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Abstract: Air pollutants from traffic make an important contribution to human exposure, with
pedestrians likely to experience rapid fluctuation and high concentrations on the pavements of busy
streets. This monitoring campaign was on Hennessy Road in Hong Kong, a densely populated city
with deep canyons, crowded footpaths and low wind speeds. Kerbside NOx concentrations were
measured using electrochemical sensors with baseline correction and subsequently deconvoluted to
determine concentrations at 1-s resolution to study the dispersion of exhaust gases within the first few
metres of their on-road source. The pulses of NOx from passing vehicles were treated as segments
of a Gaussian plume originating at the tailpipe. The concentration profiles in segments were fit to a
simple analytical equation assuming a continuous line source with R2 > 0.92. Least squares fitting
parameters could be attributed to vehicle speed and source strength, dispersion, and sensor position.
The width of the plume was proportional to the inverse of vehicle speed. The source strength of NOx
from passing vehicles could be interpreted in terms of individual emissions, with a median value
of approximately 0.18 g/s, but this was sensitive to vehicle speed and exhaust pipe position. The
current study improves understanding of rapid changes in pollutant concentration in the kerbside
environment and suggests opportunities to establish the contribution from traffic flow to pedestrian
exposure in a dynamic heavily occupied urban microenvironment.

Keywords: Gaussian plume; NOx; traffic-related air pollution (TRAP); low-cost sensors; kerbside
environment; diesel bus emissions; Hong Kong

1. Introduction

The roadsides of busy urban streets are polluted environments [1,2]. The traffic
emissions pose adverse public health impacts, including respiratory health problems and
allergies; pedestrians, drivers and residents in nearby naturally ventilated buildings are
among those affected [3–5]. Concentrations of traffic-derived pollutants are especially
high in urban street canyons [6–11], where elements of the roadside architecture [12]
such as bus stops [13,14], overhead walkways [15], and roadside vegetation [16–18] can
inhibit airflow. Vehicles induce turbulence and canyon winds along the canyon axis [19,20].
Automotive exhaust plumes, especially during congestion and queuing [21,22], lead to
high concentrations and chemical reactions that cause rapid variation in street-level air
pollutants in this dynamic environment, with the potential for rapid ozonolysis of nitric
oxide (NO) to nitrogen dioxide (NO2) [19,23]. Furthermore, nucleation, condensation,
secondary particle production, and adsorption of pollutants onto the aerosol are likely to
be important [24]. Such processes could also produce varying amounts of nanoparticles
and reactive oxygen species [25] and induce their variability in urban air [26].
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Urban streets are important communal spaces for outdoor activities where pedestrians
on pavements may be just a few metres from traffic; near-field pollutants represent a major
source of human exposure, which is poorly represented by fixed monitoring sites located
away from the kerbside [27,28]. Such pollution has been investigated using portable sensor
measurements on the roadside [19] or from vehicles [29,30], which have been useful in
assessing vehicle emissions [6,31]. The dispersion of exhaust gases in the first few metres is
complex [32,33], where emissions are affected by turbulent vehicle wakes [34] and mix into
the lower street canyon [19].

Hong Kong, the site of this study, is a densely populated city. The suburb of Kwun
Tong supports 57,250 persons per square kilometers [34], which is among the most crowded
districts in the world. The city is characterized by a vertical environment with over
500 habitable high-rise buildings that have over 40 floors, creating deep street canyons. In
Hong Kong, vehicles are a significant source of air pollution, with nearly 20% of NOx and
50% of carbon monoxide (CO) emissions originating from the transport sector ranked as
the third highest source of NOx and the highest source of CO according to Hong Kong Air
Pollutant Emission Inventory [35]. Buses and trucks are particularly important contributors
as private vehicle ownership is relatively low in Hong Kong. Diesel buses play a vital
role in the daily lives of residents, with only 573,571 private vehicles registered in January
2020, or about 7600 per 100,000 people [36]. The kerbside environment is subject to high
concentrations of pollutants. However, Hong Kong has only three roadside stations, and
these are often elevated above pedestrians. These roadside sites average at [37]: NOx
105 ± 25, NO2 44 ± 3.2, and CO 698 ± 50 ppb (years 2017/2019 to avoid COVID-19 years).
The urban footpaths are heavily used in Hong Kong, crowded with people waiting for
buses and trams, merchants. Domestic helpers who act as live-in maids frequently occupy
these spaces to socialize on Sundays [38]. This highlights the importance of understanding
and managing air quality in such densely populated environments.

Vehicle exhaust gas dispersion behavior has been investigated through various meth-
ods. Computational fluid dynamics (CFD) models have been employed to simulate exhaust
gas dispersion from vehicle exhaust pipes [39–42]. Studies [43–46] have examined the
effects of initial emission concentration, exit velocity, exit direction, and crosswind intensity
on exhaust plume dispersion, both experimentally and numerically. CFD studies of street
canyons have offered valuable insights into wind fields and pollutant transport [47,48],
The results indicate that street geometry, such as aspect ratio [49,50], building height [51],
and urban forestry [52–54], significantly and collectively impacts pollutant distributions in
the canyons [55]. These simulations have been validated through comparison with wind
tunnel experiments [56,57]. The Large Eddy Simulation (LES) method has proven to be
more accurate than Reynolds Averaged Navier Stokes (RANS)-based techniques [58,59].
However, the RANS modeling approach remains popular due to its lower computational
cost and time requirements [55,60].

