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Abstract: Measuring fecal nucleic acid indicators for data normalization can increase costs during
wastewater-based epidemiology (WBE). The efficacy of routinely assayed water quality parameters
was assessed as an alternative or complement to fecal nucleic acid viral indicator data for their
utility in adjusting measured SARS-CoV-2 gene concentrations to improve the relationship between
wastewater molecular data and clinical COVID-19 case data. This research covers two study designs:
grab samples collected from sewers serving The Ohio State University campus and composite
influent samples collected at five wastewater treatment plants (WWTPs) across the state of Ohio.
Weekly mandatory clinical testing was used to monitor infections in the student population, and
statewide cases were reported through voluntary clinical testing. Statewide WWTP results showed
significant strong correlation between SARS-CoV-2 concentrations in the wastewater and confirmed
COVID-19 cases, and correlation increased when normalized by flow and additionally increased
when normalized by pH, total suspended solids, and temperature, but correlation decreased when
normalized by a nucleic acid fecal viral indicator (PMMoV). On campus, correlations were generally
not significant unless normalized by PMMoV and/or UV absorbance parameters. Because water
quality parameters are routinely assayed at wastewater treatment plants and some may be collected
by autosamplers, incorporating wastewater quality data may improve WBE models and could
minimize molecular and cellular testing for fecal indicators to decrease costs.

Keywords: COVID-19; wastewater biomarkers; normalization; dynamic population; wastewater
characteristics analysis

1. Introduction

Wastewater-based epidemiology (WBE) is an effective management tool for public
health surveillance and decision making using wastewater measurements, including phar-
maceuticals, antibiotic resistant genes, illicit drugs, and pathogens. During the COVID-19
pandemic, WBE became more widely used across the world to complement clinical tests of
SARS-CoV-2 [1]. Clinical testing is costly and limited in tracking positive cases, especially
when at-home tests are widely available and people with mild or no symptoms are unlikely
to seek medical care. Since WBE does not rely on clinical testing, it allows for early detection
of SARS-CoV-2 concentration changes within specific communities, as well as emerging
variants [2]. This allows public health officials to make informed decisions to help prevent
further spread or raise awareness for at-risk populations within specific communities.

Data normalization is used as a measurement correction to address variations in
wastewater, such as fecal strength and dilution in the watershed, that can have an impact
on the SARS-CoV-2 concentration in wastewater. Estimating the concentration of any
biological or chemical marker in wastewater is complicated by flow changes and dilution
events, the dynamic size of the population served, and the stability and transport mechanics
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of the biomarker being monitored in the sewershed [3–6]. Although there is currently no
consensus on which normalization parameter results in the strongest correlation between
SARS-CoV-2 concentration in wastewater and COVID-19 cases, most approaches use
population size, flow, and estimation of fecal strength [3,7–11].

The population within a sewershed can have fluctuations due to commuters, tourism,
and part-time residents, which can make the use of census data for population size in
a wastewater sewershed up to 50% inaccurate [12].The population that a wastewater
treatment plant (WWTP) serves can be estimated with a static number through census
data, or population can also be estimated dynamically through influent flow, chemical
parameters, mobile device data [8,13], or human fecal content.

Human fecal content, or fecal strength, has been estimated through biomarker organ-
isms or compounds specific to human waste, such as Pepper Mild Mottle Virus (PMMoV),
crAssphage, fecal coliforms, Bacteroides HF183, bacteriophages, etc., but using these to
normalize correlations between cases and SARS-CoV-2 has not been consistent, with some
studies reporting improved correlations and some studies reporting weakened or inconsis-
tent correlations [7,9–11,14–16]. PMMoV is present in wastewater due to the consumption
of peppers and related foods [17–19] and therefore is theorized to work as a correction for
true fecal strength in surveys with large populations [20,21]. However, although PMMoV
is found in high concentrations in wastewater, it can vary based on dietary, cultural, and
socio-economic trends. For example, a positive relationship between temperature and
PMMoV indicated a seasonal trend of pepper consumption, possibly due to changes in
availability or prices [3]. Additionally, different WBE targets or indicators and their nucleic
acids can differ in persistence, decay, extraction, and recovery efficiency [22,23], further
compounded by the complex and variable wastewater matrices, which may inhibit the
use of a fecal nucleic acid indicator. Total coliforms and E. coli have also been used as an
indicator of human fecal waste presence, and they can also indicate the relative amount of
human fecal content across samples [24,25].

