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Abstract: Polycystic ovary syndrome (PCOS) is a complex disorder that results from a combination of
multiple factors, including genetic, epigenetic, and environmental influences. Evidence from clinical
and preclinical studies indicates that elevated intrauterine androgen levels increase the susceptibility
of the female offspring to develop the PCOS phenotype. Additionally, early postnatal endocrine and
metabolic imbalances may act as a “second-hit”, which, through activational effects, might unmask or
amplify the modifications programmed prenatally, thus culminating in the development of adult
disease. Animal models provide unparalleled resources to investigate the effects of prenatal exposure
to androgen excess and to elucidate the etiology and progression of disease conditions associated
with this occurrence, such as PCOS. In sheep, prenatal treatment with testosterone disrupts the
developmental trajectory of the fetus, culminating in adult neuroendocrine, ovarian, and metabolic
perturbations that closely resemble those seen in women with PCOS. Our longitudinal studies clearly
demonstrate that prenatal exposure to testosterone excess affects both the reproductive and the
metabolic systems, leading to a self-perpetuating cycle with defects in one system having an impact
on the other. These observations in the sheep suggest that intervention strategies targeting multiple
organ systems may be required to prevent the progression of developmentally programmed disorders.
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1. Introduction

Globally, approximately 60-80 million people experience difficulty conceiving [1], and, in 30-40%
of couples of childbearing age seeking fertility counseling, infertility is exclusively a problem with
the female. Among the infertility disorders, polycystic ovary syndrome (PCOS) is one of the most
common, affecting approximately five million women in the USA and over 100 million globally [2].
PCOS is characterized by reproductive manifestations that may include oligo-/anovulation, polycystic
ovarian morphology, luteinizing hormone (LH) hypersecretion, and hyperandrogenism [3]. In addition,
approximately 70% of PCOS patients exhibit metabolic disturbances, such as obesity and insulin
resistance [4]. Despite the high prevalence of PCOS, a clear understanding of the etiology and
progression of this syndrome remains elusive.
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A wealth of research in clinical cohorts and animal models indicate that PCOS is a complex disorder
that results from a combination of multiple factors, including genetic, epigenetic, and environmental
influences. While recent genome-wide association studies (GWAS) identified several susceptibility
loci in PCOS patients, the heritability currently accounted for by the known loci is less than 10% [5,6].
Although additional loci, specific genes and functional variants of interest are likely to be identified
by GWAS and other genetic approaches, the limited heritability accounted for by these studies so far
suggests that other factors such as epigenetics and in utero environmental insults may play a role.
The most widely implicated environmental insult associated with PCOS is the perinatal (prenatal and
early postnatal) exposure to high levels of androgens. Evidence from clinical and preclinical studies
indicates that elevated intrauterine androgen levels increase the susceptibility of the female offspring
to develop the PCOS phenotype [7,8]. Women with congenital adrenal hyperplasia, a condition that
results in abnormally high prenatal androgen exposure, have a considerably greater likelihood of
developing the PCOS reproductive phenotype [9]. Moreover, recent studies [10-12] point to a higher
prevalence of reproductive and metabolic dysfunction in the offspring of women with PCOS, who also
manifest hyperandrogenism during pregnancy [13].

This notion that the adult phenotype can be shaped during fetal life is supported by the
“developmental origins of health and disease (DOHaD)” hypothesis by Barker and colleagues [14]
and has gained considerable momentum after the emergence of epidemiological data from the 1944,
1945 Dutch famine cohort. These data demonstrated that maternal malnutrition during gestation
is associated with a marked increase in the risks of the offspring for developing cardiovascular
and metabolic diseases [15]. These findings, in conjunction with subsequent clinical and animal
studies [16-19], unequivocally demonstrate that the perinatal period, a period in which organogenesis
and tissue differentiation occur through a tightly controlled and timed process, is a critical window of
opportunity for programming the offspring’s phenotype.

