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Abstract: Kentucky is one of the largest coal-producing states; surface coal mining has led to changes
in natural land cover, soil loss, and water quality. This study explored relationships between ac-
tively mined and reclaimed areas, vegetation change, and water quality parameters. The study
site evaluated 58 watersheds with Landsat-derived variables (reclamation age and percentage of
mining, reclaimed forest, and reclaimed woods) as well as topographic variables (such as eleva-
tion, slope, drainage density, and infiltration). Water samples were collected in spring (n = 9),
summer (n = 14), and fall (n = 58) 2017 to study changes in water quality variables (SO4

2−, alka-
linity, conductivity, Ca2+, Mg2+, Mn2+, Al3+, and Fe2+, Fe3+) in response to changes in land cover.
Pearson correlation analyses indicated that conductivity has strong to very strong relationships
with water quality variables related to coal mining (except Al3+, Fe2+, Fe3+, Mn2+, elevation, slope,
and drainage density) and land cover variables. In addition, separate regression analyses were
performed, with conductivity values based on samples collected in the fall. First, conductivity re-
sponses to mining percentage, reclamation age and topographic variables were examined (adjusted
R2 = 0.818, p < 0.01). Next, vegetation cover change parameters were added to the same model, which
yielded slightly improved R2 (adjusted R2 = 0.826, p < 0.01). Finally, reclamation age and mining per-
centages were used to explain the quantity of reclaimed forested areas as a percentage of watersheds.
The model was significant (p < 0.01), with an adjusted R2 value of 0.641. Results suggest that the
quantity (area as a percentage) of reclaimed forests may be a predictor of the mining percentage and
reclamation age. This study indicated that conductivity is a predictable water quality indicator that is
highly associated with Coal-Mine-Related Stream Chemistry in areas where agriculture and urban
development are limited. Water quality is not suitable for various purposes due to the presence of
contaminants, especially in mined sites. These findings may help the scientific community and key
state and federal agencies improve their understanding of water quality attributes in watersheds
affected by coal mining, as well as refine land reclamation practices more effectively while such
practices are in action.

Keywords: Appalachia; coal mining; conductivity; reclamation; remote sensing; vegetation change;
water quality

1. Introduction

Coal deposits were formed millions of years ago, before dinosaurs roamed the earth,
and have been used by our ancestors for the past 25,000 years [1]. They are the largest
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source of energy in the world, with significant reserves in the U.S., China, Russia, Australia,
and India [2]. In the U.S., there are three major regions in 25 states with coal mining
activities generating more than fifty percent of the electricity produced in the nation [3].
The Appalachian region, including Kentucky, Tennessee, Virginia and West Virginia, pro-
duces more than one-third of the coal in the nation [2]. Mining activities increased rapidly
throughout the world due to the high demand for precious minerals and energy in re-
cent decades, accounting for a total of 17.3 billion tons in 2020 [4] from a global area of
101,583 km2 [5,6].

Water is an essential natural resource; however, human activities, including land use
and climate change, impact both water quantity and quality, which create scarcity issues
and threaten aquatic biodiversity [7]. The impacts of coal mining activities on surface
and groundwater quality have been documented by various authors [8–11]. Coal mining
is one of the dominant factors degrading water quality in the Appalachia region, where
hundreds of headwater streams are impacted [12–15]. Coal mining releases numerous
pollutants directly or indirectly; the coal fuel cycle is among the most dangerous activity on
the earth’s ecosystem, threatening human health; contaminating air, water, soil, sediment,
and vegetation; and contributing to global warming [3,10,16,17].

Commercial coal production started in Kentucky before it was recognized as a state.
In 1790, 18 tons (20 short tons) of coal was produced in the first commercial coal operation
in what is now Lee County. The demand for energy led to an increase in coal production, in
which peak levels exceeded 162 million tons in 1990 [18]. Kentucky was the fifth-largest coal-
producing state in 2016, with 42 million tons of coal produced [19]. Although production
has declined consistently since 1990, seventy-nine percent of Kentucky’s net electricity
generation was coal-fired in 2017 [19].

Even though coal-generated electricity is less expensive than other energy sources,
its impact on the environment is under debate [12,20]. The Surface Mining Control and
Reclamation Act (SMCRA) of 1977 created two programs: one for regulating active coal
mines and a second for reclaiming abandoned mine lands [21]. Many studies, however,
have shown that reclamation practices often yield ineffective results [12,20,22,23].

Major coal mining impacts generally observed in Kentucky and Central Appalachia
are natural land cover loss, hydrological pattern changes, valley fill, acid drainage, and
water quality degradation (Figure 1) [20]. Mountaintop coal mining, a method widely used
in the Appalachian region, involves blasting rocks, clearing forests, and removing soil to
reach coal reserves [24,25]. For example, the landscape was greatly modified by smelting
and mining activities in Copperhill, Tennessee, located in the Blue Ridge Mountains at the
convergence of northern Georgia; western North Carolina; and southern Tennessee [26].
Activities began in 1854 and resulted in a desert-like landscape during the 1900s [26].
Central Appalachia has the highest earth movement rate in the United States, with each
surface mine generating large quantities of spoil that are typically translocated to stream
valleys close to mining areas [27]. The mountaintop removal of coal mining requires
forest clearing, which in some cases may be visible on a 1:3,000,000 scale from National
Agriculture Imagery Program (NAIP) aerial images. Mountaintop mining poses a potential
threat to intact characteristics of Appalachian forests [28]. Interior forest loss (a change in
the interior forest to the forest edge) in southern Appalachia between 1991 and 2002 was
1.75 to 5 times higher than direct forest loss (loss from edges), which may have been the
result of mountaintop mining [27]. Land cover alterations from active mines to reclaimed
mines in central Appalachia almost entirely occurred in forested areas [20].

Gastauer et al. (2018) described that modern functional and phylogenetic approaches
proved to be powerful tools to enhance the success of mine land rehabilitation processes
with the application of additional advanced techniques such as remote sensing and metabar-
coding [28]. There is a science-based reclamation and closure plan in action to minimize
coal mining impacts on the environment; however, there are still high concentrations of
contaminants widespread in the environment, despite extensive remediation efforts by the
US EPA, other federal agencies, and state agencies [29].
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Figure 1. Effects of coal mining on stream water. Left side of valley (unmined): natural infiltration, 
precipitation infiltrated efficiently (e.g., trees intercept rain, roots create porosity, topsoil provides 
effective infiltration). Right side of valley (mined): poor infiltration, stream pollution proportionally 
with mined area, surface flow not tolerated properly (e.g., compacted soil, topsoil loss). The figure 
was created by Oguz Sariyildiz. 

Gastauer et al. (2018) described that modern functional and phylogenetic approaches 
proved to be powerful tools to enhance the success of mine land rehabilitation processes 
with the application of additional advanced techniques such as remote sensing and 
metabarcoding [28]. There is a science-based reclamation and closure plan in action to 
minimize coal mining impacts on the environment; however, there are still high concen-
trations of contaminants widespread in the environment, despite extensive remediation 
efforts by the US EPA, other federal agencies, and state agencies [29]. 

The Forest Reclamation Approach (FRA) provides a set of guidelines that are based 
on research conducted over several decades to promote the regrowth of forests on re-
claimed mine lands, which requires using loose soil [23]. This could potentially lead to the 
elevated concentration of ions and metals; moreover, the effect of FRA on water quality 
needs further investigation [25]. The potential for total dissolved solids–source–control 
practices that incorporate FRA may improve mine water quality [23]. The effect of FRA 
on water quality may require additional data on the spatial extent of FRA locations and 
reclamation age. 

Reclaimed forests and other areas can be detected with remote sensing techniques 
[30,31] and assessed against water quality. Wei et al. (2011) found that, after seven years 
of monitoring, water quality improvement was more obvious in sub-watersheds that were 
heavily affected by past mining activities and reclaimed by reforestation than in lands 
with abandoned mines [32]. These findings demonstrate that good reclamation practices 
can have a positive influence on water quality over time. 

Besides forest loss, surface coal mining may have a significant effect on soil hydro-
logical properties [33]. Surface mining may have negative effects on watershed hydrologic 
characteristics [22,34]. As shown in Figure 2, valley fills can bury headwater streams under 
tens to hundreds of meters of spoil [24,25], which minimizes the drainage capacity of a 
valley [33,35]. 