Temperature, pH, organic matter, solids content, sewer residence time, sampling
method, and microbial competition are known to have an influence on viral RNA fate and
are assumed to have an impact on SARS-CoV-2 detection in wastewater [26–29]. A pH
greater than 7.4 lowers the detection of SARS-CoV-2 [30], with maximum SARS-CoV-2
detection within a pH range of 7.1–7.4 [3,31] and undetected in wastewater with a pH
greater than 8.8 [32]. Higher wastewater temperature also negatively impacts the detection
of SARS-CoV-2 [33–36], which is especially important to take into account when sampling
at locations with large temperature swings during winter and summer seasons. At 10 ◦C,
the decay rate of SARS-CoV-2 in wastewater is already greater than at 4 ◦C [37], with it
increasing as wastewater temperature increases [26]. Specific ultraviolet absorbance (SUVA
or ultraviolet (UV) absorbance normalized by dissolved organic carbon (DOC)) is a measure
of aromaticity and has been positively correlated with dissolved organic carbon hydropho-
bicity and molecular weight [38]. In addition to SUVA, ratios of UV absorbance at specific
wavelengths can provide information on the structure and composition of DOC, such as its
molecular weight, humification, or aromaticity [38]. SUVA and absorbance properties can
be used to monitor wastewater treatment processes [39–41] and can differentiate wastewa-
ter sources [42], and relationships with WBE data have been explored [43]. However, these
optical absorbance properties have not yet been evaluated for normalization to improve
WBE relationships by accounting for the variable nature of organic matter. Normalizing
for these parameters that impact SARS-CoV-2 in wastewater could aid in strengthening
correlations to COVID-19 cases.

This study compares the correlation between COVID-19 cases and normalized and
unnormalized SARS-CoV-2 concentrations in the auto-sampled WWTPs influent of five
wastewater systems and grab-sampled sewer manholes from a university campus using
multiple normalization approaches. Grab samples, especially ones close to their source,
only capture a small snapshot of the flow in a sewer. Although 24 h composite samples with
flow measurements are ideal, there could be instances where flow is difficult to measure,
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such as when autosamplers are placed in sewers on campuses or in areas where resources
or space are limited [44]. There are two different datasets to provide information about
the two specific situations because different water quality parameters were measured for
each case. While WBE is limited by variable SARS-CoV-2 shedding rates [45], accuracy of
COVID-19 clinical data, testing accessibility, and test seeking behavior, exploring WBE cor-
relations between SARS-CoV-2 and clinical data remains a common approach to evaluate
normalization efficacy [46]. The objective of this study was to investigate alternative or
complementary parameter(s) to molecular human fecal indicators (e.g., PMMoV) for nor-
malizing SARS-CoV-2 gene concentrations in wastewater to improve correlations between
SARS-CoV-2 in wastewater with COVID-19 cases.

2. Materials and Methods
2.1. Wastewater Samples Collection

Wastewater Treatment Plants

Wastewater samples were collected from wastewater treatment plants across the state
as part of the Ohio Coronavirus Wastewater Monitoring Network [47]. In this study, results
from five wastewater treatments plants [11] are further investigated. Influent composite
wastewater samples (flow-proportionate, 24 h, n = 542) were collected by autosamplers at
Beavercreek Water Resources Facility (WRRF), Eaton Wastewater Treatment Plant (WWTP),
Greenville WWTP, Oxford WWTP, and Tri-Cities North Regional WWTP (Table 1). This
study covers samples from 3 January 2021 to 29 June 2022 for Beavercreek WRRF, Oxford
WTTP, and Tri-Cities North Regional WWTP; from 1 August 2021 to 26 June 2022 for Eaton
WWTP; and from 20 October 2021 to 29 June 2022 for Greenville WWTP. Eaton WWTP
provided samples once a week and the other WWTPs provided samples twice a week.
Samples were transported by courier from WWTPs to our lab on ice to minimize the effect
of storage temperature on SARS-CoV-2 detection and processed immediately upon arrival.

Table 1. Average wastewater parameters for the five statewide WWTPs during the study ± stan-
dard deviations.