In addition to the well-characterized impact during fetal development, recent research observations
supporta “two-hit” hypothesis to explain the onset as well as severity of diseases [20,21]. This hypothesis
proposes that an insult occurring during the prenatal life constitutes a “first-hit” that combined with
genetic susceptibility can lead to reorganization of several organ systems. Despite these modifications
during early life, in many occasions this “first-hit” alone might be insufficient to alter the adult
phenotype resulting in disease. However, endocrine and metabolic imbalances occurring later in life
and/or exposure to adverse stressors may act as a “second-hit”, which through activational effects might
unmask or amplify the modifications programmed prenatally, thus culminating in the development of
adult disease [21]. On the other hand, postnatal interventions that avert the effects of “second-hit”
stressors may successfully prevent the manifestation or reduce the severity of some disease traits despite
the programming effects of prenatal insults (Figure 1). While several mechanisms may be involved
in this process, mounting evidence suggests that epigenetic mechanisms, such as DNA methylation,
histone modification and non-coding RNAs, mediate the effects of endogenous or exogenous factors on
the developmental plasticity of specific organ systems [20]. The “two-hit” hypothesis is supported by
our observations in the sheep model of PCOS, in which many reproductive disease traits programmed
by prenatal testosterone excess can be prevented from manifesting themselves if postnatal endocrine
and metabolic imbalances are managed properly. Focusing primarily on findings from the sheep model
of PCOS, this review summarizes the effects of prenatal and postnatal interventions on preventing or
mitigating the adverse effects of prenatal testosterone excess on reproductive and metabolic function.
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Figure 1. Two-hit hypothesis for adult onset of diseases. Insults occurring during the prenatal
life constitute a “first-hit” that can lead to reorganization of several organ systems. Despite these
modifications, this “first-hit” alone might be insufficient to alter the adult phenotype resulting in
disease. However, endocrine and metabolic imbalances occurring later in life may act as a “second-hit”,
which through activational effects might unmask or amplify the modifications programmed prenatally,
thus culminating in the development of adult disease. On the other hand, prenatal interventions that
can negate the effects of “first-hit” insults may successfully prevent the manifestation of some disease
traits. Postnatal interventions that avert the effects of “second-hit” stressors may ameliorate the disease
phenotype by preventing the manifestation of some disease traits.

2. Sheep Model of Polycystic Ovary Syndrome Phenotype

Animal models provide unparalleled resources to investigate the effects of perinatal exposure
to androgen excess and to elucidate the etiology and progression of disease conditions associated
with this occurrence, such as PCOS. Most studies have used rodents, sheep, and non-human primates
as research models and comparative aspects of these different animal models have been discussed
previously [22,23]. Our research group has carried out multiple longitudinal studies in the female
sheep to carefully characterize the phenotype of these animals at multiple developmental time
points. This is one of the few animal models of PCOS phenotype in which an extensive longitudinal
characterization has been performed. There are numerous benefits of using the female sheep for
endocrine and reproductive research. Sheep are not litter bearing and are amenable to different surgical
and experimental procedures and interventions; their large size allows for detailed and repetitive
hormonal profiling and in vivo sampling and measurement of hypothalamic neuropeptides. Moreover,
since sheep are domesticated, they are kept in a natural environment and not subject to the stress
effects associated with caging. Additionally, because sheep is a precocial species, the trajectory of
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development of several organs systems, such as the ovary and pancreas, follows a similar pattern as
that of humans [23], thus having valuable translational relevance.

The normal gestation period of ewes is approximately 147 days, ranging from 142 to 155 days.
In our experiments investigating the effect of prenatal androgen excess on the offspring, we have used
different experimental paradigms to gain insight into the susceptibility windows and mechanisms
involved in this process. A comparison of female sheep treated with testosterone from gestational
day (GD) 30-90 vs. GD 60-90 has identified critical periods in which specific reproductive and
metabolic disorders are programmed. Moreover, a comparison of the effects of prenatal treatment
with either testosterone, dihydrotestosterone (DHT; a non-aromatizable androgen), or co-treatment
with testosterone and the androgen antagonist flutamide has identified specific signaling mechanisms
responsible for programming disease traits in this sheep model. This review will focus primarily on
phenotypic traits from the GD 30-90 model that has been studied more extensively. For comprehensive
reviews comparing the different experimental paradigms and the resulting phenotypes, as well as
tissue-specific findings associated with reproductive and metabolic alterations in this sheep model,
readers are referred to Cardoso, et al. [24], and Padmanabhan and Veiga-Lopez [23].

