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Abstract: Background: There is accumulating evidence on the negative impacts of childhood poverty
on physical and mental health. Previous work has suggested hyperactive neural response to social
fear cues, as well as impairment in neural regulatory functions. However, despite differences found
between males and females in stress-related and anxiety disorders, possible sex-specific effects of
poverty on emotional processing have not been explored. Methods: We analyzed data from three
previously reported experiments of childhood poverty effects on emotional processing and regulation,
for sex-specific effects. Participants were 52 healthy Caucasian males and females, from a longitudinal
cohort of poverty development study, who were recruited for examining the long-term effects of
childhood poverty and stress. The three functional MRI studies included emotion regulation task,
emotional face assessment task, and shifted attention emotion appraisal task. Brain activations
that associated with childhood poverty previously were entered into a regression analysis with
interaction of gender by childhood income-to-need ratio as the independent variable, and age and
current income-to-need ratio as variables of no interest, separately for males and females. Results:
Amygdala reactivity to implicitly processed fearful faces was positively correlated with childhood
income-to-need in adult females but not males. On the other hand, activation in dorsolateral and
ventrolateral prefrontal regions during emotion regulation by reappraisal was positively correlated
with childhood income-to-need in males. Conclusion: Childhood poverty may exert sex-specific
effects in adulthood as presented by hypersensitive emotional reactivity of the amygdala in females,
and impaired emotion regulatory function of the prefrontal cortex in males. Results suggest further
focus on sex-specific effects of childhood poverty.
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1. Introduction

Childhood poverty is linked to increased risk of psychopathology and medical illness in adulthood
irrespective of adult socioeconomic status [1–6]. One in four children in America are born to poverty [7],
and identifying underlying mechanisms leading to long-term effects of poverty on physical and mental
health is important in developing measures to prevent these adverse effects. There is accumulating
evidence for anatomical and functional brain changes in adults as a result of childhood poverty,
suggesting a neurobiological nature to the effects of childhood poverty [8–13]. Previous work has
found this effect in brain regions involved in emotional response and emotion regulation. Changes in
amygdala volume, for example, have been repeatedly reported in adults with history of childhood
poverty [8–10]. Amygdala hyperactivity in response to threat and fear-related social cues has been
replicated in emotion provocation studies of adults with history of childhood poverty [11–13]. Reduced
cortical thickness in anterior cingulate volume was also liked to history of childhood poverty [14,15].
Our group has previously reported that: adults with a history of childhood poverty had lower
ventrolateral prefrontal cortex (VLPFC) and (dorsolateral prefrontal cortex) DLPFC activation during
cognitive appraisal of their emotional response to emotional faces [16], and in reappraisal of their
emotional response to negative pictures [17].

Although evidence for the sex-specific effects of stress and mental illness is abundant and
accumulating, the specific neurobiological mechanisms mediating sex-specific effects are largely
unknown. Women have a higher chance of developing major depressive disorder [18] as well as other
stress and anxiety-related disorders [19]. While affective and anxiety disorders are more common
among women, some disorders of regulatory function such as attention deficit hyperactive disorder,
conduct disorder [20], antisocial personality disorder [21], and completed suicide [22] are more
common in men. Sex-specific differences in stress response might mediate some of the differences
noted above. Cortisol is a key hormonal mediator of acute and chronic stress response in humans,
and administration of cortisol during fear conditioning reduces activation in emotion regulatory areas
(anterior cingulate, medial prefrontal, and orbitofrontal cortex) in men while increasing activation in
these areas in females [23]. Cortisol also reduces psychosocial stress-related amygdala responses
in men, while increasing it in women [24]. Females in general have larger startle response to
threat-related stimuli [25], and larger left amygdala responses to threat-related pictures [26]. Ohrmann
and colleagues [27] reported stronger amygdala and prefrontal cortical response to emotional faces in
women with panic disorder compared to men with the same disorder. These data suggest a generally
larger sensitivity to social cues in women than men [28,29]. There is also evidence for anatomical
differences in relation to emotion regulation strategies between men and women. In a study of frontal
cortical maturation, Vijayakumar and colleagues [30] found that greater maturational thinning of the
DLPFC and VLPFC cortices during adolescence was correlated with cognitive reappraisal abilities in
women, but not men.