WWTP # of Samples
(n)

Flow Rate
(m3/day) pH Temperature

(◦C) TSS (mg/L) Population in
Sewershed

Beavercreek WRRF 140 34,990 ± 9584 6.32 ± 0.36 15.5 ± 2.75 152 ± 95.2 47,000
Eaton WTTP 48 5425 ± 2891 7.58 ± 0.54 17.5 ± 3.23 10,000

Greenville WTTP 64 10,148 ± 3350 7.63 ± 0.12 14.7 ± 2.59 87.6 ± 35.6 14,000
Oxford WTTP 140 6507 ± 3278 7.49 ± 0.13 16.3 ± 3.55 276 ± 122 21,300

Tri-Cities NR WTTP 140 40,496 ± 14,935 7.47 ± 0.13 17.0 ± 3.30 180 ± 174 65,000

University Campus Sewer Samples

Wastewater grab samples were collected once a week from 1 September 2020 to
3 December 2020 from six wastewater sewer junctions on The Ohio State University (OSU)
campus, capturing wastewater from dorms housing 7767 on-campus student residents
(60% of total on-campus student residents) (n = 79). Two bottles were collected at each
site, with one bottle to test for molecular data and the other bottle to test wastewater
characteristics. Samples were transported across campus to each lab on ice to minimize
effect of storage temperature on SARS-CoV-2 detection. The six sites encompassed sewer
flows from 19 dormitories, one recreational fitness facility, and three dining facilities.
Further details of each site are described in Lu et al., 2022 [9].

2.2. Analytical Methods
2.2.1. Molecular Methods
Wastewater Treatment Plants

N1 and N2 SARS-CoV-2 RNA genes and Pepper Mild Mottle Virus (PMMoV) were
extracted from wastewater and quantified by reverse transcription quantitative polymerase
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chain reaction (RT-qPCR). PMMoV was used as a viral human fecal indicator. Analysis was
performed on RNA samples diluted by factors of 1:2, 1:5, 1:10, or 1:100 to minimize the
impact of inhibition. The methods of sample processing from collection and upon arrival at
the lab, RNA extraction, quantification, and data computation are described in detail in Ma
et al., 2022 [11]. SARS-CoV-2 data are publicly available for these and other utilities on the
Ohio Department of Health (ODH) COVID-19 Dashboard [48].

University Campus Sewer Samples

Digital droplet PCR (ddPCR) assays were used to quantify N1, N2, and E SARS-CoV-2
genes and PMMoV. Firefly (Coleoptera) Luciferase control RNA was used to detect PCR
inhibition; none was detected [9]. The methods of sample processing from collection and
upon arrival at the lab, RNA extraction, quantification, and data computation are described
in detail in Lu et al., 2022 [9].

2.2.2. Physicochemical Characterization Methods
Wastewater Treatment Plants

The WWTPs provided influent flow volume over the composite sample 24 h collection
period, pH, minimum and maximum temperature (Eaton WTTP provided an average
temperature value), and total suspended solids (TSS) (Eaton did not provide TSS) as part
of their routine monitoring (Table 1). Average temperature was calculated for the four
WWTPs from the minimum and maximum temperatures values provided. Measurements
were taken following standard procedures. Data are publicly available for these and other
utilities on the ODH COVID-19 Dashboard [48].

University Campus Sewer Samples

Directly after sample collection while still at the sample site, field measurements
were taken with a multiparameter meter (Hanna HI98194) for both sample bottles. The
multiparameter meter was calibrated weekly according to manufacturer directions and
using manufacturer-supplied solutions. The meter measured temperature, pH, electrical
conductivity (EC), DOC, oxidation reduction potential (ORP), and pressure. Based on those
values, it calculated total dissolved solids, resistivity, and salinity. These and other water
quality data are shown in Table 2, Table 3 and Table S2. After field measurements were
completed, samples were transported in a cooler with ice until storage in a 4 ◦C refrigerator
until further processing the same day.

Table 2. Average wastewater parameters for the six campus sites during the study ± standard deviations.

Campus Site # of Samples
(n)

Turbidity
(NTU) pH Temperature

(◦C) TSS (mg/L) Population in
Dorms Served

1 12 189 ± 210 8.47 ± 0.42 23.3 ± 2.76 493 ± 486 178
2 14 231 ± 299 8.40 ± 0.36 22.7 ± 2.98 401 ± 353 1685
3 12 192 ± 270 7.91 ± 0.57 22.6 ± 2.22 497 ± 719 3450
4 14 169 ± 114 8.48 ± 0.23 22.2 ± 2.98 511 ± 335 872
5 13 144 ± 47.2 6.63 ± 0.42 24.9 ± 2.89 218 ± 103 228
6 14 115 ± 27.9 8.44 ± 0.19 21.9 ± 2.63 313 ± 106 1354

E. coli and total coliforms were measured based on Hach Method 10029, USEPA
approved. Broth ampules (m-ColiBlue24™ Broth Culture Media, M00PMCB24, Millipore-
Sigma™, Burlington, MA, USA) were emptied onto sterile absorbent pads (Millipore-
Sigma™ AP10045S0) in sterile petri dishes (VWR 25384-092). A 0.45 µm membrane filter
(Fisher Scientific 09-719-555, Waltham, MA, USA) was placed on a sterile membrane filter
apparatus. E. coli were counted as blue colored colonies, while total coliforms were summed
blue and red colored colonies.
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Table 3. Average organic and optical wastewater parameters for the six campus sites during the
study ± standard deviations. See Table S1 for wavelengths of absorbance ratios.