Prenatal treatment with testosterone disrupts the developmental trajectory of the ovine fetus
culminating in adult neuroendocrine, ovarian, and metabolic perturbations that closely resemble
those seen in women with PCOS [23]. Prenatal testosterone treatment from GD 30-90 compromises
reproductive function, resulting in the progressive deterioration of ovarian cyclicity, compromised
fertility, and premature reproductive failure, with most females becoming anovulatory by the second
breeding season (early adulthood) [25]. Because the use of sheep allows detailed hormonal profiling,
our studies indicate that the progressive reproductive failure seen in prenatal testosterone-treated
females stems, at least in part, from tonic activation of the reproductive neuroendocrine axis. Prenatal
testosterone-treated sheep present defects in all three steroid feedback mechanisms controlling
gonadotropin-releasing hormone (GnRH) and LH secretion, namely estradiol negative [26], estradiol
positive [27], and progesterone negative feedback [28,29]. Furthermore, pituitary sensitivity to GnRH
is markedly increased in these animals [30]. The defects in steroid negative feedback and augmented
pituitary responsiveness to GnRH together contribute to the LH excess and consequent functional
hyperandrogenism seen in prenatal testosterone-treated sheep.

In addition to reproductive neuroendocrine disruptions, prenatal treatment with testosterone
results in a polyfollicular ovary [31,32]. This polyfollicular phenotype likely stems from an abnormal
increase in follicular recruitment associated with arrest in antral follicular development causing
persistence [33]. This premise is supported by observations that prenatal testosterone results in lower
percentage of primordial follicles and higher percentage of primary and secondary follicles in the ovarian
cortex of adult sheep, suggesting increased follicular recruitment [34]. Serial ultrasonographic studies
demonstrated that in addition to the increased follicular recruitment, prenatal testosterone treatment
results in several antral follicles that survive for longer periods, thus indicating follicular persistence [35].
Interestingly, the polyfollicular ovarian morphology and increased follicular persistence seen in sheep
prenatally treated with testosterone were not evident in females treated with DHT, suggesting that the
aromatization of testosterone into estradiol is necessary to program these ovarian perturbations [32,36].

From a cardio-metabolic standpoint, prenatal treatment with testosterone leads to insulin resistance
and compensatory hyperinsulinemia [37], altered visceral adiposity and adipocyte size [38], impaired
adipocyte differentiation [39], and hypertension [40]. Our detailed longitudinal studies characterizing
glucose—insulin homeostasis in this PCOS sheep model have identified significant fluctuations in
insulin sensitivity throughout life [41]. During infantile [37] and early juvenile development [42], ewes
prenatally exposed to testosterone excess exhibit a significant reduction in insulin sensitivity. Conversely,
during peripubertal life, prenatal testosterone-treated sheep demonstrate marked improvements
in insulin sensitivity, exhibiting greater insulin sensitivity index than control females during an
euglycemic-hyperinsulinemic clamp [38]. However, at later adult life, prenatal treatment with
testosterone results in the reestablishment of insulin resistance [42]. In conjunction, these longitudinal
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studies suggest that a period of compensatory adaptation of metabolic tissues to prenatal exposure to
testosterone excess occurs around pubertal development in sheep [41].