Quantifying the air quality at the roadside is important for regulating air pollution and
assessing health impacts; therefore, real-world roadside monitoring has been conducted.
The concentration gradients within this heterogeneous environment were found to be
steep [29], so it can be hard to estimate pedestrian exposure [28]. Moreover, the majority of
studies have focused on experiments in relatively ideal microenvironments, such as wind
tunnels [57] and controlled lab-like environments [43–45]. There is a scarcity of research
addressing real-world kerbside measurements. While CFD, LES, and other sophisticated
numerical models offer valuable insights into the vehicle plume dispersion process in the
near-wake region, their massive computational cost and slow rate of calculation limit their
real-time applicability in city-scale implementations [61]. Therefore, there is a need for
more practical approaches to study and manage air quality in real-world urban environ-
ments. Gaussian models are commonly used to simulate atmospheric pollutant dispersion
near sources as they provide an efficient compromise between reasonable accuracy and
manageable computational time [62]. In a previous study, a modified Gaussian model was
utilized to simulate NOx concentrations in a comprehensive case study [62].
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The study described here deployed multiple high-time resolution sensors (1-s) near
a congested lane of traffic for NOx. The sensors respond rapidly to changes in pollutant
concentration after deconvolution algorithm correction. A modified classical Gaussian dis-
persion model was employed to describe the concentration profiles emitted from individual
vehicles. While a Gaussian model may not be a proper formulation in this near-source
turbulent environment (Reynolds numbers 105 to 108) [63], it offers a reasonable choice as a
fitting equation. Hence, the structure of the NOx plumes has been fitted to assess dispersion
parameters and the source strength of passing vehicles. It also attempts to relate these
to emissions as determined from the NOx: CO2 ratio in exhaust plumes. Such estimates
can be especially important for roadside NOx as standards have typically been difficult
to meet in Hong Kong [64]. We specifically selected NOx as the target pollutant due to its
identification as the primary challenge for improving air quality in Hong Kong [65]. The
results provide an indication of the rapid changes in kerbside pollutant concentrations,
propose a new method for modelling vehicle emissions in the roadside environment, and
aid understanding of pedestrian exposure, but the relevance of short high-concentration
cumulative exposure needs to be better understood [66].

2. Methodology
2.1. Instrumentation

The high-speed sensors (HSS-100, Sapiens, Shen Zhen, China) used at this site have
been described in earlier work [6]. In brief, the devices actively sample air to determine
concentrations of NO, NO2, and CO2 using 4-electrode electrochemical sensors (Table 1)
with proprietary baseline sensors incorporating pair differential filter (PDF) technology to
reduce the baseline drift due to humidity and temperature changes [67]. The 1-s resolution
captures the rapidly changing pollutant concentrations in the plume segments. Real-time
sensor data is processed with an on-board microprocessor and transferred to a local server
by a Wi-Fi module.

Table 1. Technical details for the monitoring equipment.

NO NO2 CO2

Sensor

Dynamic baseline
tracking and

electrochemical
sensing NO-A4

Dynamic baseline
tracking and

electrochemical
sensing NO2-A43F

Temperature
compensated NDIR

measurement
PREMIER IR CO2

Measurement range 0~5000 ppb 0~5000 ppb 0~5000 ppm

Resolution ≤1 ppb ≤1 ppb ≤1 ppm

Noise ≤5 ppb ≤5 ppb ≤50 ppb

Lower detection limit 5 ppb 5 ppb 0.05 ppm

e-folding time 1 5 s 5 s --

Synchroneity ±1–2 s ±1–2 s ±1–2 s
1 The e-folding time used here describes the timescale over which a value will decrease by 1/e. The folding time
has been experimentally determined and is relevant to the deconvolution kernel of Sections 2.4 and 3.2. Further
explanation can be found in Supplementary Materials.

2.2. Site

This study examines a site on Hennessy Road, Causeway Bay, Hong Kong (22◦16′48.0′′ N
114◦10′57.9′′ E), an area with a population density of about 17,000 inhabitants per square
kilometre. Known for its shopping malls and significant commercial foot traffic, the area
has heavily occupied pavements, making it an important location for studying air quality
and pollution in an urban setting. The road lies in a deep urban canyon with walls of
20–40 floors (~120–220 m; in our site, the aspect ratio is ~3.9 to 2.6) and low wind speeds;
median and Q3 were 0.6 and 1.2 m·s−1 at node R2, respectively [19]. Heavy vehicles
are a focus of emission reduction in the city, and the site is near one of Hong Kong’s
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Franchised Bus Low Emission Zones, where the Euro V standard is required for buses [68].
Kerbside measurements on Hennessy Road were made between 09:00 and 21:00 on four
working days during December 2020, i.e., 21 December, 22 December, 28 December, and 29
December. The site is on a dual carriageway, with one side lined with tall buildings and the
other featuring an electric tram stop and footbridge stairs. This relatively confined space
limits the influence of opposing traffic lanes. Figure 1 illustrates the location of the canyon
sampling site.
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WDC5, Hongyue, China) at L2 and R2. Sensor inlets L1, L2, R1, and R2 were close to the 
height of tailpipes for buses (0.4–0.6 m), which are the dominant pollutant source at the 
site. Others were deployed in more elevated positions; one on a lamp post (LH) at 1.6 m 
measured the concentration of the breathing zone. The left lane was blocked during the 
monitoring campaign (Figure 1e), so traffic gradually moved to the right and tended to 
flow along the lane closest to nodes R1 and R2. However, the transverse position of the 