Site DOC (mg/L) SUVA 254 SUVA 280 SUVA 400 E2:E3
a

E2:E4
b

E2:E4
c

E2:E4
a

E4:E6
b

E4:E6
c

E4:E6
d

E4:E6

1 93.6 ± 44.8 0.02 ± 8 × 10−3 0.02 ± 6 × 10−3 7 × 10−3 ± 3 × 10−3 3.46 ± 0.51 5.95 ± 1.37 4.17 ± 1.15 6.55 ± 1.41 3.72 ± 0.34 4.39 ± 0.51 4.70 ± 0.55 4.86 ± 0.74
2 135 ± 64.8 0.01 ± 7 × 10−3 0.01 ± 5 × 10−3 4 × 10−3 ± 1 × 10−3 3.61 ± 1.38 6.52 ± 2.83 5.05 ± 2.46 7.37 ± 3.33 3.94 ± 0.73 4.72 ± 1.59 4.74 ± 1.07 5.13 ± 1.56
3 81.1 ± 41.4 0.02 ± 6 × 10−3 0.01 ± 5 × 10−3 6 × 10−3 ± 2 × 10−3 3.33 ± 0.46 5.50 ± 0.80 4.18 ± 1.22 5.96 ± 0.86 3.84 ± 0.49 4.65 ± 0.78 4.79 ± 0.63 4.94 ± 1.03
4 102 ± 28.7 0.01 ± 4 × 10−3 0.01 ± 4 × 10−3 5 × 10−3 ± 2 × 10−3 3.37 ± 0.45 5.64 ± 0.78 4.32 ± 0.95 6.09 ± 0.80 3.88 ± 0.20 4.82 ± 0.66 5.03 ± 0.73 5.07 ± 0.99
5 213 ± 90.1 0.00 ± 2 × 10−3 9 × 10−3 ± 2 × 10−3 2 × 10−3 ± 9 × 10−4 3.74 ± 0.60 7.13 ± 2.41 5.27 ± 2.14 8.85 ± 5.58 4.18 ± 0.43 4.67 ± 1.10 4.67 ± 1.09 4.82 ± 0.97
6 91.5 ± 26.9 0.01 ± 6 × 10−3 0.01 ± 4 × 10−3 5 × 10−3 ± 1 × 10−3 3.64 ± 0.50 6.13 ± 0.78 4.69 ± 1.14 6.76 ± 0.92 3.88 ± 0.57 4.53 ± 0.91 4.61 ± 0.77 4.99 ± 1.23

Turbidity measurements (three replicates for each sample) were taken according to
American Public Health Association (APHA) standard method 2130B. The Mirco 100 Tur-
bidimeter (HF scientific, Inc., Fort Myers, FL, USA) was used. The sample bottle was
inverted for 30 s before measurement to resuspend solids.

Total suspended solids (TSS) were measured according to APHA standard method
2540D. Glass fiber filter disks (Hach 253000, Loveland, CO, USA) with a size of 0.7 mm were
used along with aluminum weighing dishes (Fisherband, 08-732-102, Waltham, MA, USA).

Dissolved organic carbon (DOC) was measured according to the APHA standard
5310B combustion–infrared method and the instrument manual in a Shimadzu TOC-VCSN
analyzer (638-91062-02, Kyoto, Japan). Clear borosilicate glass bottles were washed with DI
three times, sealed with aluminum foil, and baked at 550 ◦C for at least 4 h to destroy trace
carbon. Samples were inverted for 30 s and then 8 mL of sample was combined with 24 mL
of DI and filtered through a 0.45 µm polypropylene membrane syringe filters (Foxx Life
Sciences, 37B-3216-OEM, Salem, OR, USA) that were pre-rinsed with DI. Four replicates of
each sample bottle were measured. DI water was measured between each sample type. The
instrument was set to complete a 50 µL injection of each sample cell three times, two-minute
sparging time, and 2.0% acid injection. The instrument was calibrated monthly using a
potassium phthalate, potassium nitrate, and hydrogen chloride stock solution.

