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Abstract: Lead (Pb) is a toxic metal associated with several health disorders. The mining and Pb
battery industry are related to Pb increase in air, water, and soil. Mexico is an important worldwide
Pb producer; however, reviews on environmental Pb contamination in Mexico are insufficient. Since
Pb remains stable in soil and its concentration is an indicator of Pb exposure, this systematic review
focused on reports of Pb concentrations in soil from Mexico published in 2010–2023. The retrieved
reports were ordered, and contamination grade and health risk were estimated for location. From
36 retrieved reports, 24 were associated with mining Pb pollution, while a unique report mentioned
the battery industry. The publications evaluated mining (13), agricultural (11), and residential
(16) soils. Pb concentrations in soil were higher than the allowed limits in more than half of the
reports. According to the Pb concentrations in soil, the locations evaluated in Mexico presented a
contamination grade from heavily contaminated to extremely contaminated and health risks results
suggested severe hazards, particularly for children. This work can guide other researchers to identify
potentially contaminated but understudied Mexican locations.

Keywords: soil; mining; agricultural; residential; heavy metal; lead; Mexican territory

1. Introduction

Based on toxicity and potential for human exposure, lead (Pb) is among the 10 chemi-
cals of public health concern according to the World Health Organization (WHO) [1] and
is the second on the Substance Priority List 2022 of the Agency for Toxic Substances and
Disease Registry (ATSDR) [2]. Although Pb naturally occurs in the Earth’s crust, anthro-
pogenic sources, namely mining, ores smelting, coal burning, and the battery industry,
release Pb into the air, soil, and/or water [3]. In the soil, speciation and mobility of Pb
depends on soil composition since Pb may occur as a free metal ion or complexed with
inorganic and organic constituents [4]. Galena (PbS) is the most common ore mineral
because Pb has high affinity with sulfur [5]. Soil components such as hydrous ferric oxide
(HFO) and organic matter increase the soil’s surface capacity to adsorb Pb [6]. Since Pb in
soil remains stable for a long time, it may bioaccumulate in plants and agricultural products
generating food chain contamination [7]. Concentration of Pb in soil from urban areas is an
indicator of community Pb exposure [8]. In humans, Pb exposure occurs through ingestion
of contaminated water and food, dust inhalation, and dermal contact [9], and is related
to early life effects like preterm birth, in utero growth restriction, decreased birth weight,
birth defects, and cognitive impairment and results in delayed onset of diseases such as
obesity, infertility, cancer, metabolic alteration, autoimmune disorder, mental disease, and
cardiovascular and neurodegenerative disorders [10].

Since Pb is malleable, ductile, and resistant to corrosion [11], it has been widely used in
the battery industry, machinery manufacturing, and medicine, resulting in increased world
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Pb production [12]. Refined Pb has been obtained from mined ore since ancient times,
but since the early 1980s, it has also been recovered from used Pb products (e.g., Pb-acid
batteries) by secondary smelting [13]. China, Australia, and the United States (US) are,
respectively, the first-, second-, and third-largest world producers of Pb according to the US
Geological Survey [14]. Concentrations of Pb in soil have been evaluated in China [15,16],
Australia [17–19], and the US [20,21], highlighting the grade of Pb contamination in these
countries. Mexico was the fourth-largest world producer of Pb in 2022 [14] and the first
Pb ore exporter in 2021 conforming to The Observatory of Economic Complexity [22]. The
political division of México consists of 32 states (Figure 1): nine states, namely Coahuila
(COA), Durango (DUR), Guerrero (GRO), Morelos (MOR), Oaxaca (OAX), Querétaro (QUE),
Sinaloa (SIN), Sonora (SON) and Zacatecas (ZAC), have been Pb mining producers [23]; five
states, such as Baja California Norte (BCN), Nuevo León (NLE), Puebla (PUE), Tamaulipas
(TAM), and Tlaxcala (TLA), produce Pb by secondary smelting from Pb-acid batteries [24];
and eight states, including Aguascalientes (AGU), Chihuahua (CHH), Estado de México
(MEX), Guanajuato (GUA), Hidalgo (HID), Jalisco (JAL), Michoacán (MIC), and San Luis
Potosí (SLP), produce Pb by mining and Pb battery recycling facilities [23,24]. Since both
activities are distributed in the Mexican territory and they are related to environmental
contamination as well as health risks, it is relevant to review the studies of Pb pollution
performed in Mexico. However, reviews focused on Pb contamination in the entire Mexican
territory are scarce. Thus, this systematic review aimed to collect reports from 2010 to 2023
regarding Pb and soil in Mexican territory. Additionally, we conducted a meta-analysis of
contamination grade and health risk in Mexican states to uncover underserved regions.