Figure 1. Effects of coal mining on stream water. Left side of valley (unmined): natural infiltration,
precipitation infiltrated efficiently (e.g., trees intercept rain, roots create porosity, topsoil provides
effective infiltration). Right side of valley (mined): poor infiltration, stream pollution proportionally
with mined area, surface flow not tolerated properly (e.g., compacted soil, topsoil loss). The figure
was created by Oguz Sariyildiz.

The Forest Reclamation Approach (FRA) provides a set of guidelines that are based on
research conducted over several decades to promote the regrowth of forests on reclaimed
mine lands, which requires using loose soil [23]. This could potentially lead to the elevated
concentration of ions and metals; moreover, the effect of FRA on water quality needs further
investigation [25]. The potential for total dissolved solids–source–control practices that
incorporate FRA may improve mine water quality [23]. The effect of FRA on water quality
may require additional data on the spatial extent of FRA locations and reclamation age.

Reclaimed forests and other areas can be detected with remote sensing techniques [30,31]
and assessed against water quality. Wei et al. (2011) found that, after seven years of
monitoring, water quality improvement was more obvious in sub-watersheds that were
heavily affected by past mining activities and reclaimed by reforestation than in lands with
abandoned mines [32]. These findings demonstrate that good reclamation practices can
have a positive influence on water quality over time.

Besides forest loss, surface coal mining may have a significant effect on soil hydrolog-
ical properties [33]. Surface mining may have negative effects on watershed hydrologic
characteristics [22,34]. As shown in Figure 2, valley fills can bury headwater streams under
tens to hundreds of meters of spoil [24,25], which minimizes the drainage capacity of a
valley [33,35].

Clark and Zipper (2016) researched hydrologic differences in a reforested area and
a grass-covered area that were reclaimed 14 years prior to the study with similar pro-
cesses [36]. The reforested area had a higher infiltration rate and the grassy area had more
surface flow paths; however, the water quality in these two areas was not documented (e.g.,
Figure 3).
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Figure 2. Two Valley fills side by side near Chavies, Kentucky [37.373367, 83.351092]. Valley fill is 
an engineered earthen and rock structure where excess soil and rocks are deposited from surface 
mining or, in some cases, underground mining. They built in approximately 1995 (right) and 2013 
(left). They are 350 m. and 300 m. deep, respectively. Source: Google Earth. 
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The Clean Water Act Amendment of 1972 (CWA) established standards for regulating 
pollutant discharges into surface water [37]. However, groundwater and surface water 
from mined areas may be contaminated with numerous toxic solutes such as sulfate 
(SO42−), iron (Fe), aluminum (Al), and selenium (Se) [38,39]. Increased conductivity, pH 
changes, and elevated dissolved ion levels are commonly found in streams near surface 
mines [12]. A relationship exists between water quality degradation and coal mining at 
various scales of watersheds, for example, elevated SO42−, alkalinity, conductivity, Ca2+, 
Mg2+, Mn2+, Al3+, and Fe2+,3+ [12,23,40–42]. 

Green et al., (2000) found that conductivity fluctuated seasonally and was highest in 
summer and lowest in spring, which may be due to the dilution effect of water in the 
watershed [43]. Similarly, in consecutive seasons, conductivity was two or more than two 
folds in mined watersheds than unmined watersheds [43,44], (Table 1). These findings 
suggest that precipitation or seasonal conditions may affect the results; however, differ-
ences between unmined and mined areas are stable if water samples are collected under 
the same conditions, e.g., at the same season and on a clear day without rain. 

Figure 2. Two Valley fills side by side near Chavies, Kentucky [37.373367, 83.351092]. Valley fill is
an engineered earthen and rock structure where excess soil and rocks are deposited from surface
mining or, in some cases, underground mining. They built in approximately 1995 (right) and 2013
(left). They are 350 m and 300 m deep, respectively. Source: Google Earth.
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Figure 3. Photos from the same scene (near Whitesburg, Kentucky [37.031036, −82.710169] in differ-
ent years. It displays how surface mining affects the natural land cover and the appearance of land 
cover during recovery. Mined areas from 1995 turned to woods while mined areas from 2005 turned 
to grass and bush. 

Table 1. Seasonal mean conductivity (µS/cm) values for four classes of streams (unmined, valley 
filled, valley fill with residences, and mined with no valley fill) from [43]. n represents the sample 
size. Numbers in parentheses are standard deviations. Unmined: non-mined areas; filled: Valley fills 
with coal mine spoils; filled/Residential: Valley fills and residential areas together; mined: Mined 
areas without valley fills. 

Season Unmined Filled Filled/residential Mined 
Spring 1999 64 (19) n = 9 946 (614) n = 15 652 (237) n = 6 172 (90) n = 4 

Summer 1999 140 (54) n = 2 1232 (643) n = 15 1124 (282) n = 6 385 (202) n = 3 
Autumn 1999 91 (59) n = 2 958 (430) n = 14 984 (221) n = 6 260 n = 1 
Winter 2000 73 (29) n = 9 836 (425) n = 14 844 (173) n = 6 254 (171) n = 3 
Spring 2000 58 (28) n = 10 643 (382) n = 15 438 (249) n = 6 192 (155) n = 5 

Figure 3. Photos from the same scene (near Whitesburg, Kentucky [37.031036, −82.710169] in different
years. It displays how surface mining affects the natural land cover and the appearance of land cover
during recovery. Mined areas from 1995 turned to woods while mined areas from 2005 turned to
grass and bush.
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The Clean Water Act Amendment of 1972 (CWA) established standards for regulating
pollutant discharges into surface water [37]. However, groundwater and surface water from
mined areas may be contaminated with numerous toxic solutes such as sulfate (SO4

2−),
iron (Fe), aluminum (Al), and selenium (Se) [38,39]. Increased conductivity, pH changes,
and elevated dissolved ion levels are commonly found in streams near surface mines [12].
A relationship exists between water quality degradation and coal mining at various scales
of watersheds, for example, elevated SO4

2−, alkalinity, conductivity, Ca2+, Mg2+, Mn2+,
Al3+, and Fe2+,3+ [12,23,40–42].

Green et al., (2000) found that conductivity fluctuated seasonally and was highest
in summer and lowest in spring, which may be due to the dilution effect of water in the
watershed [43]. Similarly, in consecutive seasons, conductivity was two or more than two
folds in mined watersheds than unmined watersheds [43,44], (Table 1). These findings
suggest that precipitation or seasonal conditions may affect the results; however, differences
between unmined and mined areas are stable if water samples are collected under the same
conditions, e.g., at the same season and on a clear day without rain.

Table 1. Seasonal mean conductivity (µS/cm) values for four classes of streams (unmined, valley
filled, valley fill with residences, and mined with no valley fill) from [43]. n represents the sample
size. Numbers in parentheses are standard deviations. Unmined: non-mined areas; filled: Valley fills
with coal mine spoils; filled/Residential: Valley fills and residential areas together; mined: Mined
areas without valley fills.

Season Unmined Filled Filled/Residential Mined

Spring 1999 64 (19) n = 9 946 (614) n = 15 652 (237) n = 6 172 (90) n = 4
Summer 1999 140 (54) n = 2 1232 (643) n = 15 1124 (282) n = 6 385 (202) n = 3
Autumn 1999 91 (59) n = 2 958 (430) n = 14 984 (221) n = 6 260 n = 1
Winter 2000 73 (29) n = 9 836 (425) n = 14 844 (173) n = 6 254 (171) n = 3
Spring 2000 58 (28) n = 10 643 (382) n = 15 438 (249) n = 6 192 (155) n = 5

Coal mining typically releases pyrite (FeS2), which forms in association with coal [45–49].
When pyrite comes in contact with water and oxygen, it is oxidized by autotrophic bacteria,
leading to acid mine drainage (Equation (1)) [50]:

FeS2 + 3.75O2 + 3.5H2O → Fe(OH)3↓ + 2SO4
2− + 4H+ (1)

Carbonate minerals, e.g., calcite (CaCO3) and dolomite (CaMg(CO3)2), can neutralize
the acidity (Equations (2) and (3)) [51].