Starting in October, ultraviolet (UV) absorbance was measured at 250, 252, 254, 280, 365,
400, 436, 450, 452, 460, 465, 600, 650, 660, and 665 nm with a disposable UVette (Eppendorf,
952010077, Hamburg, Germany) and Uvette adapter in the ThermoScientific NanoDrop
2000c Spectrophotometer (Waltham, MA, USA). DI water was used to blank the instrument
and the Uvette was rotated so that the measurement pathlength was 2 mm. SUVA was
calculated by dividing the absorbance at a specific wavelength by the dissolved organic
carbon concentration. SUVA254 [49], SUVA280 [50], and SUVA400 [51] were calculated. In
addition to SUVA, other ratios between UV absorbance at specific wavelengths which can
relate to organic matter properties were calculated [52–59]. Table S1 in the Supplementary
Materials (SM) lists the different ratios.

2.3. Human Case Data

Wastewater Treatment Plants

Daily total number of positive COVID-19 cases from voluntary testing for each in-
dividual sewershed were obtained from the ODH COVID-19 Dashboard [48]. The 7-day
moving average was calculated as previously [10,11]. For the pooled dataset, the 7-day
moving average was also normalized by the population of each sewershed using the static
population number (Table 1). Case data are summarized in Ma et al., 2022 [11] and the
ODH COVID-19 Dashboard [48].

University Campus Sewer Samples

Daily total numbers of positive COVID-19 cases for campus during mandatory testing
were obtained from the OSU COVID-19 Dashboard [60]. Case data were only available for
all on-campus residents, including students living in dormitories whose sewer systems
were not captured by this study. Therefore, case data could not be correlated directly
to individual collection sites. Instead, SARS-CoV-2 concentrations were combined into
a weighted sum per week across sites based on the ratio of the contributing population
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per site to the total population sampled. This weekly weighted SARS-CoV-2 sum was
correlated to the COVID-19 cases 7-day moving average (final n = 14 for the semester). The
7-day moving average correlated more strongly to SARS-CoV-2 concentrations than the
14-day moving average. These and other campus case data are summarized in Lu et al.,
2022 [9].

2.4. Statistical Analysis

Spearman correlations were calculated between 7-day moving averages of positive
COVID-19 cases and either all unnormalized gene concentrations of SARS-CoV-2 or all
normalized concentrations. The expectation is that parameters that indicate dilution
or contribute to a lower detection of SARS-CoV-2, such as flow or temperature, can be
corrected for by multiplying SARS-CoV-2 gene concentrations by said parameters, while
parameters that indicate an increased concentration of SARS-CoV-2, such as human fecal
indicators or total suspended solids, can be corrected for by dividing SARS-CoV-2 by
said parameters. Because the impact of some water qualities is unknown, we tested both
division and multiplication normalization of water quality parameters. Normalization
was done through dividing and multiplying SARS-CoV-2 concentration by all wastewater
quality parameters measured (Equations (S1)–(S128) in SM). SARS-CoV-2 concentration
was also divided by the PMMOV concentration and normalized further by dividing and
multiplying it with the wastewater quality parameters. For the WTTPs, flow was measured.
Therefore, SARS-CoV-2 concentrations were multiplied by flow, including the SARS-CoV-
2 concentrations normalized by PMMoV concentrations. This was then divided and
multiplied by the wastewater quality parameters.

Spearman correlations were calculated using the function rcorr() in Rstudio V. 3.6.3.
Spearman’s ρ values were interpreted as follows: strong correlation had a ρ-value > 0.7; a
moderate correlation had a ρ-value between 0.4 and 0.7; and a ρ-value < 0.4 was consid-
ered a weak association [61]. To determine if the difference between the correlations for
unnormalized and any normalized data was significant, the corr.test() function was used to
identify non-overlapping 95% confidence intervals (Cis).

3. Results
3.1. Wastewater Treatment Plants

In the five utilities in the statewide monitoring, both N1 and N2 SARS-CoV-2 con-
centrations had moderately strong, significant correlations with 7-day moving average
case data for individual sites and all pooled sites (Figure 1). Eaton WTTP had the weakest
correlation but also had the smallest sample size (Table 1). Normalizing by population per
utility, by definition, had no impact on correlations. In the pooled dataset, normalizing
by population increased the correlation, but the difference was not significant compared
to case data that was not population normalized. Spearman’s ρ for Beavercreek WRRF,
Oxford WTTP, and Tri-Cities NR WTTP very slightly differ from Ma et al., 2022 [11] because
the research presented here covers a longer time period and only includes data quantified
by duplex RT-qPCR.