Environments 2024, 11, x FOR PEER REVIEW 3 of 18 
 

 

 

Figure 1. Lead (Pb) mining and Pb battery recycling industries in Mexico. The inner box indicates 

the mining Pb production from 2010 to 2022. Pb production is depicted as color intensity on the map. 

The green circles indicate the Pb battery recycling plants located in each state. Image created by 

ArcMap 10.3.1 software using data from National Institute of Statistic and Geography INEGI [19] 

and Commission for Environmental Cooperation CEC [20]. 

2. Materials and Methods 

2.1. Study Design and Search Strategy 

The research questions of this study were: “In which Mexican states has Pb been 

quantified in soil?” and “What are the Pb contamination levels and the health risk at these 

sites?”. Thus, our systematic review focused on studies of Pb quantification in Mexican 

soil following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) [25]. The inclusion criteria were (1) reports of Pb quantification in Mexican soil, 

(2) original research articles, (3) articles published from January 2010 to May 2023, and (4) 

works written in English or Spanish language. Exclusion criteria were (1) Pb isotope iden-

tification, (2) studies of non-Mexican soil samples, and (3) reviews or non-research articles. 

The search strategy consisted of using the keywords and Boolean operators “Lead OR Pb 

OR Plumbum AND Soil AND Mexico” in the research databases PubMed and ScienceDi-

rect. Publication date and language filters were adjusted as January 2010 to May 2023 and 

English or Spanish. 

2.2. Data Collection and Categorization 

Data search, collection, and analysis were performed from March to June 2023. Titles 

and abstracts were reviewed, selecting publications by the inclusion and exclusion criteria 

described in Section 2.1. Data such as sampling location and method, sample size, and Pb 

quantification procedure were obtained from material and methods, while Pb 

Figure 1. Lead (Pb) mining and Pb battery recycling industries in Mexico. The inner box indicates
the mining Pb production from 2010 to 2022. Pb production is depicted as color intensity on the
map. The green circles indicate the Pb battery recycling plants located in each state. Image created by
ArcMap 10.3.1 software using data from National Institute of Statistic and Geography INEGI [19] and
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2. Materials and Methods
2.1. Study Design and Search Strategy

The research questions of this study were: “In which Mexican states has Pb been
quantified in soil?” and “What are the Pb contamination levels and the health risk at these
sites?”. Thus, our systematic review focused on studies of Pb quantification in Mexican
soil following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [25]. The inclusion criteria were (1) reports of Pb quantification in Mexican soil,
(2) original research articles, (3) articles published from January 2010 to May 2023, and
(4) works written in English or Spanish language. Exclusion criteria were (1) Pb isotope
identification, (2) studies of non-Mexican soil samples, and (3) reviews or non-research
articles. The search strategy consisted of using the keywords and Boolean operators “Lead
OR Pb OR Plumbum AND Soil AND Mexico” in the research databases PubMed and
ScienceDirect. Publication date and language filters were adjusted as January 2010 to May
2023 and English or Spanish.

2.2. Data Collection and Categorization

Data search, collection, and analysis were performed from March to June 2023. Titles
and abstracts were reviewed, selecting publications by the inclusion and exclusion criteria
described in Section 2.1. Data such as sampling location and method, sample size, and
Pb quantification procedure were obtained from material and methods, while Pb concen-
trations were extracted from the results. The information retrieved was organized into
three categories (mining, agricultural, and residential) according to the land use where the
sampling was performed.

2.3. Data Analysis
2.3.1. Contamination Grade by Geoaccumulation Index (Igeo)

The geoaccumulation index (Igeo) allows us to estimate the Pb contamination grade in
soil based on a reference value and the concentration measured in a soil sample [26]. We
estimated Igeo for each concentration using the formula described by Muller (1969) [27]:

Igeo = log2 (Cs/1.5Bs) (1)

where Cs is the Pb (mg/kg) quantified in soil and Bs is the geochemical background
(27 mg/kg) obtained from the global soil background values [28], while 1.5 was used
as a correction factor. The mean, median, or maximum Pb concentration was used for
Igeo estimation (Tables S1–S3). When two or more authors mentioned the same location,
the Igeo average was obtained. The Igeo value and its respective contamination grade are
described in Table 1.

Table 1. Contamination grade based on the geoaccumulation index (Igeo) [27].