2CaCO3 + 2H+ → 2Ca2+ + 2HCO3
− (2)

CaMg(CO3)2 + 2H+ → Ca2+ + Mg2+ + 2HCO3
− (3)

Using the equations above, in addition to previous studies, SO4
2−, alkalinity, con-

ductivity, Ca2+, Mg2+, Mn2+, Al3+, and Fe2+,3+ values in streams near coal mines can be
described as coal-mine-related stream chemistry (CMRSC).

Topographic variables may play a role in stream chemistry, even though coal mine wa-
ter quality researchers have rarely used them. Some land cover change (urban; agriculture)
studies utilized topographic variables as contributing factors to stream chemistry [52,53].
Chen and Lu (2014) found that the mean watershed elevation and slope significantly corre-
lated with conductivity [53]. In contrast, Haidary et al. (2013) did not find any significant
relationship among the watershed slope, drainage density, and conductivity [52]. Bhatt
et al. (2018) found a very strong correlation with the elevation and electrical conductivity
along the pristine watershed from central Himalaya [54]. Pond et al. (2008) did not find
any relation between elevation and stream chemistry in coal mine sites because the role
of elevation in regulating stream chemistry was negligible in comparison to the acidic
environment that controls the dissolution process and overall biogeochemical dynamics
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within the landscape [41]. For example, the most acidic waters that were measured perco-
lated through an underground mine near Reading in California. According to the USGS
study, Iron Mountain California’s mine water measured exceptionally high concentrations
of sulfate with the pH value of 0.5, as reported by [10]. The site is undergoing remediation
by the US EPA [55].

Various studies have documented a negative correlation between coal mining and
the health of local ecology, stream habitat, community structure, and ecosystem func-
tions [56–58]. Prior studies have focused on water quality degradation [12,23,44,45] or land
change due to coal mining [20,27], whereas few studies have focused on CMRSC in mined
watersheds along with land change [42,58,59], specifically the vegetation cover change in
eastern Kentucky. Among those studies that have been conducted, Hopkins et al. (2013)
found a high correlation between the mining percentage and SO4

2− and conductivity, while
Hopkins et al. (2013) and Merriam et al. (2015) created a general linear model between
land use (surface mining, residential development, and underground mining) and specific
conductivity [42,59]. Future comprehensive research should focus on the interrelationship
among land, vegetation, and water quality changes over time after disturbances caused
by active mining and reclamation [42]. Moreover, data are needed to determine how the
spatial and temporal extent of surface coal mining affects the watershed based on the
vegetation cover change, reclamation age, and topographic factors. The aim of the current
research was to examine how coal mining affects the water quality and temporal vegetation
cover change between 1986–2017 in mined watersheds on a regional scale.

2. Materials and Methods
2.1. Study Site

This research was conducted in eastern Kentucky, U.S.A. (Figure 4). The research
area covers Johnson Creek, Troublesome Creek, and Quicksand Hydrologic Unit Code
10 (HUC10) watersheds in Magoffin, Knott, Perry, and Breathitt Counties. The research
area was approximately 1768 sq. km, including 58 stream reach watersheds, which were
sub-watersheds of HUC10 watersheds (Figure 5). Stream reach watersheds ranged from
2.65 km2 to 16.94 km2. This study defined unmined watersheds as those that were less
than 5% mined [59,60]. Similarly, since fertilizer usage would have affected conductivity,
watersheds that did not have combined developed and agricultural lands that exceeded
5% were selected in this study to control the agriculture and urban effects on CMRSC.
The research area contained various watersheds that were 2.5% to 90% mined and had a
reclamation age range from 4 years to 29 years.
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2.2. Data Collection, Preparation, and Analysis
2.2.1. Water Samples, Data Collection, and Analysis Method

National Hydrography Dataset (NHD) 100K stream shapefile (USGS 2007–2014),
HUC10 watershed polygons (USGS 2007–2014), and stream reach watersheds (Kentucky
Division of Mine Permits 2004) were used to determine watershed boundaries and water
sample locations. Three field trips were conducted to collect water samples: 15 May 2017
(spring), 21–24 July 2017 (summer), and 21–25 October 2017 (fall). The weather was stable
and there was no surface runoff for any of the sampling days. During the first two trips,
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9 (spring) and 14 (summer) water samples were collected at drainage exit points. Any wa-
ter sample collected from the watersheds’ exit points represented the watersheds according
to their geological structures and land cover types [42]. Under dry (no precipitation) condi-
tions, a perennial stream in a watershed is recharged by groundwater and all stream water
exits through the lowest elevation point within the watershed. Three water samples were
collected from each exit point at five-meter-intervals towards the headstream.

This study followed Kentucky ambient/watershed water quality monitoring proce-
dures for collecting water samples [61]. Water samples were collected in high-density
polyethylene (HDPE) bottles that were cooled to 4 ◦C. The samples collected in the spring
and summer were sent to the West Virginia University National Research Center for Coal
and Energy Water Analysis Lab for analysis. The samples were filtered at the laboratory
through 11-micron filter paper (Whatman 1001–125, Pennsylvania, USA) to separate the
sediments from the water. The samples were then analyzed for SO42−, alkalinity, con-
ductivity, Ca2+, Mg2+, Mn2+, Al3+, and Fe2+,Fe3+. In the fall, the third water sampling
analysis was conducted for in situ conductivity measurements with a larger sample size
(n = 58) using a Hydrolab Quanta Water Probe (OTT Hydromet, Kempten, Germany). The
conductivity levels were measured at the drainage exit points during the sampling. Data
from the spring and summer sampling were used for a bivariate correlation analysis. Data
from the fall visit, which had the largest sample size, were used in the regression models.
Figure 6 is the schematic of water quality, data preparation, and analysis steps.
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2.2.2. Vegetation Cover Change Data Collection and Analysis Method

We used ArcGIS Desktop 10.5 for all GIS analyses [62]. Landsat and National Aerial
Imagery Program (NAIP) images, and Digital Orthophoto Quadrangle images acquired
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between 1986 and 2017 (NASA Landsat Program 1986-2017; Kentucky Geography Network
1990-2016). Additionally, the National Land Cover Dataset (NLCD) was downloaded from
Multi-Resolution Land Characteristics Consortium (MRLC 1992-2011). These images were
compiled for the mined and unmined boundaries to derive the vegetation cover data and
accuracy assessment. Spectral reflectance values of near infrared (NIR) wavebands are
commonly used in combination with other spectral bands to detect different land cover
classes [63–66]. Satellite images are particularly beneficial for detecting the land cover
conversion from the natural vegetation cover (e.g., deforestation [67–71].

Sen et al. (2012) and Li et al. (2015) compared four different vegetation indices
(Normalized Difference Vegetation Index [NDVI], Normalized Difference Moisture Index
[NDMI], Normalized Burn Ratio [NBR], and Tasseled Cap Green-Blue [TC G-B]) for known
land covers (barren; vegetation) to delineate coal-mine-disturbed areas [72,73]; NDVI
provided the most accurate results.

NDVI = (NIR − RED)/(NIR + RED) (4)

We followed a methodology by Kriegler et al. (1969) (Equation (4)) to derive the NDVI
maps between 1986 and 2017 for a vegetation cover change analysis [74]. NDVI measures
the vegetation greenness by computing the proportion of visible red and NIR spectral
reflectance [75,76].

We studied unmined (mining percentage ≤ 5%) and mined sites covered with undis-
turbed forest, reclaimed land (reclaimed forest, reclaimed woods, and reclaimed grass/
pasture land), and barren ground. We extracted NDVI maps from Landsat 5 and 8 clear
images (<10% cloud coverage), which were taken between 1986 and 2014.

