity. Bachert et al. found in a similar randomized,
double-blind, placebo-controlled study with 107 CRSwNP patients that 750 mg of mepolizumab every
four weeks for six doses resulted in a significant reduction in the endoscopic nasal polyposis score (50%
of patients improved by >1 point), and the odds ratio of having a reduction in total endoscopic nasal
polyp score was high (6.6, p = 0.025). The nasal polyposis severity VAS score was also significantly
improved for rhinorrhea (p < 0.001), mucus in throat (p < 0.001), nasal blockage (p = 0.002), and loss of
smell (p < 0.001). There was also significant improvement in the Sino-Nasal Outcome Test (SNOT-22)
scores (42 to 27.1, p = 0.005). The authors concluded that administration of mepolizumab decreased
the overall need for surgical intervention [74]. This study was also not stratified to include AERD
patients and is not directly applicable to this patient population. However, a 2018 retrospective study
on mepolizumab for AERD patients has shown some positive results. Fourteen AERD patients at
Brigham and Women’s Hospital, Boston, MA, USA, who received at least three doses of mepolizumab
were included in the study and outcomes such as absolute eosinophil count (AEC), SNOT-22, asthma
control test (ACT) scores, and FEV1 were investigated. At baseline, many of these patients had
already received numerous AERD treatments such as polypectomies, high-dose aspirin, and oral
glucocorticoids. After receiving at least three doses of mepolizumab, the AEC decreased significantly
(p < 0.01), SNOT-22 decreased by 17.7 points (p < 0.01), ACT score increased significantly by 5.1
(p = 0.002), but FEV1 percent predicted increased non-significantly by 6.3% (p = 0.16). Additionally,
no patient required sinus surgery during this time and no patient needed to start or increased their
dose of glucocorticoids. On the contrary, five of the seven patients on oral glucocorticoids actually
reduced their doses and two of five patients on daily-inhaled corticosteroids/long-acting beta-agonists
were able to reduce their doses as well. This was the first study to show the efficacy of mepolizumab
in AERD patients, but future double-blinded, controlled studies are needed to confirm this data [75].
Reslizumab and benralizumab are similar agents that also target IL-5 and may have similar efficacy
but further investigation is needed to fully elucidate the effectiveness for AERD patients [71].

Dupilumab is the latest monoclonal antibody studied as a therapy for CRSwNP. It is a fully
humanized monoclonal antibody that acts directly against the IL-4 receptor α subunit. This in
turn inhibits the action of both IL-4 and IL-13, two cytokines that are integral to the Th2-cell
mediated inflammatory response. Dupilumab has already been shown to be effective in treating
patients with atopic dermatitis and asthma [76]. In a multicenter, randomized, double-blind
placebo-controlled parallel-group study conducted in the US and Europe, Wenzel et al. studied
dupilumab treatment of CRSwNP refractory to intranasal corticosteroids alone in 104 patients, 15 of
which were aspirin sensitive. They found that dupilumab resulted in significant improvements
in endoscopic, radiographic, clinical, and pharmacological measures 16 weeks post-treatment.
The primary end point was number of asthma exacerbations, and dupilumab showed a significantly
reduced number of exacerbations compared to placebo (odds ratio 0.08, p < 0.001). Additionally,
FEV1 improved by 0.27 L compared to placebo (p < 0.001) and morning peak expiratory flow
improved by 34.6 L/min compared to placebo (p = 0.005). They also found significant improvement in
quality-of-life metrics like SNOT-22 (−8.49, p = 0.003) with improved sense of smell, fewer symptoms
of nasal obstruction and decreased nighttime awakenings. The authors demonstrated that dupilumab
treatment in persistent asthma was associated with fewer exacerbations and increased objective and
subjective outcome metrics. This improvement was seen in a population that was already treated with
medium to high doses of inhaled glucocorticoids and long-acting beta agonists, further suggesting that
blocking IL-4 and IL-13 signaling results in an improvement in nasal polyposis, asthma, and improved
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upper and lower respiratory tract inflammation [77]. A substudy on AERD patients in a phase II trial
of dupilumab by Mullol et al. showed that treatment with dupilumab produced an improvement in
almost 10 items in the University of Pennsylvania Smell Identification Test (UPSIT) and led to a 30
point reduction in SNOT-22 score, as well as a 2.5 point reduction in Total Polyp Score [78]. Although
there is a lack of studies specifically on AERD patients, future studies may prove dupilumab to be
a valuable therapeutic agent [76].