At the adipose tissue level, prenatal treatment with testosterone reduced visceral adiposity
and increased the ratio of small to large adipocytes in the visceral and subcutaneous adipose
compartments [38,41]. While it was originally proposed that hypertrophy of adipocytes was linked to
insulin resistance [43,44], recent studies investigating adipocyte size in obese but otherwise healthy
patients have shown that the small to large adipocyte ratio is actually higher in insulin-resistant
compared to insulin-sensitive patients [45,46]. Thus, it is believed that insulin resistance in some
obese patients may originate from failure of a subset of smaller adipocytes to fully differentiate
into mature adipocytes with increased capacity to store lipids [47]. Consequently, excess free fatty
acids are accumulated in other metabolic tissues such as liver and muscle, leading to lipotoxicity,
oxidative stress, and subsequent insulin resistance [48-50]. In agreement with these findings, prenatal
treatment with testosterone not only resulted in reduced visceral adiposity and smaller adipocytes in
sheep [38,41], but it also resulted in ectopic lipid accumulation in the liver and skeletal muscle [51], and
elevated concentrations of total and saturated free fatty acids [38]. Thus, these observations suggest
that reduced visceral adiposity and increased ratio of small to large adipocytes may be the earliest
events in the development of metabolic dysfunctions, such as dyslipidemia and insulin resistance,
in this sheep model. Alternatively, an increased proportion of small adipocytes may represent a
compensatory mechanism that develops only after insulin resistance is established as an attempt to
maintain glucose-insulin homeostasis. In a recent study, normal-weight women with PCOS exhibited
a significant increase in the percentage of small subcutaneous adipocytes when compared with the
control group [52], similar to observed in the sheep model of PCOS phenotype. In that study, authors
propose that the greater proportion of small subcutaneous adipocytes in normal-weight women with
PCOS likely represents enhanced adipocyte hyperplasia in an attempt to increase lipid storage and
improve adipose insulin sensitivity [52].

In addition to metabolic perturbations, prenatal exposure to testosterone excess leads to the
programming of cardiovascular dysfunction in the female offspring [53]. Prenatal testosterone treatment
results in hypertension and a tendency for a higher heart rate compared to control sheep [40]. At the
cardiac level, prenatal exposure to testosterone excess increased the expression of several molecular
markers involved in insulin signaling and associated with cardiac hypertrophy [54]. Moreover,
histological investigations reported myocardial disarray and increased cardiomyocyte diameter in these
animals [54]. Collectively, these observations suggest that prenatal testosterone excess results in adverse
left ventricular remodeling, which likely contributes to the development of adult hypertension in sheep.

To understand the pathways and mechanisms linking prenatal testosterone excess with adult
disease traits, it is critical to identify the impacts on the fetomaternal endocrine and metabolic milieus.
In sheep, prenatal treatment with testosterone increases not only the maternal but also the fetal
concentrations of androgens and estradiol [55,56], suggesting that the programming of adult disease
could occur via both androgenic and estrogenic pathways. Gestational testosterone excess also
reduces maternal concentrations of progesterone, increases circulating insulin levels, and disrupts
the maternal—fetal correlations for several metabolites [56]. Together, these findings demonstrate that
gestational testosterone treatment disrupts the fetomaternal steroidal and metabolic milieus, which are
likely key modifications programming disease traits in this sheep model.

To dissect out the contribution of each pathway, we have performed a series of experiments
investigating the effects of prenatal and postnatal treatment with an androgen antagonist or an insulin
sensitizer on the reproductive and metabolic phenotypes of female sheep prenatally treated with
testosterone. We focused primarily on the actions of androgens and insulin since these hormones play
an important role in modulating the development of several organ systems [19] and are markedly
altered due to gestational testosterone treatment. Below, we summarize the main effects of prenatal
and postnatal interventions in preventing or ameliorating some of the disease traits in this sheep model.
These effects are also summarized in Table 1.
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Table 1. Reproductive and metabolic disease traits in prenatal testosterone- and dihydrotestosterone (DHT)-treated sheep (2 to 3 years of age—early adulthood) and

the effectiveness of prenatal or postnatal interventions with either an androgen antagonist or an insulin sensitizer.