Grade Igeo Value Soil Quality

0 ≤0 Uncontaminated

1 0 < Igeo < 1 Uncontaminated to moderately contaminated

2 1 < Igeo < 2 Moderately contaminated

3 2 < Igeo < 3 Moderately to heavily contaminated

4 3 < Igeo < 4 Heavily contaminated

5 4 < Igeo < 5 Heavily to extremely contaminated

6 >5 Extremely contaminated
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2.3.2. Contamination Grade by Ecological Risk Index (ERI)

The ecological risk index (ERI) represents the risk of affecting living organisms and
the environment with a toxic metal, evaluating the sensitivity of different ecosystems to
toxic contaminants [29]. The ERI was estimated using the following formula [30]:

ERI = [(Ts)(Cs)]/Bs (2)

where Ts indicates the Pb toxicity factor equal to five reported by Hakanson (1980) [30], Bs
is the Pb background in soil (27 mg/kg), and Cs represents the Pb concentration measured
in the soil. The ERI for each report was estimated (Tables S1–S3) using the mean, median,
or maximum Pb concentration. The ERI depicts the risk as low (≤50), moderate (50–100),
high (100–150), very high (150–200), and extreme (>200).

2.3.3. Statistical Analysis of Contamination Grade

To compare the contamination grade among mining, agricultural, and residential
land uses, the Igeo and ERI values were averaged per land use and analyzed by One
Way Analysis of Variance on Ranks. Statistical analysis and graphs were performed in
SigmaPlot 12.0.

2.3.4. Health Risk by Exposure Estimation

The health risk assessment estimates the possible adverse health effects in people
exposed to pollutants [31]. Non-carcinogenic and carcinogenic effects are included in a
health risk evaluation considering the pollutant exposure grade. Since Pb exposure occurs
via oral, dermal, and inhalation routes, the average daily intake (ADI) of Pb was determined
for each route. The mean, median, or maximum Pb concentration in the range was used to
estimate the ADI for each report. The ADIs were calculated for both adults and children
using the formulas and parameters in Table 2 reported by Kan et al. (2021) [15]:

ADIoral = [(Cs)(IR)(ED)(EF)(FI)]/[(BW)(AT)] × 10−6 (3)

ADIdermal = [(Cs)(SA)(AF)(ABS)(ED)(EF)]/[(BW)(AT)] × 10−6 (4)

ADIinhalation = [(Cs)(ED)(EF)(ET)]/[(PEF)(BW)(AT)] (5)

2.3.5. Non-Carcinogenic and Carcinogenic Risk Assessments

The non-carcinogenic risk was estimated separately for oral, dermal, and inhalation
exposures by the target hazard quotient (THQ) using the following formula:

THQ = ADI/RfD (6)

where ADI is the value obtained in Section 2.3.4 for each exposure route and RfD
corresponds to a reference Pb dose. RfDs were 0.0035, 0.000525, and 0.00352 mg/kg/day
for oral, dermal, and inhalation routes, respectively [32,33]. The hazard index (HI) was
estimated by adding the oral, dermal, and inhalation THQ values. The HI (Tables S1–S3)
evaluates the general non-carcinogenic risk. HI < 1 indicates a lower probability of
non-carcinogenic effects, HI > 1 represents a greater possibility of non-carcinogenic
effects, and HI > 10 suggests a serious chronic health impact.

The carcinogenic risk was calculated for oral exposure by the cancer risk index (CRI)
using the following formula:

CRI = ADIoral (CSF) (7)

where ADIoral was obtained in Section 2.3.4 and CSF (0.0085 mg/kg/day) depicts the cancer
risk per unit of Pb dose (i.e., cancer slope factor) [33]. CRI was estimated for each location
based on Pb concentration (Tables S1–S3). The permissible CRI value is 1 × 10−6 for a
single carcinogenic metal [34].
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Table 2. Parameters to obtain the average daily intake (ADI). Modified from Kan et al. (2021) [32].

Parameter Description Substituted Value

Cs Pb concentration identified in soil * mg Pb/kg determined in each report

IR Ingestion rate of soil 100 mg/day for adults
200 g/day for children

ED Exposure duration 24 years for adults
6 years for children

EF Exposure frequency 350 days/year

FI Factor ingestion 1

BW Body weight 63 kg for adults
29 kg for children

AT Average exposure time ED × 365 days for non-carcinogen
76.6 × 365 days for carcinogens

SA Skin surface area exposed 5700 cm2 for adults
2800 cm2 for children

AF Adherence factor 0.07 mg/cm2 h for adults
0.2 mg/cm2 h for children

ABS Dermal absorption factor 0.001

ET Exposure time 8 h/day

PEF Emission factor 1.36 × 109 m3/kg
* Substituted value was the Pb concentration in soil reported.