6. Surgical Procedures and Outcomes

The role of endoscopic sinus surgery (ESS) can play an integral part in treatment of AERD patients,
having a role in decreasing disease burden itself while providing an opportunity for more effective
medical treatment [79]. Surgical approaches are targeted towards optimizing the ventilation and
drainage of the paranasal sinuses through the widening of the sinus ostia and removal of inflamed bone
and soft tissue components. Critically, surgery also enhances the delivery of topical corticosteroids into
the paranasal sinuses thereby improving control of inflammation at the level of the sinus epithelium.
Computational fluid dynamic models have shown generally enhanced delivery of sinus rinses into the
paranasal sinuses after ESS with one study predicting a 10-fold increase in the number of nebulized
particles deposited within the maxillary sinus after uncinectomy and antrostomy [80,81]. Furthermore,
a separate study evaluating a cohort of 28 patients with confirmed AERD by aspirin challenge,
found that that AERD patients were less reactive to an aspirin challenge 3–4 weeks after endoscopic
sinus surgery with 43% (p < 0.001) having no detectable reaction [82].

AERD patients are known to be a particularly difficult patient population to successfully manage
and in whom single modality treatment is rarely successful with quoted failure rates of up to 90% for
standard endoscopic sinus surgery [3,83]. Most commonly, dual therapy with a surgical approach
combined with ASA desensitization is implemented rather than single modality therapy. The use
of sinus surgery leads to decreases in symptomatic severity providing an optimal window in which
to proceed with additional treatments including aspirin desensitization and therapy. The ideal time
period post-surgical intervention has been postulated as 2–4 weeks [84].

The combined method has shown an improvement in both subjective and objective measures
of sinonasal outcomes as measured by SNOT scores [63,85]. In the retrospective review conducted
by Cho et al. examining outcomes of aspirin desensitization post-ESS in AERD patients, the authors
noted that SNOT-22 scores significantly decreased immediately postoperatively at one week (p = 0.042)
and four weeks (p = 0.046) and continued to remain low through the 30-month post-desensitization
follow up period. Endoscopic polyp grade also decreased significantly in the post-operative period
(p < 0.001) and remained low for up to 30 months post-desensitization with no significant recurrence
of polyp burden [85]. This may imply that long-term aspirin desensitization may prevent or slow
the progression of the inflammatory process within the sinuses [86]. In a study examining long-term
clinical outcomes of ASA desensitization therapy, 92 patients completed a questionnaire regarding
nasal symptoms during/after ASA desensitization therapy that was initiated 5–10 years prior with
68% of patients not requiring further sinus surgery and 85% of patients finding it helpful in improving
airway disease and quality of life. Interestingly, within this same cohort, ASA therapy did not reduce
the total number of sinus surgeries (p = 0.56) or delay time to the next sinus/polyp surgery (p = 0.27)
in those that required further interventions [87]. However, another study found that after surgery,
ASA desensitization and long-term ASA therapy reduced reoperative intervention from an average
of once every three years to once every 10 years. This further emphasizes the importance of ASA
desensitization in combination with surgery [88].