Using the Image Analysis tool of ArcMap (ArcGIS Desktop) 10.5 and Equation (4),
time series NDVI maps were derived from all Landsat images acquired in 1986, 1990,
1994, 1999, 2002, 2006, 2010, 2014, and 2017, since RGB-NDVI produces the most accurate
results [77]. The NDVI data were further grouped into five classes: (1) barren (active mine);
(2) reclaimed grassland; (3) reclaimed woodland (<50% forest cover); (4) reclaimed forest
(>50% forest cover); and (5) undisturbed forest using the [20,77] framework. Assigning
years to the barren pixels with a con tool and running a cell statistics tool created a composite
map (Figure 7). The resulting map displayed the location of barren (active mine) areas with
the latest mining year. Next, we compared barren areas with 2017 vegetation classifications.
For instance, we compared an area that was mined in 1994 and then later converted to
a reclaimed forest and was a reclaimed wood in 2017. Consequently, a temporal NDVI
class change within a specific area was considered to be a vegetation cover change for that
specific area and time. Forest that was converted to barren ground during the coal mining
activity in a particular year was expected to be converted to a reclaimed forest after several
years. The vegetation cover change was estimated based on the vegetation improvement,
from no vegetation (barren) to a final vegetation cover type (reclaimed grass, reclaimed
woods, or reclaimed forest). We evaluated the classified pixels from National Land Cover
Dataset (NLCD), Digital Orthophoto Quadrangle (DOQ), and NAIP imageries. If more
than half of a pixel contained trees, it was classified as forest; if less than half of a pixel
contained trees, it was classified as woods regardless of the remaining class or classes in
a pixel.

Vegetation cover change was evaluated from the latest barren land to the current (2017)
vegetation cover. The Zonal histogram tool of ArcMap 10.5 produced counts of the classified
pixels (barren, grass, woods, and forest) in each watershed.
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An accuracy assessment was conducted to evaluate and validate the land cover or
NDVI classes derived from the satellite images using ancillary, secondary, or in situ (ground
truth) data [78]. NAIP, digital orthophoto quadrangle images, and NLCD were used to
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assess the classification accuracy. Randomly selected (a total of 200 points, 50 for each class)
stratified points were used for data from 1990, 2002, and 2014 [20]. NLCD (1992) and Digital
Orthophoto Quadrangle (DOQ) (1985) images were used for the accuracy assessment of
data from 1990, NLCD (2004), DOQ (2000–2001), and NAIP (2004) images for data from
2002; NLCD (2011), and NAIP (2014) for data from 2014. The criteria used for separating
reclaimed woods from reclaimed forests was a visual inspection of the abundance of trees
in a pixel. If a pixel contained more than 50% trees, it was classified as a reclaimed forest.
The accuracy assessment results provided an overall accuracy of 79.5%, 80.5%, and 89.5%
for 1990, 2002, and 2014, respectively. We obtained the following Kappa (κ) for the same
time periods: 67.6%, 73.1%, and 83.1%, respectively. The overall accuracy exceeded the
target threshold accuracy (80%); it was assumed to be a high accuracy by [20]. The overall
accuracy and Kappa statistics suggest that the vegetation cover change data were valid and
usable for further statistical analysis. Accuracy assessment results are reported in Table 2.

Table 2. (a) Accuracy assessment for land cover classes for 1990. (b) Accuracy assessment for land
cover classes for 2002. (c) Accuracy assessment for land cover classes for 2014.

Classification
Producer

Barren Grass Woods Forest Row Total

(a)

U
se

r

Barren 21 1 0 2 24
Grass 0 39 5 14 58

Woods 0 2 11 4 17
Forest 1 8 4 88 101

Column Total 22 50 20 108 200

Omission Error (%) 4.5 22 45 18.51
Producer Accuracy (%) 95.5 78 55 81.5
Commission Error (%) 12.5 48.7 35.3 12.9

User Accuracy (%) 87.5 51.3 64.7 87.1

Overall Accuracy (%) = 79.5 Kappa (%) = 67.6

(b)

U
se

r

Barren 42 0 0 2 44
Grass 1 41 5 19 66

Woods 0 1 19 7 27
Forest 0 1 3 59 63

Column Total 43 43 27 87 200

Omission Error (%) 2.3 4.6 29.6 32.1
Producer Accuracy (%) 97.7 95.4 70.4 67.9
Commission Error (%) 4.5 37.9 29.6 6.3

User Accuracy (%) 95.5 62.1 70.4 93.7

Overall Accuracy (%) = 80.5 Kappa (%) = 73.1

(c)

U
se

r

Barren 5 0 0 0 5
Grass 2 39 2 3 46

Woods 4 0 35 5 44
Forest 0 1 4 100 105

Column Total 11 40 41 108 200

Omission Error (%) 54.5 2.5 14.6 7.4
Producer Accuracy (%) 45.5 97.5 85.4 92.6
Commission Error (%) 0 15.2 20.4 4.8

User Accuracy (%) 100 84.8 79.6 95.2

Overall Accuracy (%) = 89.5 Kappa (%) = 83.1
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NDVI-based land cover classes provided an opportunity to compute the average
reclamation age (Equations (5) and (6)); mining percentage (Equation (7)); reclaimed
forest percentage (Equation (8)); and reclaimed woods percentage (Equation (9)) for each
watershed area studied. Many of the watersheds were mined multiple times in different
years; therefore, the average reclamation year for the watersheds was calculated by taking
the weighted average of the initial reclamation year (latest mining year) and pixel counts
(Equation (5)).

Avg.Rec.Year =
1986 ∗ (Barren Pixel Count) + . . . . . . + 2017 ∗ (Barren Pixel Count)

Total Barren Pixel Count
(5)

Subtracting the average reclamation year from 2017 (Equation (6)) provided the recla-
mation age (years).

Average Reclamation Age = 2017 − avg rec year (6)

The mining percentage was defined as a ratio of the sum of active years’ of pixel values
to total pixels counted for a watershed and multiplied by 100:

Mining Percentage(%) =
(Mined Pixels o f 1986) + . . . . . . + (Mined Pixels o f 2017)

Total Count o f Pixels f or a watershed
∗ 100 (7)

Equation (8) was used to calculate the reclaimed forest percentage:

Reclaimed Forest(%) =
Reclaimed Forest Pixel Count (1986 . . . 2017)

Total Count o f Pixels f or a watershed
∗ 100 (8)

Reclaimed woods’ percentage was calculated as follows:

Reclaimed Woods(%) =
Reclaimed Woods Pixel Count (1986 . . . 2017)

Total Count o f Pixels f or a watershed
∗ 100 (9)

Four variables were derived for further analysis: (1) Mined (mining percentage);
(2) reclamation age (average reclamation age); (3) reclaimed forest; and (4) reclaimed woods.

2.2.3. Topographic Data

KYAPED DEM (5 ft.) aggregated to 30 m. horizontal spatial resolution was used to
derive topographic variables. Then, the mean elevation and mean slope for each watershed
were calculated with the zonal statistics tool. The drainage density (density of streams in
length in a watershed) was computed using the following equation [79].

Dd =
(
∑ L

)
/A (10)

Dd: Drainage density;
∑L: Total length of streams within the watershed;
A: Area of the watershed.
The NHD 100K stream shapefile was extracted with the identity and intersect tools,

and all streams were assigned to their watershed using the spatial join tool. Next, the total
stream length was calculated with the summary statistics tool for each watershed. Then,
the drainage density was obtained for each watershed using Equation (10).

Hydrologic Soil Group maps were created with the Soil Data Viewer [80] tool. Hy-
drologic Soil Group maps comprise soil infiltration rates with seven ordinal categories
(Box 1).

These categories were translated to numbers. Based on categories and their represen-
tative scores, the mean infiltration was calculated for each watershed with zonal statistics.
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Box 1. Hydrologic Soil Group Classification

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four
groups according to the rate of water infiltration when the soils are not protected by vegetation, are
thoroughly wet, and receive precipitation from long-duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes
(A/D, B/D, and C/D). The groups are defined as follows:
Group A: Soils having a high infiltration rate (low runoff potential);
Group B: Soils having a moderate infiltration rate;
Group C: Soils having a slow infiltration rate;
Group D: Soils having a very slow infiltration rate (high runoff potential).
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained
areas and the second is for undrained areas. Only the soils that in their natural condition are in
group D are assigned to dual classes. Source: [80]

2.3. Empirical Models

We used the mined, reclaimed woods, reclaimed forest, and reclamation age derived
from Landsat images as the vegetation cover and mined (mining percentage) variables
(Table 3) to develop three regression models, as specified in Equations (11)–(13). All
topographic variables were added to the models as control variables (elevation, slope,
drainage density, and infiltration). Infiltration was an ordinal variable, whereas the rest of
the variables comprise continuous data only.

Conductivity = β0 + βmined Xmined + βreclamation ageXreclamation age + βelevationXelevation
+βslope Xslope + βdrainage density Xdrainage density + βinfiltrationXinfiltration + e

(11)

Table 3. Dependent and independent variables and their descriptions.