All Spearman’s ρ correlation coefficients for all pooled sites between SARS-CoV-2,
whether unnormalized or normalized, regardless of case data calculation, were significant
(p-values < 0.05) (Table S3). Normalizing SARS-CoV-2 gene concentrations by wastewater
quality parameters alone through division or multiplication slightly improved the corre-
lation to case data (Figure 2a,b), but the increase in Spearman’s ρ was less than 0.05 and
not statistically significant. Normalizing by flow and then other water quality parameters
significantly improved the correlation between SARS-CoV-2 concentrations and the 7-day
moving average (Figure 2c,d, Table S3). Both multiplying and dividing the flow normalized
SARS-CoV-2 concentration by pH and temperature significantly improved correlations.
For total suspended solids, both dividing and multiplying improved the correlation, but
the difference between unnormalized and normalized by flow was only significant for
multiplying by total suspended solids.
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Figure 2. The difference (∆) between Spearman’s ρ correlation coefficient for unnormalized N2 SARS-
CoV-2 concentration and COVID-19 cases compared to Spearman’s ρ for normalized N2 SARS-CoV-2
concentration, normalized through (a) dividing it by water quality parameters; (b) multiplying it by
water quality parameters; (c) multiplying by flow and then dividing by water quality parameters;
and (d) multiplying by flow and then multiplying by water quality parameters. Asterisks on bars
(*) denote that the difference in Spearman’s ρ for unnormalized and normalized SARS-CoV-2 are
significant based on non-overlapping 95% Cis.
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Flow normalization did not improve SARS-CoV-2 concentration correlations to 7-day
moving average case data when normalized by static population numbers. The difference
in Spearman’s ρ between unnormalized SARS-CoV-2 concentration and any normalized
SARS-CoV-2 concentration between population normalized cases and the 7-day moving
average was always less than 0.05 and never statistically significant.

Normalizing SARS-CoV-2 N1 and N2 by PMMoV but without flow normalization
always significantly decreased the correlations to all four variations of case data (Table S3).
With both flow and PMMoV normalization of SARS-CoV-2, Spearman’s ρ also decreased
in every normalization variation with water quality data compared to the unnormalized
SARS-CoV-2, but the differences were not statistically significant (Table S3). Since Eaton
WWTP did not provide TSS and minimum and maximum temperature data, the same
pooled statistical analysis was done across all utilities except Eaton WTTP. Results showed
the same trends, but the significance of difference decreased slightly, as expected, due to
decreasing the sample size.

When analyzing utility data individually, PMMoV normalization of both SARS-CoV-2,
with or without further water quality normalization, significantly decreased the correlation
to the 7-day moving average of cases for all utilities (Tri-Cities was only significant for
N1). The notable exception was Eaton, where flow normalization slightly decreased the
correlation while PMMoV normalization slightly increased the correlation; however, the
difference was insignificant for all normalizations.

For Beavercreek WRRF, none of the normalizations of SARS-CoV-2 N2 increased Spear-
man’s ρ to the 7-day moving average of cases compared to unnormalized SARS-CoV-2. For
N1, multiplying by any of the temperatures on their own or with flow normalization slightly
increased Spearman’s ρ compared to unnormalized N1, but the change was insignificant
(Table S4). For Eaton WTTP, normalizing SARS-CoV-2 N1 and N2 by pH or the average
temperature showed small but insignificant improvement of Spearman’s ρ correlation to the
7-day moving average of cases (Table S5). For Greenville WTTP, normalizing by dividing
SARS-CoV-2 N1 and N2 by temperature and/or flow slightly improved correlations to the
7-day moving average of cases, but the change was insignificant (Table S6). For Oxford
WTTP, normalizing by dividing SARS-CoV-2 N1 and N2 by temperature and/or flow
slightly improved correlations to the 7-day moving average of cases, but the change was
insignificant (Table S7). For Tri-Cities NR WTTP, none of the normalizations of SARS-CoV-2
N1 and N2 increased Spearman’s ρ to the 7-day moving average of cases compared to
unnormalized SARS-CoV-2 (Table S8).

3.2. Campus University Samples

Correlations between SARS-CoV-2 concentrations and the 7-day moving average case
data on campus were very similar between all three genes (N1, N2, and E) and were
moderate but not statistically significant (Figure 3, Table S9), in close alignment with
previous analyses of these data [9]. Even though the difference between Spearman’s ρ

for unnormalized and many normalized SARS-CoV-2 concentrations increased by more
than 0.2 (Figure 4), the difference was never statistically significant (Table S9), likely due
to the small sample size. Spearman’s ρ became statistically significant, however, when
SARS-CoV-2 was divided or multiplied by E2:E3 and E2:E4 ratios (Figure 4a and Table S9).