Figure 1. (a) Location map showing Causeway Bay on the northern part of Hong Kong Island
(source: https://www.landsd.gov.hk/en/spatial-data/open-data.html, accessed on 13 March 2024).
(b) Photograph illustrating the canyon-like appearance of Hennessy Road, with the foot bridge
evident as a white line over the street, adapted from Google Maps. (c) Layout of the site on Hennessy
Road. (d) Positions of sensor nodes and the expanding plume from a passing bus, (“L” for left-side
sensors, “R” for right-side sensors, “1” for the first sensor during a pass, and “H” for the elevated
sensor). (e) Photograph of the site from the walkway footbridge (photograph by author—Chu M.-Y.).

Seven high-speed sensors were deployed at the site (detailed in [19]). Four (L1, L2, R1,
and R2) were positioned on both sides of the lane to capture as many of the exhaust plumes
as possible, regardless of the direction of dispersion through turbulence or local winds
(Figure 1c). Wind speed and direction were measured with a wind sensor (HY-WDC5,
Hongyue, China) at L2 and R2. Sensor inlets L1, L2, R1, and R2 were close to the height of
tailpipes for buses (0.4–0.6 m), which are the dominant pollutant source at the site. Others
were deployed in more elevated positions; one on a lamp post (LH) at 1.6 m measured
the concentration of the breathing zone. The left lane was blocked during the monitoring
campaign (Figure 1e), so traffic gradually moved to the right and tended to flow along the
lane closest to nodes R1 and R2. However, the transverse position of the exhaust plumes
varies depending on the bus model. Pollutant fluctuations have been presented in the
previous study [19].

The calibration and QA/QC for the monitoring system Is described in earlier work [6,67];
more details can be found in the Supplementary Materials. Nitrogen oxides were generated
with a NO2/NO/O3 calibration source (Model 714, 2B Technology, Boulder, CO, USA).
Time synchronization was important when comparing sensors and pair plumes with

https://www.landsd.gov.hk/en/spatial-data/open-data.html


Environments 2024, 11, 57 5 of 16

passing vehicles, so the internal clocks at each sampling node were synchronized every
day before the deployment and every four hours during the campaigns.

Number plate recognition enabled individual vehicles to bed and matched to emission
factors (EFs). This used a road-side camera to image the number plates, which could then
be compared to non-private registration information, including engine size, vehicle type,
fuel consumption, and registration year. Emission factors take a range of units: mass of
pollutant per unit time, distance travelled, or engine output, while others are mass of
pollutant per mass of fuel. As field measurements do not sample directly from exhaust
plumes, they often allow for dilution using mass-based EFs (g kg−1), adjusted by measuring
CO2 concentration at the same time as the target pollutant. The EFs used in this study were
determined as a differential with respect to CO2 concentration across the plume segments
as described by [6]. In the current work, vehicle emissions were additionally expressed as a
source strength g s−1, but with knowledge of vehicle fuel consumption and speed, it can be
related to EFs of vehicles specified through number plate recognition.

2.3. Plume Segment Description

CFD is a successful and popular approach to describing vehicle exhaust plumes [10,21,32,69].
However, it is computationally expensive and remains sensitive to dispersion, so it is best
suited to stable atmospheric conditions [70]. In this study, we chose a simple analytical
equation to describe dispersion of the vehicle exhaust pollutants by adopting the classical
Gaussian equation for a continuous point source [71]. This equation is commonly used
in air pollution modeling to estimate the concentration of pollutants at a given distance
from a source. The pollutant dispersion is described using a Gaussian model, where
the concentration decreases as the distance from the source increases [72]. By using this
equation, we estimated the concentration of pollutants at different distances from the source
(i.e., different times after a vehicle has passed) without needing complex parameterization
and computationally expensive CFD simulations.