Dependent Variable Independent Variables Description

Conductivity (µS/cm):
measurement in a stream at exit
point of a watershed.

Mined Percentage of total mined area in a watershed from
1986 to 2017.

Reclaimed Woods Percentage of reclaimed woods since 1986 in
a watershed.

Reclaimed Forest Percentage of reclaimed forest land in a watershed
since 1986.

Reclamation Age

Average years passed since reclamation was enacted.
In case of multi-temporal occurrence of reclamation,
the average age was calculated with a weighting
average by using the area and year of reclamation.

Elevation Mean elevation (m.) for a watershed.

Slope Mean slope (deg.) value for a watershed.

Drainage Density Ratio of total stream length to area of a watershed
(km.km−2).

Infiltration Numerical mean soil infiltration rate for a watershed
which translated from categorical variable.

Reclaimed Forest (same as above)

Mined Same as above.

Reclamation Age Same as above.

Elevation Same as above.

Slope Same as above.

Drainage Density Same as above.

Infiltration Same as above.
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First, we aimed to predict the conductivity without a vegetation cover effect with all
other independent and control variables.

Conductivity = β0 + βminedXmined + βreclamation ageXreclamation age + βelevationXelevation + βslope Xslope + βdrainage density
Xdrainage. density + βinfiltrationXinfiltration + βreclaimed forestXreclaimed forest + βreclaimed woodsXreclaimed woods + e

(12)

Second, we added the vegetation cover variables to the previous model to predict
conductivity and determine how vegetation recovery affects conductivity.

Reclaimed Forest = β0 + βmined Xmined + βreclamation ageXreclamation age + βelevation
Xelevation + βslope Xslope + βdrainage density Xdrainage. density + βinfiltrationXinfiltration + e

(13)

Finally, we created an empirical model to predict vegetation recovery with indepen-
dent variables.

where,

β0 = Constant, β = Unstandardized beta coefficients for independent variables,
Conductivity = dependent variable (Equation (12)), Reclaimed Forest = dependent variable
(Equation (13)), and e = error term.

2.4. Statistical Analyses

Standard deviation, skewness, kurtosis, standard errors of skewness, and kurtosis
values were calculated for each variable as part of the descriptive statistics. Kurtosis
values between −2 and 2 were accepted as an indication of the approximately normal
distribution [81,82]. Skewness between −1 and 1 was accepted as a normal distribution [83].
In addition, histogram plots with normal distribution curves corroborated descriptive
statistics visually. Multicollinearity was evaluated using a tolerance and variance inflation
factor (VIF); all independent variables had tolerance values larger than 0.1 and VIF values
smaller than 5.0, indicating the absence of multicollinearity [84]. The Durbin–Watson value
(1.5 < d < 2.5) [85] assured the absence of autocorrelation. In addition, scatterplots of the
residual distribution, P-P plot, and standardized residual–standardized predicted values
plot were computed to validate the homoscedasticity. The data were analyzed using SPSS
v 22. This study accepted results with p ≤ 0.05 as being significant in the models.

3. Results and Discussion
3.1. Variations in Measured Chemical Parameters

Concentrations of measured chemical parameters in stream water samples collected
during spring 2017 were found in the following order: Alkalinity > SO4 > Ca > Mg >>Fe > Al.
The water samples collected during summer 2017 were found in the following order:
SO4 >> Alkalinity > Ca > Mg, within the watersheds of eastern Kentucky. Variation
patterns of concentrations of measured chemical parameters during spring and summer,
with watershed characteristics, are presented in Table 4. We do not have chemistry data
from the fall samples so we just include chemistry data in Table 4 from spring and summer
only; we discuss fall EC data in the text. The measured electrical conductivity (EC) varies
from 88.3 to 280.3 µS/cm with a mean value of 168.2 ± 64.5 µS/cm during spring (n = 9)
and 73.1 to 2743.3 µS/cm with a mean value of 798.3 ± 782.1 µS/cm during summer
(n = 22). Overall, the average EC in all measured watersheds during spring and summer
(n = 31) appeared as 615.4 ± 716.9 µS/cm. The average EC from samples collected during
fall (n = 58) showed 786.1 ± 501.0 µS/cm. The EC of our samples appeared slightly higher
than the EC reported from the Australian rivers (EC = 741.7 µS/cm), where coal mine
waste was discharged (Belmer and Wright 2020). The EC value exceeds the WHO guideline.
The alkalinity varies from 24.3 to 69.4 mg/L with a mean value of 44 ± 15.2 mg/L during
spring (n = 9) and 22.1 to 310.8 mg/L with a mean value of 121.9 ± 72.7 mg/L during
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summer (n = 22). The average alkalinity in all measured watersheds during spring and
summer (n = 31) appeared as 99.3 ± 70.9 mg/L.

Table 4. Watershed characteristics with measured chemical parameters during spring and summer
2017. WHO guideline values from 2017. nd represents no data. Columns left to right: Watersheds,
total mined area, mined area without RF and RW, average reclamation age, alkalinity, electrical
conductivity, sulphate, aluminum, calcium, iron, magnesium.

Spring

Watershed
Mined
Total

Mined-
(RF + RW)

Mined-
RF

Rec.
Age Alk EC SO4 Al Ca Fe Mg

(%) (%) (%) Year (mg/L) (µS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

WHO
Guideline 30–400 <400 <250 <0.2 100–300 <0.3 <50

8 37.30 9.38 29.69 17.94 66.63 264.33 51.33 0.25 21.38 0.22 15.06
9 15.17 2.17 9.05 20.30 24.29 88.33 26.60 1.52 7.14 1.05 4.58

10 20.34 2.87 11.53 18.47 40.06 164.77 26.90 0.06 12.50 0.21 5.85
11 35.31 6.03 21.97 22.10 50.38 176.00 30.83 0.04 16.37 0.22 8.88
29 49.00 10.14 32.99 21.00 69.41 280.33 60.33 0.07 24.44 0.11 16.84
32 11.04 2.57 7.71 14.24 34.66 130.57 23.90 0.04 11.40 0.18 6.41
33 25.42 4.54 18.28 16.45 42.10 153.20 27.47 0.05 13.17 0.12 7.97
34 18.56 1.93 12.62 21.62 36.43 120.07 17.00 0.05 10.54 0.22 5.47
36 40.44 14.47 27.96 16.33 34.00 136.00 26.00 0.00 11.00 0.05 7.00

Summer

9 15.17 2.17 9.05 20.30 71.81 203.00 26.30 nd 17.87 nd 10.17
10 20.34 2.87 11.53 18.47 100.99 279.00 26.67 nd 25.07 nd 10.01
11 35.31 6.03 21.97 22.10 135.45 348.00 40.20 nd 34.45 nd 17.21
13 14.87 0.54 4.00 28.90 35.69 117.17 17.57 nd 9.14 nd 5.32
15 3.72 1.20 2.47 12.55 22.16 73.10 9.95 nd 5.36 nd 3.03
18 62.88 52.25 62.44 2.79 310.76 2743.33 1906.70 nd 297.10 nd 311.10
29 49.00 10.14 32.99 21.00 131.86 627.33 173.00 nd 59.85 nd 37.68
32 11.04 2.57 7.71 14.24 64.28 173.80 10.17 nd 18.01 nd 5.94
33 25.42 4.54 18.28 16.45 89.51 245.67 21.57 nd 25.07 nd 9.71
34 18.56 1.93 12.62 21.62 109.67 266.33 18.57 nd 27.10 nd 10.27
35 27.77 3.84 13.84 27.95 107.25 483.33 127.67 nd 43.03 nd 27.23
46 54.28 33.19 50.81 6.09 116.21 1992.33 1090.00 nd 185.90 nd 176.90
48 63.97 14.10 52.55 11.13 93.99 1757.00 1016.70 nd 154.20 nd 160.90
51 46.33 22.65 43.06 9.43 177.61 2250.00 1270.00 nd 209.70 nd 205.28
52 37.90 3.77 19.62 23.76 32.45 539.00 201.33 nd 50.65 nd 26.58
67 14.46 1.85 9.88 12.81 66.88 448.00 130.33 nd 42.26 nd 19.80
68 13.63 2.31 11.19 16.14 84.48 504.67 141.33 nd 49.66 nd 21.64
71 31.62 10.30 28.01 12.13 213.97 761.07 174.33 nd 50.98 nd 61.65
72 11.93 1.31 8.10 14.81 153.05 387.33 50.37 nd 28.09 nd 26.82
75 19.12 4.95 15.50 20.74 164.23 502.00 84.07 nd 39.87 nd 33.33
76 27.93 4.03 24.01 13.96 270.96 1851.33 858.00 nd 153.20 nd 177.20
77 44.78 15.19 32.01 16.99 127.63 1009.67 457.33 nd 101.20 nd 66.13