With regards to sex-specific effects of poverty, we reported that women with childhood poverty
had a larger posterior insula response to infant cry than men with history of poverty [12]. There was
no main effect of poverty or gender observed in this area, and the observed effect was an interaction
of childhood poverty and sex. The effects of childhood poverty in our cohort, however, were not
always mediated by the indices of cumulative stress [13,16] suggesting that additional mechanisms
might mediate effects of childhood poverty on sex-specific differences. Clearly, more work examining
this question is needed, but the existing literature on such sex-specific effects of childhood poverty
is very limited. In the current work, we examined data from three (previously reported) emotion
provocation [13] and regulation tasks ([12,16] in a cohort of healthy adults with history of childhood
poverty, to explore sex-specific effects of childhood poverty in emotional reactivity and regulation.
In the context of the previous reports about the sex-specific effects of stress on emotion reactivity and
regulation (more pronounced aberrations of emotion reactivity in females and emotion regulation
in males), as well as the effects of poverty in the same areas, we expected to see more pronounced
amygdala activation in emotion provocation tasks in women with a history of childhood poverty,
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and less activation in prefrontal cortical areas of DLPFC and VLPFC in emotion regulation tasks in
men with childhood poverty. The brain areas which are chosen to explore in this analysis are based on
the previous reports of sex differences in emotion processing, the areas that the tasks used in this work
are meant to activate, and our previous findings of effects of childhood poverty on brain activation in
emotion processing.

2. Method

2.1. Participants

Healthy unmedicated Caucasian males and females without current or past axis I psychiatric
diagnosis confirmed by clinician-conducted Structural Clinical Interview for DSM-IV, enrolled in
a 20-year longitudinal cohort of poverty and child development study, were recruited for examining
the long-term effects of childhood poverty and stress [13,16,17,31]. The same participants participated
in the three tasks reported below. Imaging data for 49 (22 females), 49 (22 females), and 52 (24 females)
of these participants were available in the Emotion Regulation Task (ERT) [17], Shifted-Attention
Emotion Appraisal Task (SEAT) [16], and Emotional Face Assessment Task (EFAT) [13] respectively
for the current analysis. Half of the participants who were recruited at age 9 spent their childhood
in low-income households (income-to-need ratio less than 1.5 in New York State) and half grew
up in middle-income households (income to need ratio > 1.5). Income-to-need ratio is a per capita
index, adjusted annually for costs of living. A ratio equal to or less than 1.0 is defined by the US
Census Bureau as “poverty.” All participants were right-handed, and none had a major medical
illness or contraindication for MRI (e.g., metallic/ferrous materials in their body). This study was
approved by the University of Michigan and Cornell University Institutional Review Boards and all
participants provided informed consent. Demographic data are summarized in Table 1. Female and
male participants did not significantly differ in age, childhood income-to-need, current income-to-need,
or level of education.

Table 1. Demographic data of the two groups of participants in the three studies. EFAT: Emotional
Face Assessment Task; ERT: Emotion Regulation Task; SEAT: Shifting Emotion Attention Task.

Study Number of Participants M/F Age

EFAT 52 28/24 24.4 ± 1.2
ERT 49 27/22 23.6 ± 1.3

SEAT 49 27/22 23.7 ± 1.3

2.2. Experimental Tasks

Detailed descriptions of the tasks are available in original reports; briefly, in the EFAT task [13]
designed to examine amygdala reactivity, participants were asked to match one of the two faces on the
bottom to the emotion expressed by target face on top. These included angry, fearful, happy, and neutral
faces. In participants with history of childhood poverty, we have observed larger amygdala response to
Fearful > Happy faces, due to larger response to fearful, and smaller response to happy faces. In other
words, the lower the childhood income-to-need, the higher the response in amygdala to fearful faces,
and the lower to happy faces. In the ERT task [17], participants were instructed to “Look” at the neutral
IAPS pictures presented on the screen, “Maintain” (attend and experience naturally) the emotional
state elicited by the aversive pictures (probing explicit emotional response), or “Reappraise” and
voluntarily decrease the level of their negative affect in response to aversive pictures through cognitive
reappraisal [32]. Here we observed diminished emotion regulatory activation during reappraisal in
the DLPFC and VLPFC in relation to poverty. In the SEAT task [16], participants saw a picture of
a fearful or neutral face superimposed on a place, and were asked to either identify the gender of
the face (Male/Female), whether the place is indoor or outdoor (In/Out), or if they liked or disliked
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the face (Like/Dislike). Childhood poverty was correlated with impaired DLPFC function during
appraisal-related emotion regulation (Like/Dislike > Male/Female) for this task.