Compared to patients with non-AERD CRSwNP, AERD patients tend to have more severe
sinonasal symptoms, as measured on validated symptom score surveys, and a higher incidence of
recurrent polyposis up to as high as 90% [83], resulting in higher rates of surgical intervention [45,63,89].
On average, AERD patients undergo 2.6 endoscopic sinus surgeries during their lifetime and tend to
be younger at the time of first surgery [90]. When comparing AERD CRSwNP to non-AERD CRSwNP
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(asthma + CRSwNP and CRSwNP alone), one study—the design of which was predicated on the
interpretation of disease severity based on a diagnostic CT scan—demonstrated that 66% of AERD
CRSwNP patients were classified as having severe sinus disease compared to 23% and 10% in the other
groups, respectively (p < 0.001) [90]. In addition to more aggressive symptoms, patients with AERD
have significantly worse surgical outcomes compared to patients with non-AERD sinus disease [91].
In a cohort of 549 patients with nasal polyposis undergoing ESS, patients with AERD had increased
odds of requiring a second surgery for recurrence compared to patients without asthma or asthma
alone (odds ratio 2.7, p < 0.01) [83]. There has been no conclusive randomized trial data driving the
choice for surgical treatment of AERD, and as such, multiple surgical techniques and procedures
have been developed to treat CRS and AERD refractory to medical treatment [63,92]. In the past
few decades, the surgical approach has evolved from invasive procedures to minimally invasive
endoscopic mucosal-sparing surgeries [93]. Some authors suggest a graduated approach to surgical
intervention that is tailored to the patient’s disease process and severity. Factors that help with this
personalized approach include the patient’s disease history, nasal endoscopy, and CT findings [92,94].

6.1. Functional Endoscopic Sinus Surgery

The standard of management for CRS and AERD refractory to medical treatment is functional
endoscopic sinus surgery (FESS) [95,96]. The primary goal is to clear diseased tissue within the
sinonasal cavities under endoscopic guidance, to re-establish ventilation and drainage via normal
physiologic routes, and to optimize the delivery of topical therapeutics, particularly corticosteroids,
to the epithelium of the paranasal sinuses [97]. For patients with refractory CRS after initial primary
FESS, there are advanced surgical procedures used to treat the frontal, maxillary, or ethmoid sinuses
which are discussed below [93].

Functional endoscopic sinus surgery alone in the noncomplicated CRS patient has yielded
significant improvements in quality-of-life metrics but, in AERD patients, the role of surgery is
less definitive. Surgical intervention alone in the AERD cohort has shown initial improvements in
symptoms and disease control but with high rates of recurrence and need for subsequent surgeries [83].
In one study looking at complete ESS, entailing surgical access to all paranasal sinuses, versus targeted
ESS, which involves treating only those sinuses that appear diseased on preoperative CT imaging,
ASA sensitivity was an independent predictor for complete ESS. Furthermore, complete ESS showed
greater improvements in quality-of-life metrics compared to the targeted therapy cohort [98].

The true impact of ESS within the AERD cohort is best characterized when used in conjunction
with aspirin desensitization as this is the optimal use scenario based on our current understanding
of disease management. In a retrospective review of 32 patients undergoing complete ESS followed
by aspirin desensitization therapy, only three patients (9.4%) needed revision sinus surgery within
the 30 month follow-up period—one of these patients had stopped ASA therapy during the course
of the study [89]. Furthermore, overall SNOT-22 scores showed significant improvement one month
postoperatively compared to preoperative baseline (47.0 vs. 15.2, p < 0.001) and remained statistically
unchanged during the 30 month follow-up period after ASA desensitization was initiated, consistent
with previous studies [85,89]. Complete ESS has a role in treatment of AERD patients with significant
initial improvement in disease burden and quality-of-life measures, but the evidence thus far suggests
that combining complete ESS with ASA desensitization post-operatively produces the greatest effect
on disease control.

6.2. Endoscopic Modified Lothrop Procedure/Draf 3

Frontal sinus surgery has high treatment failure rates and often requires revision surgery.
One study found that ethmoidectomy without frontal sinusotomy could be used as a first-step
procedure for treatment of chronic frontal sinusitis in patients who are already on maximal medical
therapy. However, nasal polyposis and ASA sensitivity were independent risk factors predicting failure
in those who underwent treatment with this more conservative ethmoidectomy alone approach [99].
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This suggests that ethmoidectomy alone may be inadequate for treatment of frontal sinus disease
within high-risk recurrent groups such as AERD patients.

