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Abstract: Understanding long-term vegetation dynamics, their responses to climate, and other
driving factors is crucial for integrated basin management in the Mekong River Basin (MRB) in a
context of global change. In this study, Normalized Difference Vegetation Index (NDVI) and climate
data from 1982 to 2013 were collected from Global Inventory Modeling and Mapping Studies (GIMMS)
and Climate Research Unit Time Series Version 3.23 (CRU-TS 3.23). The long-term monthly average,
Mann-Kendall trend (M—K) test, Sen’s slope, the coefficient of variation, correlation analysis, and the
Partial Least Square Regression (PLSR) model with the Variable Importance in Projection (VIP) were
applied in this study. The results showed an increasing temporal trend in NDVI and climate variables,
especially temperature, in all vegetation types. There is a significantly increasing NDVI trend with
relatively stable NDVI fluctuation across the majority of the MRB except in part of the Tibetan plateau
in China. There is a positive spatial correlation between NDVI and air temperature, precipitation and
PET (potential evapotranspiration) in the upper part of the basin. Air temperature is an important
explanatory factor for all vegetation types, especially in forest ecosystems and croplands, while the
role of precipitation and PET vary depending on vegetation type. In addition to physical aspects
of the MRB, such as runoff, we conclude that the vegetation dynamics related to climate variables
in the MRB should be considered in policies as the framework for ecological and environmental
management plans of the MRB.

Keywords: Mekong River Basin; climatic effects; NDVI; GIMMS; CRU-TS 3.23

1. Introduction

Analysis of terrestrial vegetation dynamics allows a better understanding of climate effects on
terrestrial ecosystems. Vegetation growth is influenced by the climate conditions, such as temperature
and precipitation and also by ecosystem disturbances such as drought or fire. Climate change is
increasing the frequency of such disturbances [1], which alters vegetation dynamics. Many earlier
studies focused on ecological responses to climate change, and found that climate contributions
to vegetation change are most crucial in many regions [2-8]. Hence, assessing the ecological
effects of climate change on vegetation biomass is of importance for understanding and estimating
climate-induced vegetation change in the last few decades, and disentangle it from the effect of other
kind of disturbances. These assessments have the potential to become a supporting tool to identify
possible future strategies of ecosystem management. Ecosystem indicators of primary productivity
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and greenness that can be used to assess climatic responses are vegetation indices data derived from
satellite-collected data [9,10], such as the Normalized Difference Vegetation Index (NDVI).

Since the 1980s, remote-sensing NDVI has been widely used in order to monitor and evaluate
vegetation greenness. Moreover, there has been focus on the relationship between NDVI and climatic
factors, such as vegetation productivity, biomass, interannual and seasonal vegetation productivity,
and phenology [5]. The relationship between vegetation dynamics and climate change has been
widely explored in many regions, with many studies have addressed the link of vegetation dynamics
with temperature and precipitation at different time scale [4,8,11-14]. For instance, there were
stronger correlations between NDVI for different vegetation types and precipitation compared with
temperature [4], while temperature increase has been pointed out as an important cause for the
high-latitude NDVI greening trends [15,16]. However, the response of NDVI to climate variables could
be explained by the unique temporal and spatial dimensions in the habitat, in addition to the degree of
human disturbance [4]. For instance, the combined effects of climate variability and human activities
have shaped the vegetation cover in hilly Southern China [8].

The Mekong River Basin (MRB) is the longest river in Southeast Asia, and it supports a wide
diversity of life. However, nowadays, climate change has affected vegetation in the Mekong River Basin,
not only in the lower part of the basin, which is dominated by agriculture, but also in the upper part,
the Lancang River Basin [17,18]. Many researchers have focused only on the regional scale, such as the
Lancang River Basin or Northeastern Thailand (Chi and Mun River basins). In the southeast Lancang
River, the Net Primary Production (NPP) response to annual precipitation was complicated and
had more influence than temperature, while temperature and precipitation variabilities had a strong
relationship with the meadow-growing season (May to September) NPP change in the northwestern
part of the basin [17]. The seasonal pattern of deciduous forest, paddy, and crop field NDVI relate
to the precipitation patterns in the northeastern part of Thailand, which is located in the Mekong
River sub-basin. Evergreen forests have shown that temperature was a driving factor that affected
greenness and productivity [5]. However, these publications mainly focus on the temperature and
precipitation effects on vegetation dynamics. The impacts of other factors should not be omitted, such
as the maximum and minimum temperatures and potential evapotranspiration. In fact, disentangling
the role of different climatic controls on vegetation dynamics in the MRB still remains a challenge [19].