In summary, the EFAT examines implicit emotional reactivity of the amygdala to negative and
positive emotional faces, SEAT examines implicit regulation of emotional reactivity by appraisal or
attention, and ERT examines explicit regulation of emotional response by reappraisal.

2.2.1. Acquisition of MRI Data

All scanning was performed using a Philips 3 Tesla MRI scanner (Philips Medical Systems,
Andover, Massachusetts) in the functional MRI laboratory at the Veterans Affair Ann Arbor. A total
of 240 T2*-weighted echo planar gradient-recall echo volumes (echo time = 30 ms, repetition
time = 2000 ms, 64 × 64 matrix, flip angle = 90 degree, field of view = 22 cm, 42 contiguous 3 mm
axial slices per volume), were acquired for each task. Five additional volumes were discarded at the
beginning of each run to allow for equilibration of the MRI signal. A high-resolution T1-weighted
structural image was also obtained to provide for more precise anatomical localization.

2.2.2. MRI Data Analysis

Details of the preprocessing and first-level analysis can be found in the original reports describing
data analysis for each of the tasks [13,16,17]. Data were analyzed using the statistical parametric
mapping software package, SPM8 (Welcome Department of Cognitive Neurology, London, UK).

For the EFAT task, first-level models consisted of regressors for task conditions (angry, fearful,
happy, neutral blocks) as well as nuisance regressors consisting of the motion correction parameters
from the realignment preprocessing step. We extracted betas for Fearful > Happy contrast using
bilateral anatomical (AAL) amygdala masks to examine possible sex-specific implicit emotional
response to the faces. We then entered these extracted betas into a regression analysis with childhood
income-to-need ratio, gender, and their interaction as the independent variable, and age and current
income-to-need ratio as variables of no interest.

For the ERT task, the first-level contrasts included Look (baseline response to neutral images),
Maintain > Look (Explicit emotional reactivity), and Reappraise > Maintain (reappraisal-related
emotion regulation). A multiple regression was performed with the brain activation as dependent
variable, the childhood income-to-needs ratio as an independent variable and the current
income-to-needs ratio and age as a covariate of no interest. An initial voxel-wise threshold of p < 0.005
and a minimum cluster size of 265 voxels for the Reappraisal vs. Maintain contrast gave a corrected
p < 0.05. The Region of Interest (ROI) for VLPFC was created by placing an 8 mm radius sphere
at the left VLPFC peak (x, y, z = −50, 22, 6). To examine reappraisal-related emotion regulation,
betas from this ROI, and DLPFC region (x, y, z = −40, 12, 28; 343 voxels; p < 0.05, corrected) were
extracted for the contrast Reappraise > Maintain. To ascertain effects of explicit emotional response
and explore their consistency with the effects found to the implicit emotional response during EFAT,
the “Maintain > baseline” contrast in the ERT task was created to probe explicit emotional reactivity
in amygdala. We thus extracted betas for the contrast “Maintain > baseline” for the left and right
amygdalas using anatomical AAL bilateral amygdala masks. We then entered these extracted betas
into a regression analysis with childhood income-to-need ratio, gender, and their interaction as the
independent variable, and age and current income-to-need ratio as variables of no interest.

For the SEAT task, first-level contrast was Like/Dislike > Male/Female (which probes
appraisal-related emotion regulation). To ascertain presence of sex-specific effects on implicit emotion
regulation, and explore their consistency with the effects found during explicit emotional regulation
in the ERT, betas for the DLPFC region were extracted from Like/Dislike > Male/Female contrast
using an AAL anatomical mask. We then entered these extracted betas into a regression analysis with
childhood income-to-need ratio, gender, and their interaction as the independent variable, and age
and current income-to-need ratio as variables of no interest.
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Analyses were done using the SPSS software (version 21, IBM, Armonk, NY, USA), with a p value
threshold set at <0.05.