Interventions—Pathology Manifestations

. Prenatal Prenatal Prenatal Prenatal Prenatal Prenatal
Traits Testosterone DHT Testosterone + Testosterone + Testosterone + Testosterone +
Prenatal Androgen Prenatal Insulin Postnatal Androgen Postnatal Insulin
Antagonist Sensitizer Antagonist Sensitizer
Reproductive Traits
Advanced puberty Yes [57] Yes ¥ [58] No [57] No [57] No [57] No [57]
Functional Hyperandrogenism Yes [23] Yes [23] Not tested Not tested Not tested Not tested
PCO morphology Yes [31] No [31] Not tested Not tested Not tested Not tested
Disrupted preovulatory LH surge Yes [57] No [59] Partially [57] Yes [57] Yes [57] Yes [57]
Disrupted estradiol positive feedback Yes [60] No [58,59] Yes [60] Yes [60] Partially [60] Partially [60]
Disrupted estradiol negative feedback Yes [26] Yes [59] No > [61] Not tested Not tested Not tested
GnRH-stimulated LH hypersecretion Yes [30] Yes [30] Yes [30] Partially [30] Yes [30] No [30]
Increased follicular recruitment Yes [33] Yes [33] Not tested Not tested Not tested Not tested
Follicular persistence Yes [35] No [36] Not tested Not tested Not tested Not tested
Metabolic Traits
Insulin resistance Yes [38,41] Yes [41] Yes [41] No [41] Yes # No #
Altered visceral adiposity Yes [38] Not tested Not tested Not tested Not tested Not tested
Altered adipocyte size Yes [38,41] Not tested Partially [41] Partially [41] Not tested Not tested
Adipocyte differentiation Reduced [39] Not tested Partially [39] Partially [39] Not tested Not tested
Hypertension Yes [40] Not tested Not tested Not tested Not tested Not tested

¥ Neuroendocrine puberty; # Unpublished observations: * Based on escape from estradiol negative feedback. PCO: polycystic ovary; LH: luteinizing hormone; GnRH:

gonadotropin-releasing hormone.
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3. Effects of Prenatal Interventions on Reproductive and Metabolic Phenotypes

Prenatal co-treatment with testosterone and flutamide, an androgen antagonist, provides valuable
insights into the role of the androgenic pathway in programming adult disease traits. Importantly,
the co-treatment with flutamide has been shown to effectively block the effects of endogenous and
exogenous androgens on phenotypic virilization in males and prenatal testosterone treated female sheep,
respectively [61]. Prenatal co-treatment with flutamide has been shown to prevent the advancement
in pubertal onset induced by prenatal treatment with testosterone [57], suggesting that androgen
signaling is involved in programming this perturbation. This is supported by observations that
prenatal DHT treatment also leads to advanced neuroendocrine puberty in the female offspring [58].
Moreover, prenatal co-treatment with flutamide successfully prevented the reduction in estradiol
negative feedback seen in prenatal testosterone-treated ewes [59], suggesting that this neuroendocrine
defect is also programmed via androgenic actions of testosterone. On the other hand, disruptions
in estradiol positive feedback were observed in testosterone- but not DHT-treated sheep suggesting
that this alteration is programmed via estrogenic actions of prenatal testosterone [58,59]. The findings
that prenatal co-treatment with flutamide failed to reverse the defects in estradiol positive feedback
support this premise [51].

Prenatal co-treatment with flutamide was also shown to restore estrous synchronization response
and partially improve LH surge release after prostaglandin injection in prenatal testosterone-treated
females [57]. This observation supports the premise that activation of the androgen receptor is also
involved in programming LH preovulatory surge defects in this sheep model. Therefore, these findings
do not support the aforementioned notion that LH surge defects in prenatal testosterone-treated sheep
are programmed only by estrogenic actions of testosterone due to aromatization into estradiol. These
observations in female sheep prenatally co-treated with testosterone and flutamide raise the possibility
that the effects of DHT may not be mediated exclusively via androgenic pathways but rather due to
conversion of DHT into 33-androstenediol and acting through estrogen-f3 receptors [62]. Alternatively,
both androgens and estrogens may have synergistic effects organizing the neuroendocrine components
responsible for the LH preovulatory surge. This is supported by the observation that despite all females
prenatally co-treated with flutamide exhibited LH surges, the LH surges were not of comparable
magnitude with those observed in control females [57].