When SARS-CoV-2 was normalized by PMMoV, the Spearman’s ρ correlation coef-
ficient to case data became significant for all three genes (Table S10), as were almost all
further normalizations with water quality. Only a few normalizations further increased
the correlation after PMMoV normalization of SARS-CoV-2 (Figure 4b). This included
multiplying by electrical conductivity and UV absorbance ratios or dividing by SUVA.
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Figure 4. The difference between Spearman’s ρ for unnormalized SARS-CoV-2 N2 concentrations
and COVID-19 cases to Spearman’s ρ for normalized SARS-CoV-2 N2 concentration, normalized
through (a) multiplying it by water quality parameters and (b) dividing N2 by PMMoV and then
performing further normalizations. See Table S1 for wavelengths of absorbance ratios.

4. Discussion

The COVID-19 pandemic drove an increase in the use of WBE, and it is still used for
continued COVID-19 monitoring in addition to other pathogens and/or pharmaceuticals.
To achieve the maximum benefit from WBE, measured concentrations need to correlate
with relevant epidemiological parameters, represent specific changes in pathogen preva-
lence in variable wastewater conditions, and be reported in a standardized manner [62].
Additionally, the difference in correlations between cases and SARS-CoV-2 in wastewater
in large communities and small communities needs to be understood. Populations in
certain communities can fluctuate significantly, and specific habits in some communities
can also lead to a lower likelihood of getting clinical testing. Normalizing SARS-CoV-2 by
a parameter that estimates population, such as mobile device data [8,13], ammonia [63],
human fecal strength [9,21], or flow, is needed to compare across different temporal and
spatial scales [2,7,14].

Accounting for flow, pH, temperature, and total suspended solids strengthened corre-
lations for SARS-CoV-2 N1 and N2 to COVID-19 cases for pooled wastewater treatment
plants, which agrees with other studies [3,15]. The pH, temperature, and solids content of
wastewater can impact the genetic material of SARS-CoV-2 and decrease detection [29].
Therefore, multiplying SARS-CoV-2 concentrations by these parameters increased the cor-
relation to case data, as the multiplication adjusts for higher parameter values decreasing
SARS-CoV-2 in wastewater. PMMoV normalization was not useful for improving WBE
correlations here in 24 h composite samples from wastewater treatment plants. Composite
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samples for influent wastewater for communities greater than 10,000 people likely do not
need PMMoV normalization as PMMoV does not correspond well to sewershed size and
population served in larger systems [3,16] where flow quality is likely to be more consis-
tent. The only utility that showed any (but still insignificant) improvement by PMMoV
normalization was the utility serving the smallest population, close to 10,000. These results
are supported by multiple studies that find PMMoV normalization of SARS-CoV-2 inad-
equate in improving WBE data [3,7,10,14] but contradict some that recommend PMMoV
normalization for large populations [20,21]. Flow, which improved correlations here and in
other studies [3,64], can help capture the dynamic nature of the population contributing to
the WTTP. Flow normalization was less effective when performed on data from individual
WWTPs, likely due to decreased flow fluctuations in a large sewershed, which agrees with
another study [65], especially considering that the composite samples were taken at the
same time and day every week. Discontinuing measurement of PMMoV for moderate to
large WTTPs would reduce costs [3,11] drastically for large scale networks performing
WBE (such as the Ohio Coronavirus Wastewater Monitoring Network), especially since
flow, pH, and temperature are already measured as part of routine monitoring by WTTPs.

For the campus data, as previously reported, the turbidity, pH, and total suspended
solids water quality data alone had no correlation to SARS-CoV-2 N1, N2, and E gene
concentrations (all Spearman’s ρ correlation coefficients < 0.4) [9]. However, using the water
quality data to normalize SARS-CoV-2 improved correlations to case data. In this campus
study, PMMoV normalization was crucial for increasing correlations of SARS-CoV-2 to the
7-day moving average. Grab samples, especially ones close to their source, only capture
a small snapshot of the flow in a sewer. PMMoV normalization has been shown to be
suitable for normalizing SARS-CoV-2 data from small sewersheds or grab samples [16].
Additionally, while total suspended solids, total coliform, and E. coli are common indica-
tors for wastewater strength [24,25], normalization with their concentrations did not aid
correlations, in agreement with another study [16]. However, normalizations with some
of the UV absorbance parameters (SUVA or UV ratios) did improve correlations. Another
study investigated if UV absorbance was associated with SARS-CoV-2 detection [43], but
this is the first study to report that normalization with UV absorbance characteristics can
improve the relationship of SARS-CoV-2 to COVID-19 case data. Although SUVA and UV
ratios are not a direct measure of fecal strength, they do characterize the composition of
the dissolved organic carbon present in the wastewater [38]. Additionally, UV absorption
values can vary from the wastewater norm due to surfactants and other contaminants, in-
cluding personal care products [66]. Because the grab samples from campus are incredibly
variable each week and manholes served dorms, gyms, and cafeterias that could contribute
varying amounts of non-fecal wastewater, it is possible that UV absorption characteristics
best adjust for those differences. Measuring UV absorbance is quicker and requires fewer
consumables than biological culture or nucleic acid measurements. It is possible that some
of the parameters in campus monitoring, such as total suspended solids, would have
a stronger normalization impact if samples were 24 h composite samples. SARS-CoV-2
can attach to solids particles, and therefore TSS content can have a different impact on
SARS-CoV-2 extraction whether the centrifugation method or ultrafiltration method is
used, which TSS normalization could help resolve [43].