3. Results and Discussion
3.1. Reports Retrieved

The identification, screening, and selection of reports are described in Figure 2.
From 40,079 reports, 39,729 were excluded by automatic filters, 350 were manually
screened, and 36 were selected for this study. All 36 follow the guidelines of the U.S.
Environmental Protection Agency (USEPA) and/or the Mexican regulation NMX-AA-
132-SCFI-2006 [35] for sample collection as well as for Pb determination. Sampling
was carried out from 0 to 30 cm deep as the official guidelines indicate. The methods
for Pb quantification included flame atomic absorption spectrometry (FAAS), atomic
absorption spectrometry with graphite furnace (AAS-GF), inductively coupled plasma
mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectroscopy
(ICP-OES), and X-ray fluorescence (XRF).

A total of 13 reports evaluated soil from mines or tailings, 14 analyzed agricultural or
residential areas related to mining, 11 identified Pb in agricultural or residential soil but in
relation to other sources than mining, and a unique report evaluated Pb on residential land
in relation to a battery factory in NLE. In recent years, the number of Pb battery recycling
facilities has increased in Mexico. Since environmental pollution caused by this activity has
becoming more frequent, it is necessary studies of environmental risks associated with this
activity for achieving pollution control [36].

3.2. Data Collected

The information collected was organized into mining, agricultural, and residential
soils. Figure 3 depicts Mexican states related to mining (2010–2022) and/or Pb battery re-
cycling, reports number per state, and the land use mentioned. Mexican states related to
Pb mentioned in the reports were AGU, BCN, CHH, COA, DUR, GRO, GUA, HID, MOR,
NLE, PUE, QUE, SLP, SON, TLA, and ZAC. Soil from “San Antonio” and “Ensenada de
Muertos” mines in Baja California Sur (BCS) was evaluated by Méndez-Rodríguez and
Alvarez-Castañeda (2016) [37], but we did not find data on Pb production in the Mexican
National Institute of Statistic and Geography [23]. However, an official government
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report indicates that BCS had its last Pb production in 1957 [38]. In contrast, no reports
from OAX and SIN, Pb mining producers; TAM, Pb battery recycler; and JAL, MEX,
and MIC, with both mines and recycling facilities, were found using the search strategy
described in Section 2.1. Totals of 13, 11, and 16 reports described mining, agricultural,
and residential soil samples, respectively. The most studied state was SLP, with ten
reports by diverse authors, followed by HID, mentioned in five reports, SON, reported
by four authors, CHH, by three, and COA, DUR, GRO, NLE, QUE, and ZAC with two
publications each, while AGU, BCN, BCS, GUA, MOR, PUE, and TLA were studied in
one report each. Interestingly, ZAC and CHH had few reports considering that both
produce a greater amount of Pb than SLP [23]. From all retrieved reports, the Pb con-
centration in soil was registered and ordered in tables by land use, then contamination
grade and health risk were determined for each report.
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3.3. Lead (Pb) Concentrations in Mining, Agricultural, and Residential Land

The uncontaminated soil presents an average of 16 mg Pb/kg, with a range
from 2 to 200 mg Pb/kg [39]. The official environmental regulations in each country
determine the maximum permissible concentration of Pb in soil. The Mexican Norm
NOM-147-SEMARNAT-2004 permits 800 mg Pb/kg for mining soil and 400 mg Pb/kg
for both agricultural and residential land [40]. Table 3 summarizes the mining/tailing
studies where the highest Pb concentration was 21,288 mg/kg, identified in San
Felipe de Jesús (SON), a value 26.6-fold higher than Mexican standards. Loredo-
Portales et al. (2020) [41] reported that the analyzed tailing is located 0.5 km from
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San Felipe de Jesus, a small town with approximately 400 inhabitants. They also
evaluated agricultural soil nearby, identifying 1673.3 mg Pb/kg, a concentration
4.2 times higher than the Mexican norm. In Table 4, Vetagrande (ZAC) was the locality
with the highest Pb concentration (7516.6 mg Pb/kg) in agricultural soil, 18.8-fold
higher than the allowed limit. The authors Barajas-Aceves and Rodríguez-Vázquez
(2013) mention that in Vetagrande soil, bean, corn, and chili has been cultivated for
24 years [42]. Regarding residential areas, 21,179 mg Pb/kg was quantified <1.5 km
from a Pb smelter in Torreón (COA), exceeding the standard value by 52.9 times
(Table 5). To evaluate the Pb impact on locations, the contamination grade and the
human health risk were calculated for each report.
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Figure 3. Mexican states’ mining Pb production, Pb battery facilities, and Pb pollution reports.
Aguascalientes (AGU), Baja California Norte (BCN), Baja California Sur (BCS), Chihuahua (CHH),
Coahuila (COA), Durango (DUR), Estado de México (MEX), Guanajuato (GUA), Guerrero (GRO),
Hidalgo (HID), Jalisco (JAL), Michoacán (MIC), Morelos (MOR), Nuevo León (NLE), Oaxaca
(OAX), Puebla (PUE), Querétaro (QUE), San Luis Potosí (SLP), Sinaloa (SIN), Sonora (SON),
Tamaulipas (TAM), Tlaxcala (TLA), and Zacatecas (ZAC) are depicted. The mean of Pb mining
production (tons) during 2010–2022 (bluish gray) and the Pb battery recycling facilities in each
state are represented (battery symbol). The number of land-use symbols indicates the quantity of
reports retrieved per State.