Cx,y,z = Qp/(2πuσyσz) exp(−y2/2σy
2) [exp(−(−H)2/2σz

2) + exp(−(z + H)2/2σz
2)] (1)

Cx,y,z (g m−3)—concentrations in a plume at location (x, y, z)
y (m)—the distance of the sensor from the vehicle exhaust in crosswind direction
z (m)—the distance of the sensor from the vehicle exhaust in vertical direction
H (m)—elevation height from the ground
σz, σy—the pollutants advect with the wind and disperse vertically (z-direction) and
crosswind-wise (y-direction)
u (m/s)—windspeed
Qp (g s−1)—source strength

In the case of a vehicle plume where concentrations are measured at roadside sensors
in a stagnant canyon, a different frame of reference is employed. Unlike the plume from a
chimney as a source, the vehicle is moving along the road, with the sampling site stationary.
Thus, the kerbside monitors cut a segment through the expanding plume, so when the
equation is considered from the reference frame of the source, the windspeed (u) becomes
the velocity of the vehicle (v). This means that the sensors sample the emissions generated
at a single instant, so changes are due to the expansion and dispersion of the pollutants.
It is idealized, but it describes a form that can fit the data with parameters that offer the
potential of physical interpretation.

In the aerodynamic environment of a busy road, we have made a number of assump-
tions: (i) z = H = 0, as the sensors’ inlets were at the same height of the tailpipe, so the terms
within the square brackets become 2; and (ii) the dispersion in the turbulent vehicle wake
are equal along both y- and z-axes (i.e., σ = σy = σz). The equation is simplified to give the
concentration at the monitoring site Cs:

Cs = Qp/(πvσ2) exp(−ys
2/2σ2) (2)
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where ys is the distance of the sensor from the vehicle exhaust. Turbulence in the vehicle
wake will mean that the initial dispersion will likely have a dimension of one to a few
metres [32], which will affect agreement with the equation close to the origin of the plume.
Subsequently, plume spread (a) is a function of distance travelled by the vehicle, i.e., σ ~ axn,
but a plume from a tailpipe is typically thin [70] and likely to spread almost linearly with
distance, such that σ = ax and x is the distance that the vehicle has travelled. However, for
our measurements, this distance may be related to time from the velocity (v) of the passing
vehicles:

Cs = Cb + Qp/(πa2v3t2) exp(−ys
2/2a2v2t2) (3)

after adding the local background concentration, Cb. Note the very strong dependence
on vehicular velocity (1/v3) in the trailing part of the plume. The presence of a cross-
wind would mean that y would vary over time, but under low windspeeds typical of the
canyon [19], this would be linear with time and incorporated within parameter a. We
have, for simplicity, neglected dispersion along the plume axis (σx), although this could be
important in such a turbulent environment close to the source [73].

2.4. Data Analysis and Deconvolution

A least squares approach allowed the parameters X1, X2, and X3 in the non-linear
equation developed from Equations (2) and (3) to be solved from:

Cs = X1 + (X2/t2) exp(−X3/t2) (4)

This describes the plume segments characteristically seen in the monitoring record
from the kerb [6]. The nonlinear equation (Equation (4)) was fit using a least squares
routine from the scipy library (version 1.9.1) in Python (version 3.9.13) [74]. Figure 2a
shows a typical fit to a plume segment extracted from the monitoring record (inset to
Figure 2a). The segment has a steep leading edge as the sensor encounters the dispersing
pollutants, followed by a slower inverse-square law decrease in concentrations as the
plume expands and the segment tail passes by the sensor. The fitting parameters extracted
typically explained >95% of the variance.

Pollutant sensors are recognised as having slow response times [67], which poses
challenges when examining plumes with rapidly changing concentrations. Although the
fitting results in our study appeared satisfactory (R2 > 0.92), we observed evidence of
systematic errors. Specifically, the fitted concentrations were underestimated in the initial
stages of the plume’s trailing part and overestimated towards the end of the measurements
(Figure 2a). This suggested it would be important to enhance the temporal resolution of
the measurements, processing the signal to reduce the effects of sensor response. Fourier
deconvolution, the inverse of Fourier convolution, has been utilized to improve the response
time of low-cost sensors [75]. In signal processing, it can be employed as a computational
method to reverse the result of a convolution occurring in the physical domain. In this
study, we assume the slow sensor response output is the result of a convolution occurring
in the physical domain [76]. Therefore, deconvolution was used to reverse the signal
distortion caused by the sensors and reconstruct the original rapidly changing signal [59].

We determined the sensor response from laboratory measurements of a step-like
change in pollutant concentrations as shown in Figure 2b (using the setup described in [67]).
This formed the exponential kernel as shown in Figure 2c (trial and error optimised this to
11 points 0–10 s of e−0.2t), which allowed these laboratory output signals to be deconvoluted
(Figure 2b). The error of deconvolution has been visualized in the Supplementary Materials
(Figure S2). This kernel, of the same form as that used by [75], was used in the deconvolution
routine fft of the numpy library in Python [74].
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Figure 2. Analysing the plume segments. (a) Concentration measurements across a typical
plume showing the fit with the extracted parameters, in this case: X1 = 509 ± 64 µg m−3,
X2 = 0.514 ± 0.022 g s2 m−3, and X3 = 28.3 ± 1.1 s2, with R2 = 0.95. Inset: context of the extracted
plume segment with the shaded area as standard deviation smoothed across 15 s. (b) Imposed
changes in NOx concentration in laboratory experiments (dotted line), with concentration measure-
ments as black dots and deconvoluted concentrations as red dots. (c) Dimensionless kernel adopted
with an exponential folding time of 5 s. (d) Idealised raw (black +), deconvoluted signals (red +) and
fits (lines) to plume equation. (e) Measured concentrations (black dots) and deconvoluted concentra-
tions (red dots) across a typical plume showing the fit (as lines) with the extracted parameters, in this
case: X1,d = 319 ± 103 µg m−3, X2,d = 0.822 ± 0.032 g s2 m−3, and X3,d = 21.0 ± 0.7 s2, with R2 = 0.96
and the fit to the raw data: X1 = 369 ± 96 µg m−3, X2 = 1.14 ± 0.047 g s2 m−3, and X3 = 39.9 ± 1.4 s2,
with R2 = 0.96.