The study of several climate factors in relation to vegetation dynamics is vital in order to improve
the knowledge and understanding of the mechanisms that vegetation has to cope with a changing
climate, which can support MRB environment and ecosystem management. Hence, the main purpose
of this study was to explore interannual vegetation dynamics in the MRB, from 1982 to 2013, and
investigate the relationship between NDVI and climate variables using satellite images and the
reanalysis of climate datasets. More precisely, we wanted to address the following questions: (1) How
are the seasonal NDVI dynamics for different vegetation types in the MRB? (2) What are the annual
NDVI and climate trends and annual NDVI fluctuations over the past three decades? (3) How does the
spatial relationship between NDVI and climate variables vary? (4) Which climate factors contribute
the most NDVI dynamics for different vegetation types?

2. Materials and Methods

2.1. Study Area Description

The MRB, which is shown in Figure 1, originates in the Tibetan Plateau in China, covering an
area of around 795,000 km?. The river flows through six countries, where its outlet runs into the
South China Sea (Figure 1a). The basin shape can be separated into three parts—namely the upper
basin, the lower basin, and the Mekong Delta. The upper basin includes the Lancang River Basin in
the Qinghai-Tibetan Plateau and Yunnan Province, China, while the lower MRB is located in Southeast
Asia and is downstream of Cambodia. The Mekong Delta is found in Vietnam.
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Figure 1. (a) The location, (b) land cover, (c) climatology precipitation (mm/y), and (d) temperature
(°C) in the Mekong River Basin (MRB).

The mean temperature in the MRB changes topographically from place to place (Figure 1d).
The entire basin experiences an average temperature of around 24 °C. The upper part of the basin has
a cold climate, while the lower part experiences two monsoons, i.e., the rainy southwest monsoon
from mid-May to mid-October and the dry northeast monsoon from mid-October to April. The range
of cumulative annual rainfall in the lower part of the basin is 1000 to 1500 mm in Thailand, to more
than 3200 mm in Laos, while it ranges from 600 mm in the Tibetan Plateau to 1700 mm in Yunnan
mountain regions (Figure 1c) [20,21].

2.2. Data Source and Pre-Processing

2.2.1. Land Cover Map

MODIS land cover type data product (MCD12Q1) with a 5" x 5 spatial resolution [22], based on
the IGBP (International Geosphere-Biosphere Programme) Land Cover Type Classification, was used
to classify the major vegetation cover in the MRB (Figure 1b). The data were projected into the World
Geodetic System 1984 (WGS1984) coordinate reference system using latitude and longitude.

2.2.2. NDVI Data Set

In this study, the raw NDVI maps were downloaded from a Global Inventory Modeling and
Mapping Studies (GIMMS) data set at a global scale [23]. The total number of NDVI images,
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downloaded from January 1982 through December 2013, equal 768 images; these include bi-weekly
temporal resolutions x 12 months x 32 years. The following steps were taken to process the data. First,
the Savitzky-Golay filter [24] was used to avoid pseudo peaks, atmospheric contaminants, in addition
to deriving an accurate value from the NDVI time series. Then, the coordinate system was defined as
GCS-WGS1984, and the bi-linear interpolation method was conducted in order to downscale, from
an 8-km? to a 1-km? spatial resolution using the “raster” package in R programming [25].

2.2.3. Climate Data

For the climate data, the Climate Research Unit Time Series Version 3.23 (CRU-TS 3.23, University
of East Anglia, Norwich, UK) was used. The grid climate dataset, produced by the Climatic Research
Unit at the University of East Anglia, at a 0.5° spatial resolution, from January 1901 to December
2014 [26], was processed from monthly observations from the meteorological station, both at the
global and national scales. This dataset was separated into two types: (1) the primary data variables,
including precipitation and mean, maximum, and minimum temperature, and (2) the secondary
data variables, including potential evapotranspiration (PET). PET was estimated using the Food and
Agriculture Organization of the United Nations (FAO) Penman-Monteith method and was produced
from the primary variables using well-known formulae [26]. Only average, maximum, and minimum
temperature, precipitation, and PET were used in this study. The bi-linear interpolation method was
utilized in order to downscale from a 0.5° spatial resolution to a 30-second spatial resolution using a
“raster” package [25].