Table 3. Pb concentrations in mining and/or tailings land.

Location Characteristics and Distance
from the Pollution Source

Range; Median, or Mean ± SD
(mg/kg) References

AGU, Asientos
Dry season, 10 m * 164.6 [43]

Rainy season, 10 m * 2309.5 [43]

BCS, Los Planes
“San Antonio” mine 7.1 ± 1.9 [37]

“Ensenada de Muertos” mine 3.9 ± 0.2 [37]

HID, Zimapán

20 m ** 610.0 ± 5.0 [44]
30 m ** 505.5 ± 61.5 [44]
Tailing 2211.6 ± 232.5 [45]

5–45 m * 268.0–996.0; med 693.6 [46]
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Table 3. Cont.

Location Characteristics and Distance
from the Pollution Source

Range; Median, or Mean ± SD
(mg/kg) References

GRO, Taxco 5–45 m * 89.0–2859.0; med 832.4 [46]

GUA, Pozos 5–35 m * 58.0–469.0; med 243.0 [46]

GUA, Xichú 5–35 m * 111–12,966; med 1171.3 [46]

QUE, Maconí 5–45 m * 70–234; med 126.6 [46]

QUE, Peñamiller “La Estrella” mine 1.0–2.8; med 1.4 [47]

SLP, Cedral Currently active mining 2682.4–18,537.3; 4327.0 ± 3015.6 [48]

SLP, Cerro de San Pedro Current and historical tailings 281.7–19,549.3; 4220.0 ± 3793.3 [48]

SLP, Charcas
Historical mining 442 years ago 42.1–17,861.2; 12,929.6 ± 4689.0 [48]

Mine <400.0 [49]

SLP, Villa de la Paz

Current and historical tailings 189.2–5088.3; 907.8 ± 996.7 [48]
Tailing 555.0 [50]

Hill 5488.0 [50]
Rosettophyllous desert in soil 117.9–487.1 [51]
Microphyllous desert in soil 428.1–2226.8 [51]

SON, Nacozari de García
Abandoned tailings II 21.4–122.4, 70.0 ± 28.3 [52]
Abandoned tailing III 2.5–33.9; 14.1 ± 9.5 [52]

SON, San Felipe de Jesús Sulfide-rich tailings 9720.0–23,400.0; med 21,288.0 [41]
Oxide-rich tailings 8960.0–23,400.0; med 14,763.0 [41]

ZAC, Vetagrande
“Jal Viejo” tailing 3984.0 ± 306 [53]

Mining soil with Reseda Luteola L. 853 ± 250 [53]
Mining soil with Asphodelus fistulosus L. 2656 ± 151 [53]

*, distance from mine; **, distance from tailing; med, median; SD, standard deviation. AGU, Aguascalientes; BCS,
Baja California Sur; GUA, Guanajuato; GRO, Guerrero; HID, Hidalgo; QUE, Querétaro; SLP, San Luis Potosí; SON,
Sonora; ZAC, Zacatecas.

Table 4. Pb concentrations in agricultural land.

Location Characteristics and Distance
from the Pollution Source

Range; Median or Mean ± SD
(mg/kg) References

AGU, Asientos
BCN, Cerro Prieto

1600 m * 369.7–374.7; med 372.2 [43]

Geothermal station 14.7–25.8; med 19.9 [54]

CHH, Aldama Walnut orchards near mine 1–47.4; med 30.5 [55]
CHH, Juarez Valley Juarez Valley (agrochemicals) 23.4 ± 6.4 [56]

DUR, Santiago Papasquiaro Forest soil impacted by mine tailing 26.5–768.6; 256.8 ± 166.8 [57]

GRO, Santa Rosa
3000 m ** 229.6 ± 50.6 [58]
400 m ** 59.9 ± 0.1 [58]
40 m ** 3269.7 ± 53.7 [58]

HID, Zimapán

20 m ** 505.5 ± 61.5 [59]
30 m ** 674.0 ± 3.5 [59]

100 m ** Soil from terrestrial plants 365.0–3884.0; 1722.8 ± 1277.7 [60]
Soil from wetlands and aquatic plants 201.0–3991.0; 2019.2 ± 1138.6 [60]

SON, San Felipe de Jesús Soil adjacent mine tailings 106.0–4630.0; med 1673.3 [41]

SON, Yaqui and Mayo valleys Yaqui valley (PbHAsO4 pesticide) 10.0–195.0; med 40.1 [61]
Mayo valley (PbHAsO4 pesticide) 9.0–33.0; med 23.2 [61]

ZAC, Vetagrande Agricultural and rangeland soils near mines 7516.6 ± 456.3 [42]

*, distance from mine; **, distance from tailing; med, median; SD, standard deviation. AGU, Aguascalientes;
BCN, Baja California Norte; CHH, Chihuahua; DUR, Durango; GRO, Guerrero; HID, Hidalgo; SON, Sonora;
ZAC, Zacatecas.
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Table 5. Pb concentrations in residential land.