In addition to the complexity of comparing results from grab samples to 24 h composite
samples, the temperature of the campus samples was considerably warmer than the WWTP
influent flow. Warm temperatures are known to degrade SARS-CoV-2 faster than cooler
temperatures [33–36], but the low hydraulic retention time and immediate transport on ice
of the grab samples in the campus sewer should have minimized temperature impacts [37],
especially in comparison to longer travel times to wastewater treatment plants. Another
important difference between the two sample types was that the WWTP samples were
quantified with RT-qPCR while the campus samples were quantified with ddPCR, with
ddPCR being more sensitive to SARS-CoV-2,which is especially important when there is
low viral load in the wastewater [67,68].
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Some of the limitations include that while on-campus students were required to test
twice a week, only 60% of the student population was sampled through the sewer wastew-
ater data. Due to Health Insurance Portability and Accountability Act (HIPAA) regulations,
we were unable to get positive cases for specific buildings that contributed to a manhole
sample location. This can skew results if cases were spreading in specific dormitories that
were not sampled. Cases linked to WWTP sewersheds came from voluntary clinical testing,
which may not capture all positive cases, especially as at-home tests became available [65].
Additionally, humans shed a variable amount of SARS-CoV-2 in their feces, ranging from
102–107 gene copies/mL [45]. The virus can be shed in the stool before symptoms appear,
providing a possible lead time where SARS-CoV-2 is detected before positive cases are
reported [2]. Most studies use moving averages to account for the lag in positive cases
compared to detection of SARS-CoV-2 in the wastewater or model a lead time, but lead
times and best moving average values can vary across different sewersheds [65,69]. This
study only tested a 7-day moving average and without modeling any lead times.

Depending on the type of sample and the size and characteristics of the population in
the sewershed, different normalization methods should be utilized. This study finds that
PMMoV normalization of SARS-CoV-2 from wastewater treatment plants serving more
than 10,000 people is not necessary, and that flow and other physicochemical parameters
that are part of routine monitoring are suitable for SARS-CoV-2 normalization to increase
WBE correlation and decrease analytical time and cost. For grab samples in campus-scale
sewersheds, and possibly in composite samples from small sewersheds, correcting for
human fecal strength, either through PMMoV normalization or a parameter that provides
information about the structure and composition of the solids, such as DOC, UV absorbance
ratios, or SUVA, is critical. This will improve trend analysis for WBE.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/environments11040080/s1, Table S1: UV absorbance ratios; Table S2:
Average wastewater parameters for campus sites; Equations (S1)–(S128): Normalizations of SARS-
CoV-2 gene concentration; Table S3: Spearman’s ρ for SARS-CoV-2 N1 and N2 and COVID-19 cases
for all WTTPs pooled together; Table S4: Spearman’s ρ for SARS-CoV-2 N1 and N2 and COVID-19
cases for Beavercreek WRRF; Table S5: Spearman’s ρ for SARS-CoV-2 N1 and N2 and COVID-19
cases for Eaton WTTP; Table S6: Spearman’s ρ for SARS-CoV-2 N1 and N2 and COVID-19 cases
for Greenville WTTP; Table S7: Spearman’s ρ for SARS-CoV-2 N1 and N2 and COVID-19 cases for
Oxford WTTP; Table S8: Spearman’s ρ for SARS-CoV-2 N1 and N2 and COVID-19 cases for Tri-Cities
NR WTTP; Table S9: Spearman’s ρ for SARS-CoV-2 N1,N2, and E and COVID-19 cases for the campus
data; Table S10: Spearman’s ρ for PMMoV normalized SARS-CoV-2 N1,N2, and E and COVID-19
cases for the campus data.
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