The concept of convolution and deconvolution clearly explains the characteristics of
fits (Figure 2d), where we can see the plume structure of an idealised plume (effectively
deconvoluted data) represented by the red + and the fitted curve as well as data convo-
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luted (black +) with the kernel (i.e., ‘raw measurements’). The raw measurements are
fitted according to Equation (4) with a black line and show the systematic error described
previously, i.e., the fitted curve is low at the beginning of the trailing edge and high at the
end, with a peak that arrives early. The deconvolution of real-world measured field data is
shown in Figure 2e. When the concentration measurements are deconvoluted, the noise is
enhanced, as is typical during deconvolution [76], but when fitted to Equation (4), it takes
the expected form as most of the value will not be affected after deconvolution. Deconvolu-
tion tends to overemphasise the peak values, but we have used the fitting parameters (X)
throughout the paper as they are less sensitive to induced noise.

2.5. Statistical Analysis

The distribution of pollutant concentrations and EFs were often highly skewed, so
in addition to means and standard deviations, we used medians and lower and upper
quartiles (Q1 and Q3) to describe the central tendency and statistical dispersion. The Kendall
rank correlation (statistic τ) was sometimes chosen in preference to the more common
Pearson R2 as it is robust against outliers or non-normal distributions. Cross-correlation
used the online calculator available from WessaNet [77].

3. Results
3.1. Evaluating Plume Parameters and Deconvolution

The aforementioned model had three unknown parameters: X1, X2, and X3, repre-
senting Cb, Qp/πa2v3 and ys

2/2a2v2, respectively. Note that ys is assumed to be constant
throughout all the measurements, though it depends on the position of the vehicle ex-
haust, alignment of the vehicle path along the road, and wind direction. Other parameters
might not be constant even across a single plume segment, so the turbulence and plume
spread might change the value a; moreover, v can vary as vehicles often accelerate along
this section of road. The values of X1, X2, and X3 were extracted from 100 well-defined
bell-like plumes and appear after a vehicle passes within 8 s segments for NOx; they are
summarised in Table 2 along with fits for the deconvoluted data that improved the time
resolution of the measurements. Concentration measurements from plumes were also fit to
the parameters after deconvoluting to increase the time resolution of concentrations (as
previously shown in Figure 2e). The units are in mass here as that is convenient when
considering the source and source strength, though our concentrations were ppb (i.e., a
mixing fraction), so we had to convert units at various points and, for simplicity, adopted
NO: 1 ppb = 1.25, NO2: 1 ppb = 1.88 µg m−3, with NOx treated as 1 ppb = 1.88 µg m−3,
following the usual convention.

Table 2. Summary statistics for the values of X1, X2, and X3 determined from least squares fitting
of 100 NOx plumes, with fitted parameters (X1,d, X2,d, and X3,d) and deconvoluted fitted values in
parenthesis as bold type. Note: lower and upper quartiles: Q1 and Q3; standard deviation: SD.

X1/g m−3 X2/g s2 m−3 X3/s2

Q1
0.00029 0.272 19.4

(0.00028) (0.133) (7.1)

Median
0.00044 0.462 30.1

(0.00044) (0.244) (9.7)

Q3
0.00064 1.003 42.7

(0.00063) (0.498) (15.6)

Mean
0.00052 0.661 36.0

(0.00049) (0.364) (13.8)

SD
0.00036 0.541 24.9

(0.00038) (0.321) (12.6)
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The values of the three parameters X1, X2, and X3 are related to physical aspects of
the plume segments as illustrated in Figure 3. These parameters were also evaluated after
deconvolution: X1,d, X2,d, and X3,d. As expected, the value X1 is strongly related to the
background NOx concentrations, so Figure 3a shows (black points) that it approximates the
background concentration, defined as the lowest concentrations just before the start of the
plume, though X1 is sometimes slightly negative when extracting the best fit (Figure 3a).
It has a median value of 442 µg m−3, which is close to the median value of the baseline
(CNOx,b) at 601 µg m−3. The deconvoluted data gives a scattered agreement with the
background correlation, with a median value of 438 µg m−3.
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Figure 3. (a) Local background concentrations CNOx,b as µg m−3 a function of X1 from the measure-
ments (black) and X1,d (deconvoluted data, red). (b) Number of observations before the peak, made
at 1-s intervals (npoint), as a function of the square root of X3 from observations as black crosses and,
after deconvolution, as red crosses. (c) The maximum NOx concentrations (CNOx,max) in the plume
segment as a function of X2/X3 for observed and deconvoluted results are marked as black and red
dots, respectively.