Location Characteristics and Distance
from the Pollution Source

Range; Median or Mean ± SD
(mg/kg) References

AGU, Asientos
800 m *, residential zone 33.2–44.9; med 39.0 [43]

1600 m *, residential zone 82.3–98.8; med 90.5 [43]

BCS, Los Planes “El Sargento” town, 10 km * 5.2 ± 0.5 [37]

“Brisamar” town, 40 km * 0.4 ± 0.4 [37]

CHH, Chihuahua 600 m from “Ávalos” Pb smelter 62–4716; med 1499 [62]

COA, Torreón <1.5 km from Pb smelter 25–21,179 [63]

>1.5 km from Pb smelter 24.0–589.0 [63]

Pb smelter plant 130–12,050; med 374.0 [64]

DUR, Durango “Cerro de Mercado” mining district 21.6–107.3 [65]

MOR, Tlayacapan Pottery workshops 165.0–916.0; med 195.0 [66]

NLE, Monterrey Battery factory 8.0–6064.0; med 83.4 [67]

Industrial zones 224.0–1230.0; 455.0 ± 204.0 [68]

PUE, Popocatépetl Volcanic soil 3.6–60.3 [69]

SLP, Cedral Old mines and tailings 98–4225; med 263 [62]

SLP, Cerro de San Pedro Urban zone mining activity 11,124.5–18,537.8; med 6485.1 [70]

SLP, Las Terceras Brick-kiln area 19.9–611.5; med 60.5 [71]

SLP, Morales Formerly Pb-concentrate production 62–5187; med 570 [62]

SLP, San Luis Potosí Industrial, and vehicular traffic zones 25.0–435.0; 108.0 ± 105.0 [72]

SLP, Villa de la Paz Urban areas near mining activity 37.0–16,991.0; 458.0 ± 4567.0 [73]

Urban zone mining activity 466.1–3486.4; med 1053.7 [70]

Zone near tailing 13–754; 373.4 ± 278.6 [74]

SON, Hermosillo Traffic paint and urban topsoils 34.0–173.0; med 59.9 [75]

TLA, Trinidad Tenexyecac Pottery area 411–2740; med 1126 [62]

*, distance from mine; med, median; SD, standard deviation. AGU, Aguascalientes; BCS, Baja California Sur;
CHH, Chihuahua; COA, Coahuila; DUR, Durango; MOR, Morelos; NLE, Nuevo León; PUE, Puebla; SLP; San
Luis Potosí; SON, Sonora; and TLA, Tlaxcala.