3. Results

Results of the regression analysis are summarized in Table 2. For brevity, only areas where there
is an effect of gender, or gender by childhood income-to-need ratio are presented in the table.

Table 2. Results of regression analysis: only results with significant gender, or gender by childhood
income-to-need ratio effects are presented. EFAT = Emotional Face Assessment Task, ERT: Emotion
Regulation Task, SEAT: Shifted-Attention Emotion Appraisal Task, CITN: childhood income-to-need
ratio, AITN: current adult income-to-need ratio.

Task/Brain Region Beta Coefficient T-Ratio Significance Level

EFAT Right Amygdala Fearful > Happy

Age −0.43 −1.64 0.11
CITN −0.78 −2.86 0.007
AITN 0.45 0.126 0.9

Gender −5.43 −1.75 0.087
Gender by Age 4.73 1.62 0.11

Gender by AITN −0.28 −0.67 0.51
Gender by CITN 0.80 2.25 0.03

EFAT Right Amygdala Fearful

Age −0.61 −2.39 0.02
CITN −0.65 −2.42 0.02
AITN 0.16 0.05 0.96

Gender −10.80 −3.58 0.001
Gender by Age 10.17 3.60 0.001

Gender by AITN 0.86 2.48 0.017
Gender by CITN −0.14 −0.34 0.74

ERT DLPFC Reappraise > Maintain

Age −0.63 −2.12 0.04
CITN −5.41 −1.20 0.05
AITN 4.16 1.03 0.3

Gender −5.01 −2.24 0.03
Gender by Age 4.98 2.23 0.03

Gender by AITN −4.17 −1.04 0.30
Gender by CITN 5.71 2.18 0.03

ERT VLPFC Reappraise > Maintain

Age −0.53 −1.58 0.12
CITN −5.67 −1.84 0.07
AITN 6.73 1.47 0.15

Gender −5.20 −2.05 0.046
Gender by Age 5.21 2.07 0.05

Gender by AITN −6.82 −1.51 0.14
Gender by CITN 5.78 1.95 0.05

3.1. Emotional Face Assessment Task (EFAT)

Childhood income-to-need ratio (B = −0.78, t(51) = −2.86, p = 0.007), but not gender (B = −5.43,
t(51) = −1.75, p = 0.087) predicted brain activation in right amygdala in the contrast Fearful > Happy.
There was a significant interaction of gender and childhood income-to-need ratio predicting brain
activation in right amygdala in this contrast (B = 0.80, t(51) = 2.25, p = 0.03). Betas from regression
were significantly different between males and females (t(48) = 5.10, p < 0.001), Figure 1. To determine
the direction of changes contributing to the observed effect, we did the same regression analysis for
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Fearful, and Happy faces separately, in both males and females. Right amygdala activation in response
to Fearful faces was predicted by childhood income-to-need ratio (B = −0.65, t(51) = −2.42, p = 0.02),
gender (B = −10.80, t(51) = −3.58, p = 0.001), and interaction of gender and childhood income-to-need
ratio (B = 0.86, t(51) = 2.48, p = 0.017). Betas were significantly different between males and females
(t(48) = 10.56, p < 0.001). Right amygdala activation in response to Happy faces was not predicted by
interaction of gender and childhood income-to-need ratio (B = −0.36, t(51) = −0.97, p = 0.34).
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Figure 1. Right amygdala activation in response to Fearful > Happy faces in males and females in the
Emotional Face Assessment Task (EFAT) tasks.

Left amygdala activation in the contrast Fearful > Happy was predicted by childhood
income-to-need ratio (B = −0.70, t(51) = −2.47, p = 0.02), but not by gender (B = −3.75, t(51) = −1.16,
p = 0.3). Gender interaction by childhood income-to-need ratio did not predict brain activation in left
amygdala in the contrast Fearful > Happy (B = 0.57, t(51) = 1.53, p = 0.13).