The derivative of Equation (4) is 2X2(X3 − t2) exp(−X3/t2)/t5, which becomes 0
when t2 = X3 (i.e., the peak point concentration as shown in Figure 2). This relationship
is borne out in Figure 3b, where it can be seen that the number of 1-s observations before
the maxima is closely related (τ = 0.86; p < 0.0001) to the square root of X3. The dotted
1:1 line is set through the origin, although no points occur at zero. The deconvoluted
parameter X3,d (red) is smaller compared with that derived from the original data because
the deconvoluted peak had decreased lag and naturally occurs earlier in the timeline. Peak
point concentration can be solved as (X2/X3) exp (−1) when t2 = X3. As shown in Figure 3c,
the maximum concentrations measured in the plume segments are a function of X2/X3.
The slope of the line is 0.379 ± 0.005 for raw data and 0.358 ± 0.009 for the deconvoluted
data. These values are almost identical to those that were expected, i.e., exp (−1), or 0.3679
in this case.

The effectiveness of the deconvolution was validated by applying the kernel to ide-
alised plume segments and revealed that raw data could be effectively deconvoluted to
close the initial signal, as illustrated in an idealised case in Figure 2c. Deconvolution re-
moved sensor lag, so the peak concentrations occurred earlier (Figure 3b; Table 2). However,
the fitted background concentrations showed more noise in the deconvoluted data because
the deconvoluted background fluctuated. It is also important to note that we assumed
that the NO2 and NO deconvolution kernels were the same, though the NO2 is likely to
be slower (see Table 2). This could introduce some error in the deconvoluted estimates at
the end of the trailing edge where NO2 is elevated as the air mixed in the plume, but as
NO2 concentrations are low in the near-wake area [19], this source of error is negligible.
Despite this limitation, our analysis focused primarily on plume segments, rendering this
issue inconsequential for our study.

3.2. Dispersive Parameters within Plume Segments

The term a in Equation (3) relates to the dispersion characteristics of the plume as it
spreads over distance or time. If a vehicle were moving rapidly, the plume would stretch
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out and become narrow. This is supported (τ = 0.74; p < 0.0001; τd = 0.71; pd < 0.0001) by
Figure 4 where a is plotted as a function of inverse velocity (1/v). The median value of a
is 0.0199 and ~0.0342 for the deconvoluted data, suggesting a slender plume that is much
narrower than the elevated plumes described by [71,72]. Our estimates mean that after
10 s at 30 km h−1, these vehicle exhaust plumes would have a width of just 4.5 m. The low
values of parameter a estimated here may also have been biased because we chose very
clear and well-defined plume segments for analysis. Nevertheless, the observations of [21]
suggest exhaust plumes maintain their position behind vehicles over several metres, and
σy seems about ¼ the vehicle width at that point. They noticed that heated gases from the
exhaust pipe were trapped in the recirculation zone just downstream of the vehicle and
that the plume is quite narrow over a number of vehicle lengths.

Environments 2024, 11, x FOR PEER REVIEW 10 of 17 
 

 

The effectiveness of the deconvolution was validated by applying the kernel to ide-
alised plume segments and revealed that raw data could be effectively deconvoluted to 
close the initial signal, as illustrated in an idealised case in Figure 2c. Deconvolution re-
moved sensor lag, so the peak concentrations occurred earlier (Figure 3b; Table 2). How-
ever, the fitted background concentrations showed more noise in the deconvoluted data 
because the deconvoluted background fluctuated. It is also important to note that we as-
sumed that the NO2 and NO deconvolution kernels were the same, though the NO2 is 
likely to be slower (see Table 2). This could introduce some error in the deconvoluted es-
timates at the end of the trailing edge where NO2 is elevated as the air mixed in the plume, 
but as NO2 concentrations are low in the near-wake area [19], this source of error is negli-
gible. Despite this limitation, our analysis focused primarily on plume segments, render-
ing this issue inconsequential for our study. 

3.2. Dispersive Parameters within Plume Segments 
The term a in Equation (3) relates to the dispersion characteristics of the plume as it 

spreads over distance or time. If a vehicle were moving rapidly, the plume would stretch 
out and become narrow. This is supported (τ = 0.74; p < 0.0001; τd = 0.71; pd < 0.0001) by 
Figure 4 where a is plotted as a function of inverse velocity (1/v). The median value of a is 
0.0199 and ~0.0342 for the deconvoluted data, suggesting a slender plume that is much 
narrower than the elevated plumes described by [71,72]. Our estimates mean that after 10 
s at 30 km h−1, these vehicle exhaust plumes would have a width of just 4.5 m. The low 
values of parameter a estimated here may also have been biased because we chose very 
clear and well-defined plume segments for analysis. Nevertheless, the observations of [21] 
suggest exhaust plumes maintain their position behind vehicles over several metres, and 
σy seems about ¼ the vehicle width at that point. They noticed that heated gases from the 
exhaust pipe were trapped in the recirculation zone just downstream of the vehicle and 
that the plume is quite narrow over a number of vehicle lengths. 