3.3.1. Contamination Grade in Mining, Agricultural, and Residential Land

Pollution monitoring is important to assess the exposure risk for humans and ecosys-
tems, particularly in mines or industrial zones [76]. In Figure 4, the contamination grade is
represented by Igeo and ERI values obtained for mining, agricultural, and residential land
in Mexico. Mining land locations, namely Cerro de San Pedro, Cedral, Charcas, San Felipe
de Jesús, and Vetagrande, were extremely contaminated (Igeo > 5) with extreme ecological
risk (ERI > 200). Residential areas and ecosystems surrounding mines or storage tailings
have environmental risks attributable to pollutant releases, groundwater contamination
by leakages, or failures in tailing dams [77]. Indeed, agricultural soil from San Felipe de
Jesús and Vetagrande presented extreme contamination, confirming possible pollutant dis-
tribution from mines or tailings to nearby areas. Agricultural soil near mines accumulates
polluting compounds and eventually contaminates crops [78], representing a potential
risk to human health [79]; the Mexican norm allows 400 mg Pb/kg in agricultural soil,
while Canadian standards recommend 140 mg Pb/kg as a maximum limit [80]. High Pb
concentration in soil suggests an increase in the metal mobility and a higher probability
of bioaccumulation. Muñoz et al. (2021) identified, in Vetagrande (ZAC), vegetables with
Pb concentrations greater than the limits (0.1 mg Pb/kg) established by the Food and
Agriculture Organization of the United Nations (FAO); the vegetables analyzed by Muñoz
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were garlic (Allium sativum, 3.0 mg Pb/kg), carrot (Daucus carota, 5.0 mg Pb/kg), and bell
pepper (Capsicum annuum, 9.6 mg Pb/kg) [81].
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Figure 4. Contamination grade in Mexican locations. (a) Geoaccumulation index (Igeo) and
(b) ecological risk index (ERI) are represented in the scheme. Circles in red, orange, and green
indicate mining, agricultural, and residential land, respectively, in Mexican locations. AGU,
Aguascalientes; BCN, Baja California Norte; BCS, Baja California Sur; CHH, Chihuahua; COA,
Coahuila; DUR, Durango; GRO, Guerrero; GUA, Guanajuato; HID, Hidalgo; MOR, Morelos; NLE,
Nuevo León; PUE, Puebla; QUE, Querétaro; SLP, San Luis Potosí; SON, Sonora; TLA, Tlaxcala;
and ZAC, Zacatecas.
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Contamination evaluated in residential areas was related to the industry (Pb smelter,
battery factory, brick kiln, etc.), pottery, traffic paint, and volcano proximity. One clear
example is the extreme contamination and ecological risk determined in Chihuahua and
Torreón related to Pb smelter facilities. Localities with extremely contaminated mining
land, namely Cerro de San Pedro and Villa de la Paz, also presented extreme contamination
and ecological risk in residential areas. We analyzed if contamination grade was related to
land-use, and results indicated that there is no significant difference among contamination
in mining, agricultural, and residential soils (Figure S1). The contamination grade and
ecological risk identified in the entire Mexican territory are showed in Figure 4.

3.3.2. Health Risk in Mining, Agricultural, and Residential Land

The health risk was determined by the non-carcinogenic and carcinogenic risks. The
health risks for adults and children were estimated, ordered by land use, and are summa-
rized in Table 6. Localities extremely contaminated (Figure 4) presented a HI value > 10 for
children, suggesting a serious non-carcinogenic risk. Children are particularly vulnerable
because they gastrointestinally absorb Pb efficiently, spend time on dusty floors, and are
exposed by hand–mouth behavior [82]. Exposure to Pb in early life is associated with
metabolic syndrome [83], nervous system disorders, kidney and liver damage, auditory
impairment, gastrointestinal alterations, decreased intelligence quotient, and behavioral
disorders [84]. Particularly, residential zones such as Trinidad Tenexyecac, Cerro de San
Pedro, Morales, Torreon, and Chihuahua should be monitored to confirm such risk in
children. Non-carcinogenic risk for adults was mostly interpreted as a greater possibility
of non-carcinogenic effects; Pb in adults is related to Alzheimer’s disease, reproductive
toxicity, and progression of cancer [85]. Finally, the carcinogenic risk was evaluated in
mining, agricultural, and residential zones. The results represented in Table 6 as CRI values
exceeded the recommended value for a single carcinogenic metal. The population living
in areas close to mines and areas of Pb smelting and brick pottery presented higher CRI
values. Of all the reports, “El Sargento” town, Los Planes, Baja California Sur, located to
10 km from a mine, did not present a cancer risk.

Table 6. Hazard and cancer risk indexes in mining, agricultural, and residential soils.

Location

Mining Agricultural Residential

HI CRI (10−6) HI CRI (10−6) HI CRI (10−6)

Adult Children Adult Children Adult Children Adult Children Adult Children Adult Children