3.2. Emotion Regulation Task (ERT)

To examine sex-specific explicit emotional reactivity in the amygdala in response to negative IAPS
pictures, we examined the contrast “Maintain > baseline”. In this contrast, childhood income-to-need
ratio, gender, or the interaction of gender and childhood income-to-need ratio did not predict activation
in left (B = 0.60, t(48) = 1.57, p = 0.13) or right amygdala (B = −0.32, t(48) = −0.72, p = 0.48).

To assess reappraisal-related emotion regulation in the left DLPFC and VLPFC in association with
childhood poverty for males and females, separately, we examined the contrast Reappraise > Maintain
(reappraisal-related emotion regulation). Left DLPFC activation was predicted by childhood
income-to-need ratio (B = −5.41, t(51) = −1.20, p = 0.05), gender (B = −5.01, t(51) = −2.24, p = 0.03),
and interaction of gender and childhood income-to-need ratio (B = 5.71, t(48) = 2.18, p = 0.03).
Betas were significantly different between males and females t(45) = 3.99, p < 0.001). In the same
contrast, left VLPFC activation was marginally predicted by childhood income-to-need ratio (B = −5.67,
t(51) = −1.84, p = 0.07), and significantly predicted by gender (B = −5.20, t(51) = −2.05, p = 0.046) and
interaction of gender and childhood income-to-need ratio (B = 5.78, t(48) = 1.95, p = 0.05). Betas were
significantly different between males and females t(45 = 2.54, p = 0.014).
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3.3. Shifted-Attention Emotion Appraisal Task (SEAT)

To examine sex-specific differences in implicit emotion regulation using appraisal, we examined
the contrast Like/Dislike > Male/Female. In the contrast Like/Dislike > Male/Female (appraisal-related
emotion regulation), left DLPFC activation was marginally predicted by childhood income-to-need ratio
(B = 0.49, t(51) = 1.81, p = 0.07), but not predicted by gender (B = 1.34, t(51) = 0.43, p = 0.7) or interaction
of gender and childhood income-to-need ratio (B = −0.45, t(48) = −0.13, p = 0.9).

4. Discussion

In this work, we aimed to explore sex-specific effects in a sample of healthy adults with history
of childhood poverty. We examined sex-specific effects in implicit and explicit emotional reactivity,
using EFAT and ERT accordingly. We also examined sex-specific effects of childhood poverty on
implicit and explicit emotional regulation, using appraisal condition in SEAT and reappraisal condition
in ERT, accordingly. Our findings suggest that the effects of poverty on implicit emotional reactivity
in amygdala are mainly seen in females. The previously observed negative bias toward social fear
cues (fearful faces) and away from positive cues (happy faces) in the EFAT task was derived by the
female group. This effect was specifically more pronounced on the right side. Interestingly, this effect
was not present during explicit emotional reactivity (ERT Maintain > baseline contrast). On the other
hand, deficits in brain activation in explicit reappraisal-related emotion regulation were an effect of
male participants.