 
Figure 4. Parameter a (dispersion) determined from NOx plume segments with error bars repre-
senting indirect uncertainty as a function of inverse vehicle speed (i.e., 1/v). Deconvoluted data are 
shaded in red. An uncertainty estimation procedure can be found in the Supplementary Materials. 

3.3. Plume Segments at Different Nodes 
As multiple sensors were deployed at the site, the plume segments from passing ve-

hicles can be seen in raw data from different sensors (Figure 5a). The positions of the sen-
sors on different sides of the road, along its length, or at elevation mean that the signal 
arrives at different times, as can be shown by cross-correlation analysis [19]. The three box 
and whisker plots on the left of Figure 5b show the time differences for raw data from the 
plumes compared with sensor L2. The plume arrived earlier at R2 as the trajectory of most 
vehicles took a path towards that sensor, but it arrived later at LH. The time differences 
(Figure 5a) from cross-correlation analysis compared to sensor L2 reveals similar lags to 
those found from the arrival time of concentration peaks at different sensors (right-hand 
box and whisker plots in Figure 5b). These displacements indicate that these are plumes 
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in red. An uncertainty estimation procedure can be found in the Supplementary Materials.

3.3. Plume Segments at Different Nodes

As multiple sensors were deployed at the site, the plume segments from passing
vehicles can be seen in raw data from different sensors (Figure 5a). The positions of the
sensors on different sides of the road, along its length, or at elevation mean that the signal
arrives at different times, as can be shown by cross-correlation analysis [19]. The three box
and whisker plots on the left of Figure 5b show the time differences for raw data from the
plumes compared with sensor L2. The plume arrived earlier at R2 as the trajectory of most
vehicles took a path towards that sensor, but it arrived later at LH. The time differences
(Figure 5a) from cross-correlation analysis compared to sensor L2 reveals similar lags to
those found from the arrival time of concentration peaks at different sensors (right-hand
box and whisker plots in Figure 5b). These displacements indicate that these are plumes
from the same vehicles and are displaced by the arrival time of the pollution segment at
the different sensors.

Figure 5c shows the displacement times of the maximum concentration between raw
data collected at sensors L1 and L2 as a function of mean wind speed during the plume
period. It shows that higher speeds mean fewer differences in the time between the sensors
capturing the peak (τ = −0.32; p < 0.01). The fitting parameter X2, estimated from the
same plume segment caught on different sensors (L2 and LH: Figure 5d) at the same point
on the road, though at different heights, should be similar. This is because the plume
segments derive from the same vehicle at a similar time, so they relate to a common source
strength (Qp). Figure 5d shows that parameters X2,LH and X2,L2 are highly correlated, with
a slope close to unity (slope: 0.90 R2: 0.76 for convoluted data and slope 0.89, R2: 0.88 for
deconvoluted data), suggesting that these truly derive from the same plume segment. This
agreement adds support to the simple Gaussian approach adopted here.
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Figure 5. (a) A typical plume segment detected using raw data from sensors L2 and LH, showing
concentration peaks and lag (∆t). (b) Lag in data from sensor L2 compared with other sensors
determined from the maxima from cross-correlation and the peak separation (∆t). (c) Lag between
concentration peaks arriving at L1 and L2 as a function of mean wind speed (at L2, during the plume
period) appropriate to the plume segment. (d) Fitting parameter X2,LH determined from the plume
segment detected at sensor LH compared with X2,L2 determined from sensor L2, the red “x” markers
and red represent the deconvoluted data, The dashed line represents the 1:1 line. Note that a Huber
regressor was utilized to minimize the influence of outliers in the analysis (slopes for measured data:
0.90; slopes for deconvoluted data: 0.89).

3.4. Estimates for Vehicular Emissions from Plume Segments

The quotient X2/X3 can be expressed as 2Qp/πvys
2, which provides direct access to

individual vehicle emissions. This is dependent on the distance from the sensor to the
tailpipe ys, which was not measured for each passing vehicle in this study. The EF values
of each vehicle were determined in an earlier study from NOx:CO2 ratios across plume
segments [6]. These can be converted to an emission rate, taking the fuel consumption
of different vehicle types [78] and the measured speeds as vehicles passed the sensor.
The relationship between Qp estimated from plume parameters and that from NOx:CO2
ratios [6] is shown in Figure 6 for estimates from both the raw and deconvoluted data. This
shows the expected relationship, although the correlation is not especially good (τ = 0.26;
p < 0.05; τd = 0.28; pd < 0.05). It is evident that the introduction of the deconvolution
reprocessing has increased the uncertainty in estimating the emissions. However, the
assumptions that windspeed is low and the direction is constant, along with those about
fuel consumption, distance to the exhaust (ys), and vehicle speed (v) determined during
acceleration, limit the precision of our estimates. The source strength estimated from the
plume segments are larger than those determined from the NOx:CO2 ratios, so there may
be a systematic error in one of the parameters (i.e., v or ys).
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Despite the rather poor correlation, the emissions are in reasonable agreement with
expectations. The median Qp,d estimated in the plume segments examined in this study is
about 0.18 g s−1 (Q1 = 0.09, Q3 = 0.25), which lies in a similar range to the measurements
of [79] made for diesel buses in Zhenjiang, China (~0.19 g s−1, Euro IV buses of [80]
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~0.068 g s−1 under steady driving conditions at 30 km h−1 or ~0.06 g s−1 for real-world
25-tonne Euro V vehicles [81]). The emission rates observed in this study are typically from
accelerating vehicles, exceeding the Euro V standard required in Hong Kong’s low-emission
zones, which would be met with an emission of ~0.13 g s−1 for an engine rated at 243 kW.