The sulfate concentration ranges from 17 to 60.3 mg/L with a mean value of
32.3 ± 14.1 mg/L during spring (n = 9) and 9.95 to 1906.7 mg/L with a mean value of
356.9 ± 524.7 mg/L during summer (n = 22). The average sulfate in all measured water-
sheds during spring and summer (n = 31) was 262.6 ± 463.8 mg/L. The sulfate concentration
exceeds the WHO guideline value. The calcium concentration ranges from 7.1 to 24.4 mg/L,
with a mean value of 14.2 ± 5.5 mg/L during spring (n = 9) and 5.4 to 297.1 mg/L with
a mean value of 74 ± 77.2 mg/L during summer (n = 22). The average calcium in all
measured watersheds during spring and summer (n = 31) was 56.6 ± 70.3 mg/L. The
magnesium concentration ranges from 4.6 to 16.8 mg/L with a mean value of 8.7 ± 4.3 mg/L
during spring (n = 9) and 3.1 to 311.1 mg/L with a mean value of 64.7 ± 84.5 mg/L during
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summer (n = 22). The average magnesium in all measured watersheds during spring and
summer (n = 31) was 48.5 ± 75.3 mg/L. Aluminum concentration ranges from 0 to 1.5 mg/L
with a mean value of 0.23 ± 0.5 mg/L during spring (n = 9). The aluminum concentration
exceeds the WHO guideline value. Iron concentration ranges from 0.05 to 1.05 mg/L with
a mean value of 0.26 ± 0.3 mg/L during spring (n = 9). Based on the concentration data of
the measured chemical parameters, aluminum and sulfate appeared to be prime concerns
for health and environmental issues. The high concentration of aluminum toxicity severely
impacts the nervous system, with possible causes of severe diseases such as Alzheimer’s
disease, Crohn’s disease, dementia, inflammatory bowel disease, anemia, sclerosis, autism,
breast cancer and cyst, pancreatic necrosis and diabetes mellitus [86,87].

High sulfate concentrations are primarily due to anthropogenic sources and may harm
humans, animals, plants, or aquatic life [88]. The high concentration of sulfate in drinking
water causes a laxative effect and the taste impairment varies with the associated cations
present in the systems; it causes diarrhea in adults and sometimes severe problems in
infants and elderly people [89,90]. The ionic balance disturbance in plant tissue is created
due to exceedingly high concentrations of sulfate. As a consequence, harmful impacts may
occur in ecosystems [91]. Although there is no precise health-based guideline value for
chemicals in drinking water such as sulfate, iron, and aluminum proposed, there is a need
to control the exposure of such chemicals in the population by establishing a maximum
limit to exposure that is recommended [92]; this is also supported by the US EPA.

Coal mining sites increase acid drainage within the landscape, and as a consequence,
biogeochemical dynamics are altered, and the dissolution rate of minerals is accelerated
in addition to having direct input from coal mining waste. In such an acidic environment
with exposure to abundant amounts of fresh reactive mineral surfaces due to mountaintop
mining, the high concentration of trace elements includes highly toxic chemicals (e.g., As,
Cd, Co, Cr, Hg, Mn, Se, Sb, and Tn, etc.) released into the environment, affecting the
ecosystem’s ecology and the whole environment of that landscape. We plan to measure
these trace elements in our future study and evaluate their impacts with mechanisms.

3.2. Descriptive Statistics

This research covers mined areas between 1986 and 2017; however, considering Ken-
tucky’s long history of coal production, mined (mining percentage) areas were expected to
be more than the values displayed in Table 5. The mined without reclaimed forests (RF)
variable shows similar values to the mined area variable values because the forest recovery
was low, as it was a percentage of a watershed. The average RF (reclaimed forest) percent-
age was 8.21%, which means only 21% of the mined area of a watershed was converted to
a reclaimed forest between 1986 and 2017 in consideration of average values. The mean
reclaimed woods was 17.42%, which was more than double the amount of the reclaimed
forest. Numerous studies found a link between macroinvertebrate community structures
and physicochemical parameters in streams [39,41,60,93]. For example, Bernhardt et al.
(2012) and Griffith et al. (2012) reported that a conductivity of greater than 300 µS/cm
negatively affects the aquatic environment [60,93]. Moreover, conductivity > 500 µS/cm
indicates ecological impairment and decreased biological diversity [39,41]. The results of
our study indicate that in 42 of 58 (72%) watersheds in the study area, the conductivity was
higher than 300 µS/cm, and, in 32 (55%) of them, the conductivity was over 500 µS/cm.
Therefore, impairment and a negative impact is expected in aquatic ecology due to the
change in natural biogeochemical processes in more than half of the watersheds, although
we did not perform any biological assessments.
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Table 5. Descriptive statistics for dependent and independent variables.

Descriptive Statistics

Mean Minimum Maximum

Mined (%) 38.09 2.52 92.23
Reclaimed Forest (%) 8.21 0.42 30.41
Reclaimed Woods (%) 17.42 1.27 44.01

Reclamation Age (year) 15.99 4.12 27.95
Mined w/o RF (%) 29.88 2.10 90.92

Conductivity (µS/cm) 763.10 120.00 1970.00
Infiltration 8.68 6.45 10.00

Drainage Density (km−1) 1.67 0.57 2.89
Elevation (m.) 369.49 313 437

3.3. Bivariate Correlations

Among all variables, reclaimed forest and drainage density variables were trans-
formed using square root transformation to gain normal distribution. The linearity between
independent and dependent variables was checked by using scatter plots prior to running
bivariate correlations and Ordinary Least Square (OLS) regression models. Pearson bi-
variate correlation matrixes for all sampling dates and variables were employed to find
significant correlations among variables (Table 6).

There was no linear or curvilinear relationship between reclaimed forest and conduc-
tivity variables; however, the remaining scatter plots displayed linear relations between
independent and dependent variables. Subsequently, another variable was created to test
the influence of reclaimed forest on conductivity, i.e., the mined without a reclaimed forest
variable (mined without RF or mined w/o RF). This variable represented the numerical
difference between a mined and reclaimed forest. We expected a potential influence on
the reclaimed forest from mined and reclamation age variables. While checking the data
assumptions, a curvilinear relationship was discovered between mined and reclaimed
forest variables. However, the log transformation of the mined variable yielded a linearity
between the variables. We did not find any correlation among the vegetation cover; mining
percentage; conductivity; and Al3+, Fe2+, Fe3+, and Mn2+. We concluded that either metals
were not dissolved and filtered out during the filtering process or Al3+, Fe2+, Fe3+, and
Mn2+ levels were not sufficient to detect the correlations.

Comparisons between independent and dependent variables are displayed visually
with maps and symbols in Figures 8–13. Bivariate correlation matrix results were consistent
with linearity validation results. Linear relationships that were observed in scatterplots
were significant at the p ≤ 0.05 or p ≤ 0.01 level (Table 6). The bivariate correlation
analysis demonstrated that conductivity was strongly related to CMRSC variables [58,94],
except for Fe2+, Fe3+, Al3+, and Mn2+. An in-depth literature review also suggested that
conductivity was highly associated with surface coal mining in eastern Kentucky and
West Virginia [42,58,60]. Based on this information, we decided to use conductivity as a
representative variable for CMRSC variables in multivariate regression models.