While some of the neuroendocrine defects were successfully prevented by co-treatment with
flutamide, metabolic alterations were not prevented by prenatal co-treatment with flutamide. Flutamide
failed to prevent insulin resistance [41], alterations in adipocyte morphology [41], and oxidative
stress [51] in prenatal testosterone-treated sheep. Collectively, these findings suggest that the
androgenic pathway plays a key role in programming neuroendocrine and reproductive defects
but is likely less critical in programming metabolic perturbations in this sheep model of PCOS
phenotype. Therefore, other signaling pathways, such as activation of estrogen and/or insulin receptors,
are potential mechanisms by which prenatal testosterone excess can lead to metabolic dysfunction in
the female offspring.

Because gestational testosterone treatment results in maternal hyperinsulinemia [56], it is plausible
that some of the adult abnormalities programmed in the offspring are mediated via the hyperactivation
of the insulin signaling pathway. Therefore, we have performed multiple experiments investigating the
effects of prenatal co-treatment with testosterone and rosiglitazone, an insulin sensitizer. Importantly,
the dose of rosiglitazone used in these studies (8 mg/day) is within the dose range used to treat
PCOS women [63,64], and has been shown to restore insulin sensitivity in insulin-resistant sheep [65].
Similar to prenatal co-treatment with an androgen antagonist, prenatal co-treatment with rosiglitazone
prevented the high incidence of precocious puberty seen in prenatal testosterone-treated sheep [57].
However, this process was not associated with improvements in the neuroendocrine feedback
mechanisms or in the restoration of normal preovulatory LH surge dynamics. Additionally, prenatal
co-treatment with an insulin sensitizer failed to prevent the premature reproductive failure seen in
prenatal testosterone-treated sheep [57]. Therefore, these observations corroborate the notion that the
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androgenic pathway is likely the central mechanism programming neuroendocrine and reproductive
defects in this sheep model.

From a metabolic standpoint, prenatal co-treatment with an insulin sensitizer successfully
prevented the development of insulin resistance in prenatal testosterone-treated sheep, restoring mean
insulin and insulin/glucose ratio during a glucose tolerance test [41]. These observations suggest
that gestational hyperinsulinemia plays a role in programming insulin resistance in the offspring.
In support of this concept, studies in rodents demonstrate that other conditions resulting in gestational
hyperinsulinemia such as maternal obesity [66] and protein restriction [67] during gestation are also
associated with the development of insulin resistance in the offspring. While the exact mechanisms
by which prenatal co-treatment with an insulin sensitizer improves metabolic function in sheep
remain elusive, inhibition of a prenatal testosterone-induced rise in proinflammatory cytokines [51]
and reduction in adipocyte differentiation [39] are likely involved. In summary, these collective
observations suggest that gestational hyperinsulinemia alters the normal developmental trajectory of
fetal metabolic tissues leading to the development of adult insulin resistance in the offspring.

4. Effects of Postnatal Interventions on Reproductive and Metabolic Phenotypes

While modifications in utero can result in the reorganization of several organ systems that are
associated with later development of reproductive and metabolic impairments, it is now evident
that endocrine and metabolic imbalances occurring postnatally may be required to unmask or
amplify some disease traits [20,21]. Because prenatal testosterone-treated sheep manifest functional
hyperandrogenism and insulin resistance associated with hyperinsulinemia postnatally, it is conceivable
that these endocrine imbalances are required for the full manifestation of the PCOS phenotype.
Therefore, based on these observations, we performed multiple studies investigating the effects
of postnatal treatment with an androgen antagonist or an insulin sensitizer on the phenotype of
these animals.

Similar to the effects of prenatal interventions, postnatal treatment with the androgen antagonist
flutamide starting at weaning (approximately eight weeks of age) prevented the advancement on
pubertal maturation in this sheep model [57]. These findings suggest that while modifications occurring
during fetal life are critical for programming precocious puberty in female sheep, elevated androgen
action postnatally is likely also involved. This is consistent with the premise that environmental,
endocrine, and metabolic cues during early postnatal life clearly play a role in controlling the timing of
puberty in females [60,68,69]. In regards to the estradiol positive feedback and preovulatory LH surge,
while postnatal treatment with an androgen antagonist failed to normalize the timing of the LH surge,
it increased the total LH released in response to the estradiol positive feedback challenge to control
levels [70]. This is supportive of increased androgen signaling underlying reduced LH surge in prenatal
testosterone-treated females. It is possible that postnatal androgen antagonist treatment normalizes the
total LH released during the surge by restoring normal androgen actions in the neuroendocrine axis,
since prenatal testosterone treatment increases the expression of the androgen receptor in both the
hypothalamus [71] and pituitary gland of adult sheep [30]. Similar findings were reported in women
with PCOS, in which treatment with the androgen antagonist flutamide improved LH pulse frequency
and restored ovulation [72,73].