Although human studies of sex-specific effects of early life stress on brain anatomy and function
are scarce, animal research provides intriguing evidence for sex-specific effects. Hypothalamus
Pituitary Axis (HPA) reactivity is more susceptible to prenatal stress in female rats such that adult
female rats show larger corticosterone level at baseline and in response to stress [33,34]. Female rats
with early life stress exhibit greater nociceptive responses than males with early life stress [35,36].
Even central administration of female hormones can induce visceral hypersensitivity in female rats [37].
In humans, the social stress test, which triggers a robust HPA response and increases cortisol level,
shows sex-specific effects on fear conditioning. This effect is very much in concert with our findings
and suggests reduced prefrontal activation in males, and increased amygdala activation in females in
response to the fear-conditioned stimulus [24]. Also, administration of cortisol in a fear-conditioning
study led to reduced activation in prefrontal regulatory areas in men, and increased activation in these
areas in women in response to conditioned stimulus [23]. Our findings suggest sensitized implicit
amygdala reactivity to emotional faces as an effect of childhood poverty in adult females. This is
in line with previous reports of larger amygdala response to threat pictures in healthy females [26],
and emotional faces in female patients with anxiety disorders ([27]. Indeed, prevalence of anxiety
disorders is higher in adolescents with history of childhood poverty (for a review see [5]). It is thus
possible that a more sensitive salience detection in female amygdala in response to social cues [28]
may lead to sensitization to negative social signals as an effect of early life stress, as well as to
subsequent development of anxiety disorders with heightened threat detection. Explicit awareness of
the emotional response to aversive stimuli (ERT Maintain task) did not show the sex-specific effects of
poverty in amygdala activity, which were observed during implicit emotional reactivity (EFAT task).
Emotional faces processed implicitly might be a more sensitive probe of amygdala reactivity than
explicit processing of emotional pictures that might involve some measure of cognitive processing.
Interaction effects in amygdala were lateralized, and seen on the right side and in females. Multiple
studies have previously shown left amygdala response to emotional pictures, or recall of emotional
memories in females, and right amygdala response in males [26,38,39]. Absence of similar findings in
the left amygdala in our study (B = 0.565, t(48) = 1.53, p = 0.13) could be due to the small sample size
and low power. On the other hand, right amygdala response could be more vulnerable to the effects
of poverty.

Our findings of impaired function in the emotion regulatory areas as an effect of poverty in males
is consistent with some earlier findings reported in the animal and human literature. Several animal
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studies have shown that adult male, but not female, rats with prenatal or infancy exposure to stress
had decreased dendritic complexity in medial prefrontal cortex (mPFC) and prelimbic cortex [40].
Blaze and colleagues [41] showed sex-specific changes in methylation of BDNF and reelin genes in
the mPFC in male mice maltreated during infancy. Their findings suggest sex-specific epigenetic
changes in expression of genes with a role in brain development and synaptic plasticity in emotion
regulatory areas in male mice. Similarly in human studies, [27] cortisol reduced mPFC activation in
fear-conditioning paradigm in males, but not females. This indirect evidence is consistent with our
findings, and together suggest that structure and function of the prefrontal emotion regulatory areas
in males might be more sensitive to developmental effects in general and to stress effects in particular.

Several limitations of the reported findings have to be acknowledged. Our low sample size might
have led to limited power in detection of gender by childhood income-to-need interaction. The imaging
tasks were not designed to probe differences in emotional processing between males and females,
thus more gender-specific paradigms and analyses (e.g., differential response to female or male threat
faces, or gender-specific negative images) could provide more specific data for possible threat-specific
differences in neural responses of men and women. Secondly, while the absence of sex-specific effects
in amygdala reactivity in the ERT task and the presence of these effects in the EFAT could be, as we
suggested, due to difference between explicit and implicit emotional reactivity, other between-task
differences could have contributed to these “inconsistencies.” ERT tasks involved presentation of
aversive IAPS images, and not faces, and some previous studies reported higher amygdala activation
in response to negative emotional faces than to negative IAPS images [42,43]. Weaker responses to
pictures compared to faces may have reduced our power of detecting possible effects in amygdala in
response to IAPS pictures. Furthermore, as is inherent to the majority of laboratory studies, complexity
and intensity of the emotional stimuli are lower than in real-life experiences. Hence, expanding
the results into in vivo emotion processing should be done cautiously. Finally, our work does not
address the question of which mechanisms accompanying early life experience of poverty can lead to
differential effects in neurocircuitry of emotion processing between males and females.

5. Conclusions

In summary, this is the first report on sex-specific effects of childhood poverty on social emotional
processing and regulation. Our findings suggest differential effects of childhood poverty, such that in
females it is associated with higher threat detection response in amygdala (and smaller response to
positive social cues), while in males with impaired function of emotion regulatory regions. Our findings
underline the importance of exploration of possible differential effects of early life stress, as well as
poverty in larger studies, as these differences have been rarely explored. These results also suggest
exploring possible sex-specific behavioral consequences of childhood stress (e.g., possibility of higher
avoidance behavior due to higher threat detection in females versus impulsivity in males). However,
at this stage, more studies exploring these differential effects are needed to map the potential differences
in underlying neurocircuitry.
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