An alternative to salvage failed FESS is the endoscopic modified Lothrop procedure (EMLP),
also known as the Draf 3 procedure [93,95]. Endoscopic modified Lothrop procedure results in
a large common drainage pathway for both frontal sinuses by removing the medial frontal sinus floor
bilaterally to the orbits laterally and resecting the superior nasal septum and intersinus septum [94,100].
Another advantage is the ability for sinus rinses to penetrate and distribute within the frontal sinus
through the new common pathway with mathematical models showing a significantly increased
penetration of sinus rinses into the frontal sinuses after EMLP [101]. Naidoo et al. found in
a retrospective cohort study that EMLP allows for increased delivery of topical steroids to control local
mucosal inflammation as well as increasing the ventilation into the frontal sinuses. Unfortunately,
there appears to be a subset of patients that have exacerbations despite long-term medical therapy [96].

A 2018 meta-analysis by Abuzeid et al. showed that EMLP improved symptoms in 82.3% of
patients with 75.9% of patients reporting improvement when EMLP was used as a salvage surgery
after failure of primary FESS. Interestingly, the authors found that patients with ASA sensitivity
and asthma appeared to have a lower incidence of reoperation, which was attributed to possible
evolution to a more aggressive surgical technique based on an understanding that AERD patients
were at higher risk of surgical failure [95]. Nevertheless, failure rates in EMLP have been cited as
5–21% across diverse patient pathologies, with many of these cases then requiring a revision EMLP or
frontal sinus obliteration [91,96,102]. Failure typically occurred secondary to recurrent polyposis or
stenosis of the ostium [91]. Generally, EMLP is considered a safe and efficacious surgery in the modern
era. Furthermore, EMLP provides an attractive option for revision surgery as it does not preclude
additional surgical options should patients develop refractory disease [95,102].

6.3. Complete Total Ethmoidectomy with Mucosal Stripping

In AERD patients, complete total ethmoidectomy with mucosal stripping or nasalization has
been shown to have greater efficacy than conventional ethmoidectomy [93]. Nasalization involves the
systematic removal of all the bony lamellae and mucosa in the ethmoid sinuses followed by maxillary
antrostomy, sphenoidotomy, frontal sinusotomy, and middle turbinectomy [93].

Eloy et al. found that patients who underwent nasalization showed superior improvement in
nasal symptoms compared to those who underwent a standard ESS and the outcomes were more
durable. Specifically, olfactory improvement in the nasalization arm lasted for three years compared to
only two years of symptom improvement in the ethmoidectomy group [93]. Jankowski et al. has also
shown that nasalization is superior with regards to overall symptoms, disease severity as measured on
CT, and endoscopic appearance of the post-operative mucosa. Immediately post-operative, patients
were started on nasal lavages and local beclomethasone sprays. Critically, nasal polyp recurrence rate
was 22.7% in the nasalization arm versus 58.3% in patients undergoing traditional ethmoidectomy.
When performed by a skilled sinus surgeon, nasalization was not found to be more hazardous than
standard ethmoidectomy [103].

7. Conclusions

Treatment of CRSwNP in the setting of AERD poses a challenging problem within the
otolaryngology community. With higher rates of refractory disease despite optimal medical and
surgical treatment options, finding the right combination of treatment modalities to help improve
symptom control and quality-of-life within this patient population continues to be an active area
of research interest. Further improvements in disease control will likely hinge on modification of
the underlying inflammatory milieu at the level of the sinonasal epithelium. This will involve the
continued development and introduction of biologic immunomodulators for clinical use. Advanced
FESS procedures will also play an increasing role in optimizing the delivery of medical therapies
and directly modifying the levels of inflammation in the sinuses. Continued advances in these
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areas, and a better understanding of the ideal timing for specific interventions, will lead to an era of
patient-specific treatment and, potentially, improved long-term disease control.
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