As anticipated, postnatal treatment with the insulin sensitizer rosiglitazone improved peripheral
insulin sensitivity and normalized insulin levels in prenatal testosterone-treated sheep [65]. However,
the effects of postnatal treatment with rosiglitazone were not only limited to metabolic function, but
also markedly improved several reproductive traits in this sheep model of PCOS phenotype. Insulin
sensitizer treatment successfully prevented advancement of puberty in prenatal testosterone-treated
sheep [57] and prevented the premature reproductive failure seen in these animals [65]. While 80%
of prenatal testosterone-treated females showed a reduced number of estrous cycles in the second
breeding season (early adulthood), only 20% of females postnatally treated with rosiglitazone showed
such deterioration [65]. Postnatal treatment with rosiglitazone also decreased the number of aberrant
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cycles (=18 days) during the second breeding season in comparison with prenatal testosterone-treated
females that did not receive insulin sensitizer [65].

These positive effects on reproductive function are associated with improved neuroendocrine
function. Postnatal insulin sensitizer treatment partially improved the estradiol positive feedback by
increasing the magnitude (total LH released in response to positive feedback challenge) as well as
amplitude (difference between peak and nadir) of the LH surge [70]. These observations suggest an
activational role for insulin in modulating the LH surge magnitude. Previous observations that insulin
infusion dampens the magnitude of the LH surge in sheep [74] are consistent with the reduced LH surge
magnitude seen in prenatal testosterone-treated sheep, which are hyperinsulinemic [42]. While the
exact mechanisms by which rosiglitazone improves the preovulatory LH surge are unknown, they may
involve restoration of LH releasable pool in the anterior pituitary and/or normalization of hypothalamic
or pituitary responsiveness to the estradiol positive feedback. In addition to improved preovulatory
LH surge, insulin sensitizer treatment also normalized LH tonic (pulsatile) release by normalizing the
pituitary sensitivity to GnRH and preventing the pulsatile LH hypersecretion [30], thus suggesting that
postnatal perturbations in insulin-glucose homeostasis contribute to this neuroendocrine perturbation.
Because LH hypersecretion (tonic release) disrupts follicular development and steroidogenesis, it is
likely that the beneficial effects of postnatal rosiglitazone treatment on reproduction are mediated,
in part, at the pituitary gonadotrope level.

5. Conclusions

In conclusion, epidemiological findings in humans and studies in prenatal testosterone-treated
animal models, including the sheep, indicate that alterations programmed in utero play an important
role in the development and manifestation of the PCOS phenotype during adulthood. However, the
interactions between prenatal insults and the early postnatal environment in the development and
manifestation of adult diseases remain poorly understood. Animal models of fetal programming
serve as an important research tool to investigate these interactions. Our studies in the female sheep
clearly demonstrate that prenatal exposure to testosterone excess affects both the reproductive and
the metabolic systems, leading to a self-perpetuating cycle with defects in one system having an
impact on the other [19]. Thus, intervention strategies targeted at multiple organ systems may be
required to prevent the progression of some developmentally programmed disorders. This seems to
be the case for PCOS patients, in which combined anti-androgen and insulin-sensitizing treatment
has additive benefits on several metabolic traits when compared to monotherapies [75]. Studies
in prenatal testosterone-treated sheep testing the combined anti-androgen and insulin-sensitizing
treatment are warranted. Additionally, further investigation of potential common mediators affecting
the different systems may help identify early biomarkers and therapeutic targets for preventive
interventions. Nonetheless, since the long-term consequences of pharmacological interventions during
the preconception and gestational periods remain unknown, preventive strategies should focus on
promoting healthy lifestyle choices and minimizing exposure to potentially harmful agents.
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