AGU, Asientos 5.5 23.9 50.1 54.5 1.7 7.2 15.1 16.4 0.3 1.2 2.6 2.9

BCN, Cerro Prieto --- --- --- --- 0.1 0.4 0.8 0.9 --- --- --- ---

BCS, Los Planes 0.0 0.1 0.2 0.2 --- --- --- --- 0.0 0.1 0.1 0.1

CHH, Aldama --- --- --- --- 0.1 0.6 1.2 1.3 --- --- --- ---

CHH, Chihuahua --- --- --- --- --- --- --- --- 6.7 28.9 60.8 66.0

CHH, Juarez Valley --- --- --- --- 0.1 0.5 1.0 1.0 --- --- --- ---

COA, Torreón --- --- --- --- --- --- --- --- 33.0 142.1 299.2 325.0

DUR, Durango --- --- --- --- --- --- --- --- 0.5 2.1 4.4 4.7

DUR, Santiago Papasquiaro --- --- --- --- 1.1 4.9 10.4 11.3 --- --- --- ---

GRO, Santa Rosa --- --- --- --- 5.3 22.8 48.1 52.2 --- --- --- ---

GRO, Taxco 3.7 16.0 33.7 36.6 --- --- --- --- --- --- --- ---

GUA, Pozos 1.1 4.7 9.9 10.7 --- --- --- --- --- --- --- ---

GUA, Xichú 5.2 22.5 47.5 51.6 --- --- --- --- --- --- --- ---

HID, Zimapán 4.5 19.1 40.2 43.7 5.5 23.7 49.9 54.2 --- --- --- ---

MOR, Tlayacapan --- --- --- --- --- --- --- --- 0.9 3.8 7.9 8.6

NLE, Monterrey --- --- --- --- --- --- --- --- 1.2 5.2 10.9 11.9

PUE, Popocatépetl volcano --- --- --- --- --- --- --- --- 0.3 1.2 2.4 2.7

QUE, Maconí 0.6 2.4 5.1 5.6 --- --- --- --- --- --- --- ---

QUE, Peñamiller 0.0 0.0 0.1 0.1 --- --- --- --- --- --- --- ---
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Table 6. Cont.

Location

Mining Agricultural Residential

HI CRI (10−6) HI CRI (10−6) HI CRI (10−6)

Adult Children Adult Children Adult Children Adult Children Adult Children Adult Children

SLP, Cedral 19.3 83.3 175.4 190.5 --- --- --- --- 1.2 5.1 10.7 11.6

SLP, Cerro de San Pedro 18.8 81.2 171.1 185.8 --- --- --- --- 29.0 124.8 262.9 285.5

SLP, Charcas 29.8 128.3 270.2 293.5 --- --- --- --- --- --- --- ---

SLP, Las Terceras --- --- --- --- --- --- --- --- 0.3 1.2 2.5 2.7

SLP, Morales --- --- --- --- --- --- --- --- 2.5 11.0 23.1 25.1

SLP, San Luis Potosí --- --- --- --- --- --- --- --- 0.5 2.1 4.4 4.8

SLP, Villa de la Paz 8.6 37.2 78.4 85.1 6.1 26.2 55.0 59.8 2.8 12.1 25.5 27.7

SON, Hermosillo --- --- --- --- --- --- --- --- 0.3 1.2 2.4 2.6

SON, Nacozari de García 0.2 0.8 1.7 1.9 --- --- --- --- --- --- --- ---

SON, San Felipe de Jesús 80.5 346.9 730.7 793.7 7.5 32.2 67.8 73.7 --- --- --- ---

SON, Yaqui and Mayo valleys --- --- --- --- 0.2 0.6 1.3 1.4 --- --- --- ---

TLA, Trinidad Tenexyecac --- --- --- --- --- --- --- --- 5.0 21.7 45.6 49.6
ZAC, Vetagrande 11.2 48.1 101.2 110.0 16.4 70.7 149.0 161.8 --- --- --- ---

---, no report found; CRI, cancer risk index; HI, hazard index; AGU, Aguascalientes; BCN, Baja California Norte;
BCS, Baja California Sur; CHH, Chihuahua; COA, Coahuila; DUR, Durango; GRO, Guerrero; GUA, Guanajuato;
HID, Hidalgo; MOR, Morelos; NLE, Nuevo León; PUE, Puebla; QUE, Querétaro; SLP, San Luis Potosí; SON,
Sonora; TLA, Tlaxcala; and ZAC, Zacatecas.

4. Conclusions

In this systematic review, we retrieved 36 reports of Pb quantification in mining, agri-
cultural, and residential soil in Mexico. Interestingly, the reports mentioned 16 Mexican
states out of 22 related to Pb mining and/or Pb battery recycling. Most of the reports cor-
related the Pb concentration in soil with mining, whereas a unique article mentioned the
battery industry. San Luis Potosí (SLP) was the most reported state. The meta-analysis
performed allowed us to identify extreme Pb contamination grades in residential land
from Cerro de San Pedro and Villa de la Paz in SLP, Chihuahua in Chihuahua, and
Torreon in Coahuila, while in studies of agricultural soil, extreme contamination was
recognized in Cerro de San Pedro, Cedral, Charcas, and Villa de la Paz (SLP), San Felipe
de Jesús in Sonora, and Vetagrande in Zacatecas. Contamination grades coincide with
a high health risk, particularly for children. Thus, the results presented in our work
can guide other researchers and Mexican authorities to identify regions in the Mexican
territory that require attention and immediate remediation in order to reduce the health
risks in the Mexican population.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments11030043/s1, Figure S1: Igeo and ERI values
(a and b, respectively) averaged and graphed to compare Pb contamination by land uses;
Table S1: Indexes of geoaccumulation, ecological risk, hazard, and cancer risk in mining/tailing
soils; Table S2: Indexes of geoaccumulation, ecological risk, hazard, and cancer risk in agricultural
soils; Table S3: Indexes of geoaccumulation, ecological risk, hazard, and cancer risk in residential soils.
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