We did not find a significant correlation between topographic variables and con-
ductivity (fall) except in infiltration. There was a strong correlation between infiltration
and conductivity.
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Figure 8. Mining percentage (independent variable) versus fall conductivity [µS/cm] (dependent variable) values (n = 58, R = 0.86, p < 0.01). Figure 8. Mining percentage (independent variable) versus fall conductivity [µS/cm] (dependent variable) values (n = 58, R = 0.86, p < 0.01).
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Figure 9. Reclaimed forest percentage (independent variable) versus fall conductivity [µS/cm] (dependent variable) values (n = 58, R = −0.07, p > 0.05). 
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Figure 10. Mined-RF (mining percentage without reclaimed forest; independent variable) versus fall conductivity [µS/cm] (dependent variable) values (n = 58, R 
= 0.90, p < 0.01). 
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0.90, p < 0.01).
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Figure 11. Reclamation age [years] (independent variable) versus fall conductivity [µS/cm] (dependent variable) values (n = 58, R = −0.67, p < 0.01). 
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Figure 12. Reclamation age [independent variable) versus normalized reclamation forest percentage (Dependent variable) values (n = 58, R = 0.50, p < 0.01). 
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Table 6. (a) Pearson correlation matrix for spring field study results (n = 9). (b) Pearson correlation matrix for summer field study results (n = 14). (c) Pearson
correlation matrix for fall field study results (n = 58).

Mined (%) Mined w/o RF (%) Reclaimed
Forest (%)

Reclaimed
Woods (%)

Reclamation
Age (Years)

Alkalinity
(mg/L)

Conductivity
(µS/cm) SO4

2− (mg/L) Ca2+ (mg/L) Mg2+ (mg/L)

(a)

Mined (%) 1 0.980 ** 0.886 ** 0.920 ** 0.255 0.751 * 0.761 * 0.749 * 0.776 * 0.791 *
Mined w/o RF (%) 0.980 ** 1 0.775 * 0.940 ** 0.155 0.785 * 0.794 * 0.775 * 0.797 * 0.837 **
Reclaimed Forest (%) 0.886 ** 0.775 * 1 0.726 * 0.443 0.553 0.563 0.568 0.601 0.558
Reclaimed Woods (%) 0.920 ** 0.940 ** 0.726 * 1 0.338 0.907 ** 0.884 ** 0.843 ** 0.903 ** 0.914 **
Reclamation Age (Years) 0.255 0.155 0.443 0.338 1 0.241 0.158 0.182 0.218 0.159
Alkalinity (mg/L) 0.751 * 0.785 * 0.553 0.907 ** 0.241 1 0.985 ** 0.897 ** 0.993 ** 0.962 **
Conductivity (µS/cm) 0.761 * 0.794 * 0.563 0.884 ** 0.158 0.985 ** 1 0.933 ** 0.987 ** 0.969 **
SO4 (mg/L) 0.749 * 0.775 * 0.568 0.843 ** 0.182 0.897 ** 0.933 ** 1 0.921 ** 0.964 **
Ca (mg/L) 0.776 * 0.797 * 0.601 0.903 ** 0.218 0.993 ** 0.987 ** 0.921 ** 1 0.974 **
Mg (mg/L) 0.791 * 0.837 ** 0.558 0.914 ** 0.159 0.962 ** 0.969 ** 0.964 ** 0.974 ** 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2 tailed).

(b)

Mined (%) 1 0.940 ** 0.125 0.616 ** −0.340 0.467 * 0.734 ** 0.715 ** 0.769 ** 0.727 **
Mined w/o RF (%) 0.940 ** 1 −0.221 0.495 * −0.627 ** 0.614 ** 0.838 ** 0.787 ** 0.867 ** 0.833 **
Reclaimed Forest (%) 0.125 −0.221 1 0.32 0.847 ** −0.450 −0.336 −0.243 −0.323 −0.342
Reclaimed Woods (%) 0.616 ** 0.495 * 0.32 1 0.017 0.294 0.508 * 0.485 * 0.483 * 0.504 *
Reclamation Age (Years) −0.340 −0.627 ** 0.847 ** 0.017 1 −0.534 * −0.603 * −0.514 * −0.610 * −0.599 *
Alkalinity (mg/L) 0.467 * 0.614 ** −0.450 0.294 −0.534 * 1 0.705 ** 0.604 * 0.666 ** 0.760 **
Conductivity (µS/cm) 0.715 ** 0.787 ** −0.243 0.485 * −0.514 * 0.604 * 0.980 ** 1 0.972 ** 0.960 **
SO4 (mg/L) 0.734 ** 0.838 ** −0.336 0.508 * −0.603 * 0.705 ** 1 0.980 ** 0.988 ** 0.992 **
Ca (mg/L) 0.769 ** 0.867 ** −0.323 0.483 * −0.610 * 0.666 ** 0.988 ** 0.972 ** 1 0.967 **
Mg (mg/L) 0.727 ** 0.833 ** −0.342 0.504 * −0.599 * 0.760 ** 0.992 ** 0.960 ** 0.967 ** 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

(c)

Mined (%) Reclaimed
Forest (%)

Reclaimed
Woods (%)

Reclamation
Age (Year)

Conductivity
(µS/cm) Log Mined Mined w/o

RF (%) Infiltration

Mined (%) 1 0.223 0.831 ** −0.496 ** 0.863 ** 0.908 ** 0.965 ** −0.678 **
Reclaimed Forest (%) 0.223 1 0.246 0.500 ** −0.072 0.451 ** −0.032 −0.048
Reclaimed Woods (%) 0.831 ** 0.246 1 −0.329 * 0.720 ** 0.796 ** 0.799 ** −0.591 **
Reclamation Age (year) −0.496 ** 0.500 ** −0.329 * 1 −0.672 ** 0.294 * 0.636 ** −0.396 **
Conductivity (µS/cm) 0.863 ** −0.072 0.720 ** −0.672 ** 1 0.726 * 0.904 ** −0.676 **
Log Mined 0.908 ** 0.451 ** 0.796 ** 0.294* 0.726 ** 1 0.823 ** 0.580 **
Mined w/o RF (%) 0.965 ** −0.032 0.799 ** 0.636 ** 0.904 ** 0.823 ** 1 −0.681 **
Infiltration −0.678 ** −0.048 −0.591 ** 0.396 ** −0.676 ** −0.580 ** −0.681 ** 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at 0.01. level
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3.4. Multivariate Regression Model Results
3.4.1. Effects of Mined and Reclamation age Parameters on Conductivity

Multivariate regression test results predicted conductivity (R2 = 0.825, adjusted
R2 = 0.818, F(2,55) = 129.213, p < 0.01). The regression model accounted for 81.8% of
variance in conductivity prediction (Table 7). The mined and reclamation age were signifi-
cant (p < 0.01; Table 7). The standardized beta (B) for mined and reclamation age coefficients
was 0.70 and −0.32, respectively (Table 7), which indicate that the mined parameter was
positively and strongly correlated with conductivity, whereas the reclamation age was
significantly, but negatively, related to conductivity. Partial correlations for coefficients
also confirmed that the mined parameter was more influential on conductivity than the
reclamation age. Infiltration was not a significant factor; thus, it is excluded from the model.
The following regression equation was predicted for conductivity:

Conductivity = 16.96 ∗ Mined − 30.86 ∗ Reclamation Age + 610.713 (14)

Table 7. (a) Regression Model A summary. (b) Regression Model A coefficients.

(a)

Regression Model A Summary—Conductivity Prediction

Step R R2 R2
adj ∆R2 Fchg p df1 df2

Mining Percentage 0.863 a 0.745 0.741 0.745 163.98 <0.01 1 56
Reclamation Age 0.908 b 0.825 0.818 0.08 129.21 <0.01 1 55

(b)

Coefficients for Final Model—Conductivity Prediction

Model β B t p Bivariate r Partial r

(Constant) 610.732 4.303 <0.01
Mining Percentage 16.956 0.703 10.804 <0.01 0.863 0.61

Reclamation Age (year) −30.860 −0.324 −4.979 <0.01 −0.672 −0.281

We found, for this model, that the constant value was higher than [42,59], suggesting
that it might have been due to inadequate control sites. However, the coefficients were
comparable to those found by [42,59]. This supports the hypothesis that the reclamation age
has less influence on conductivity, and that conductivity was best predicted with a mining
percentage [42,59,60]; however, none of these studies reported a correlation between the
reclamation age and conductivity.