Although direct and accurate measurement of emissions from individual vehicles [82]
is possible with onboard Portable Emissions Measurement Systems (PEMS), these cannot
readily capture larger fleets observable by roadside sensors. Examining a large number of
vehicles is useful because the EFs of individual vehicles can vary widely, which is certainly a
problem with the Hong Kong fleet [83,84]. However, roadside measurements reflect a local
character that may not be representative of the urban fleet in general [6]. Plumes selected
in this study captured at our site in Hennessy Road arise mostly from buses and heavy
vehicles, which were typically (~70%) accelerating. This means the roadside measurements
made here may reveal values of Qp and thus of EF that are high compared with cruise
mode. Estimates of EFs using NOx:CO2 ratios, unlike estimates from the plume equation
(Equation (3)), have considerable advantages because they allow for dilution so effectively.
Nevertheless, it is worth pursuing the plume analysis of the type undertaken in this study
as it is not dependent on CO2, which can be difficult to measure in situations where it
deviates little from a high background.

4. Conclusions and Discussion

This study adopted a modified Gaussian approach to assessing the structure of NOx
concentration profiles captured by a kerbside stationary sensor from passing vehicles in
a street canyon, after refinement by deconvolution. The study has enhanced our under-
standing of real-world plumes measured by the roadside in a comprehensible manner.
Even though the vehicle wakes induce turbulence, the concentration profiles were often
quite smooth, so there was a good least-squares fit to a simple Gaussian model of the
plume segments. Physical features such as the timing and magnitude of the peak in NOx
concentrations were realistically expressed by the fitted parameters. Overall, the emission
strength of passing buses suggests that they meet the Euro IV standards, and at times, the
Euro V standards desired in Hong Kong’s low-emission zones.

While acknowledging a certain degree of sacrificed accuracy, the adoption of this
model offers a cost-effective approach that will benefit future kerbside air quality moni-
toring and real-time forecasting endeavors. By simplifying the complex nature of plume
dispersion and analyzing the key factors that influence it, this study enables a more accessi-
ble way to predict air quality and estimate pedestrian exposure at the roadside. Moreover,
by reducing the reliance on expensive analyzers and resource-intensive modeling, this
simplified approach can facilitate more widespread air quality forecasting and management
by low-cost sensor networks in blocks or cities, ultimately contributing to healthier urban
environments. It is important to note that the equation we adopted in this study treats
vehicles travelling along a deep stagnant canyon. It is important to recognize that this
treatment may need to be revised or adapted when applied in different environments.

Estimates of the emissions from individual vehicle plumes were hampered by the need
for accurate measurements of vehicle speed and tailpipe position in this study. However,
further work could resolve some of these problems and thus refine the fitted variables. In
particular, estimating the distance between the sensor and the tailpipe (ys) for each vehicle
as it passes the site should be relatively simple using video, provided that the tailpipe is
visible. However, the uncertainty can be quite significant when estimating emissions as
we used low-cost sensors. The reconstruction of signals using the deconvolution method
improves the performance of sensors but may introduce other complexities. The utilization
of fast-response analyzers coupled with duplicate sampling by a pair of analyzers could
contribute to reducing uncertainty in the measurements. We are currently extracting EFs
for CO2 by this method as the carbon balance approach is not suitable. Further campaigns
could examine roadside sites beyond urban canyons. The analysis of plume segments is
also of value in understanding the rapid changes in concentrations to which pedestrians are
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exposed when sensors are set in the breathing zone. The kerbside environment experiences
ozonolysis of NO to NO2 and the production of secondary particles and reactive oxygen
species. The complexities and importance of this urban micro-environment make it worthy
of continued study.

In summary, this study has provided a simple parameterisation of real-world plumes
measured at the roadside but may further offer a potential tool for future air quality forecast-
ing and exposure estimation at the kerbside. The simplified model, while sacrificing some
accuracy, offers a cost-effective approach that can be easily implemented and extended,
paving the way for more comprehensive air pollution management strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments11030057/s1, Figure S1: Calibration step of NO;
Figure S2: Schematic showing instrument response to a step change of X; Figure S3: Imposed changes
in NOx concentration in laboratory experiments (gray dotted line), concentration measurements as
gray lines and deconvoluted concentrations as red dots with error bar represent the absolute errors.
Table S1: Calibration Concentration Setting; Table S2: Calibration Instrumentation. Reference [85] is
cited in the supplementary materials.
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