3.4.2. Effects of Vegetation Cover Change on Conductivity

The bivariate Pearson correlation analysis between mined without RF and conduc-
tivity was very strong and positive (R = 0.90; Table 6). Multivariate regression test results
indicated a significant overall goodness of fit for two predictors (mined without RF and
reclamation age) that significantly predict conductivity (R2 = 0.832, adjusted R2 = 0.826,
and F(2,55) = 136.659, p < 0.01). The regression model accounted for 82.6% of the vari-
ance in the conductivity prediction (Table 8). The model showed that mined without RF
(p < 0.01) and reclamation age (p < 0.026) were significant coefficients (Table 8). Unstandard-
ized beta coefficients (β) were 0.799 (mined w/o reclaimed forest) and −0.164 (reclamation
age). Pearson bivariate correlation results suggested a strong positive correlation be-
tween reclaimed woods, infiltration, and conductivity. Conversely, the model showed
that reclaimed woods and/or infiltration was not a significant contributor for predicting
conductivity. p values were higher than 0.05 and t values were smaller than 1 for reclaimed
woods; therefore, reclaimed woods were excluded in both steps. The multivariate analysis
yielded the following equation for predicting conductivity:

Conductivity = 19.54 ∗ (Mined-Reclaimed Forest) − 15.64 ∗ Reclamation Age + 429.20 (15)
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Table 8. (a) Regression Model B summary. (b) Regression Model B coefficients.

(a)

Regression Model B Summary—Conductivity Prediction

Step R R2 R2
adj ∆R2 Fchg p df1 df2

Mined w/o RF (%) 0.904 0.816 0.813 0.816 249.09 <0.01 1 56
Reclamation Age (years) 0.912 0.832 0.826 0.016 5.26 <0.026 1 55

(b)

Coefficients for Final Model—Conductivity Prediction

Model β B t p Bivariate r Partial r

(Constant) 429.2 2.85 <0.01
Mined w/o RF (%) 19.54 0.799 11.17 <0.01 0.904 0.617

Reclamation Age (years) −15.64 −0.164 −2.29 <0.026 −0.672 −0.127

The model had a slightly higher adjusted R2 value (0.826) than Regression Model A
(0.818). There was no difference between an undisturbed forest and reclaimed forest from
a land cover standpoint, suggesting that reclaimed forest areas can be assumed as not
disturbed. Comparing the coefficients of the mined and mined without RF parameters, the
mined without RF was a better predictor of conductivity.

We were able to improve the model by removing the reclaimed forested areas. The
result indicated a positive correlation between the reclaimed forest and conductivity miti-
gation [32]. Our findings agree with [23], who showed that there is a potential for total
dissolved solids–source–control practices that incorporate FRA to improve mine water
discharge quality. The vegetation data covered a 31-year-period (1986–2017), since data
prior to 1986 were not dependable. Measurements of the geographic region of the refor-
ested areas for the entire 31-year-period have proved challenging due to data inconsistency.
It should be noted that the reclaimed forest percentage range was relatively low within
the given time interval (1986–2017). This might have caused the nonexistence of a direct
relationship between reclaimed forest and conductivity. However, recent improvements
in Landsat imagery will likely provide more reliable data. In addition, forest recovery is
expected to increase in the future. This experiment should be repeated to obtain a clear
idea about the influence of reclaimed vegetation on conductivity and water quality.

3.4.3. Effects of Reclamation Age and Mined Operation (Mining Percentage) on
Reclaimed Forest

We used multivariate regression to predict the relationship between the dependent
variable reclaimed forest and the independent variables of the reclamation age and mining
percentage. The results indicated that the model was significant (R2 = 0.641, adjusted
R2 = 0.628, F(2,55) = 49.02, p < 0.01). The regression model accounted for 62.8% of the vari-
ance in the reclaimed forest prediction (Table 9), and the mined and reclamation age were
significant coefficients (p < 0.01 for both; Table 9). Adding the mined parameter improved
the reclaimed forest prediction greatly (R2 changed from 0.250 to 0.641). Standardized beta
coefficients (B) showed that the log mined (0.692) and reclamation age (0.654) were positive
and had similar effects in the reclaimed forest prediction (Table 9). None of the topographic
variables were added to the model because no significant correlations were found between
the reclaimed forest percentage and topographic variables. Multivariate regression analysis
yielded the following equation for the prediction of a reclaimed forest:

Reclaimed Forest = [(1.83 × log10Mined) + (0.121 × ReclamationAge) − 1.953]2 (16)
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Table 9. (a) Regression Model C summary. (b) Regression Model C coefficients.

(a)

Regression Model C Summary—Reclaimed Forest Prediction

Step R R2 R2
adj ∆R2 Fchg p df1 df2

Reclamation Age (years) 0.5 0.25 0.236 0.236 18.61 <0.01 1 56

Log Mined 0.8 0.641 0.628 0.392 35.65 <0.01 1 55

(b)

Coefficients for Final Model Reclaimed Forest Prediction

Model β B t p Bivariate r Partial r

(Constant) −1.953 −4.037 <0.01
Reclamation Age (years) 0.121 0.692 8.185 <0.01 0.5 0.741

Log Mined 1.833 0.654 7.735 <0.01 0.451 0.722

McElfish and Beier (1990) reported that coal surface mine reclamation efforts in south-
eastern USA are usually assessed after five years of mining activity [95]. Conversely, the
model estimates that 25 years is necessary for 10% of a mined watershed to be converted to
a reclaimed forest (Equation (16)). These results suggest that five years may not be enough
time to assess reclamation success. Many scientists have studied effective techniques to
reclaim forests in areas impacted by coal mining by species composition, comparing mined
and unmined sites, hydrologic properties, or best revegetation practices [23,36,96,97]. Con-
versely, not too many studies have measured the quantity of the reclaimed forest in relation
to the reclamation age at the watershed level.

4. Conclusions

This study explored the relationships between water quality parameters; reclaimed
forest percentage (dependent variables); mining percentage; reclamation age; reclaimed
woods, slope, elevation, and drainage density; and infiltration in stream-reach watersheds
affected by coal mining. We found that reclamation age is a significant factor for predicting
conductivity in reclaimed mines. Even though reclamation age was not a primary factor,
it appeared to increase the accuracy of the conductivity prediction. This research used
more convenient and accurate methods for collecting and analyzing data about mining
percentage and reclamation age than the previous studies in the Appalachian region states.
Furthermore, reclamation age and topographic factors were not evaluated on a regional
scale in previous studies.

We also investigated the effects of the reclaimed forest and reclaimed woods on con-
ductivity to improve the Regression Model A, which included only the mining percentage
(mined) and reclamation age for conductivity prediction. We did not find a direct relation
between the conductivity and reclaimed forest percentage or the reclaimed woods per-
centage; however, by removing the reclaimed forest and performing a correlation of the
mining percentage with conductivity, we were able to moderately improve the results. The
Regression Model A results were consistent with earlier studies finding that coal mining
had a major impact on water quality degradation and forest structure.

In addition, we used reclamation age and mining percentage to estimate the quantity
of reclaimed forested areas in the watershed. Reclaimed forest quality is usually measured
by comparing the resemblance to the original forest. We concluded that the quality of the
reclaimed forest is important for evaluating the reclamation success; however, quantity is
equally important. The quantity of a reclaimed forest, coupled with quality, provides a
better assessment of reclaimed areas when advanced remote sensing techniques are used.
For example, high resolution aerial images or Light Detection and Ranging (LIDAR) data
may be used to define the composition of the reclaimed forested area with an accurate
delineation of the mined area.
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We included topographic variables (slope, elevation, drainage density, and infiltration)
to take into account the possible influences of topographic variations in the regression
models. The results indicated no such relation, except infiltration was positively corre-
lated with conductivity (fall); however, this was not significant. Studies by [41,52] found
similar results.

Overall, this study suggests that conductivity is a predictable water quality indicator
that is highly associated with CMRSC, where agriculture and urban areas are limited.
Furthermore, our assessment of the vegetation cover change may provide insight into
the reclamation success in terms of restoring deforested areas. Water quality polluted
through the coal mine activities in the region, especially due to the high concentration
of sulfate and aluminum based on the measured parameters. Our findings may help
the scientific community and regulating agencies improve their understanding of water
quality characteristics more effectively in watersheds affected by coal mining. This can be
accomplished by refining land reclamation practices by using advanced techniques and
monitoring protocols.
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