2.3. Methods

2.3.1. Coefficient of Variation

The coefficient of variation (CV) (standard deviation divided by the mean) was used to reveal the
inter-annual variation of vegetation [6,27]. The equation is as follows:

" (NDVI; — NDVI) /n
NDVI

CV = 1)

where NDV], is the annual mean NDVI in year i, and NDVI is average annual mean NDVI from 1982
to 2013 (n = 32). When the CV value is large (small), it means that data are more (less) distributed
around the mean, with more variation (more stability) in terms of inter-annual changes [6].

2.3.2. Sen’s Slope Analysis

The Sen’s Slope estimator is a robust statistical method that has been widely used to analyze
long-time series data, and has proven to be more suitable for time series analysis than linear
regression [8,28,29]. The magnitude of the slope () is computed as:

NDVI; - NDVL,
= i< )

If 3 <0 (B > 0), then the trend of the variable time series has a decreasing (increasing) trend.

2.3.3. Mann-Kendall Trend Test

The Mann-Kendall test (MK test) is a non-parametric test for identifying trends in time series
data and is used to assess the level of significance of the Sen’s slope; the advantages of this method are
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that data do not need to be of a normal distribution and are not sensitive to outliers in the dataset [29,30].
The Mann—-Kendall statistic (S) is as follows:

n—-1 n
S=1) Y sign(NDVIL — NDVI) 3)
i=1 j=i+1
In this equation, NDVIj and NDVI; are the annual mean NDVI value of time 7 and j, then:
1,if (NDVIj — NDVIZ-) >0

sign(NDVL; — NDVL) = { 0,if (NDVI; — NDV];) =0 o)
~1,if (NDVI; — NDVL,) < 0

The variance of S is estimated as:

n(n—1)(2n+5)
18

VAR(S) = ()

Compute the normalized test statistic Z as follows:

S—1 .
\/\m,lfs >0
0,ifS=0 (6)

St ifS <0
VAR(S)

Z

The statistical trend of variables was evaluated using the Z value. The positive (negative) Z
indicates upward (downward) trend, while 0 means that there is no trend in the time series. In this
study, the significance of the detected trend was tested based on a 0.05 significance level.

2.3.4. Correlation Analysis

We used the Pearson Product-Moment Correlation Coefficient (r) to analyze the relationship
between NDVI and climate variables. The coefficient is defined as:
o Tl D=9 ”
Vit (xi —x) Tl (yi — )

where y; is NDVI at time i, x; is the climate factors at time i, ¥ and X are the climatology NDVI and
climatology climate factors from 1982 to 2013. The significant testing at a p-value < 0.05 was applied
using the t-test.

2.3.5. Partial Least Square Regression (PLSR) Analysis

PLSR is the robust statistical method that combines Principle Component Analysis (PCA)
and multiple regression with the ability to handle many predictors, even when predictors display
co-linearity [31,32]. In this paper, we used PLSR in order to identify the climate factors that affect
vegetation greenness [3]. The dependent variable in our case was NDVI, while the independent
variables were five climate variables. However, the variation in biomes and climate gradient might
influence the accuracy of PLSR’s analyses [3]. Hence, dominating pixels for each vegetation type
were used to represent each climate zone [33]. Finally, the PLSR analysis was conducted. Table 1
shows the dominant vegetation types for each climate zone, based on the Képpen-Geiger climate
classification [33]. To select the number of components, we ran the PLSR model, and the number of
latent factors to be included in the model was determined by cross-validation. This is due to the three
components of latent factors that were found to explain more than 90% of the variation in the NDVI
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dataset. Finally, the Variable Importance in Projection (VIP) was used to indicate the significance of
each variable and the model coefficients, which quantify the effects of each predictor in the model.

Table 1. Dominating vegetation types for each climate zone, based on the Képpen-Geiger climate
classification [33].

Vegetation Types Climate Zone
Cropland Aw
Evergreen forest Cwa
Deciduous forest Aw
Savanna and woody savanna Aw
Mixed forest Cwb
Grassland ET

Aw = Equatorial savanna with dry winter climate, Cwa = Humid subtropical climate, Cwb = Subtropical Oceanic
highland climate, and ET = Tundra climate.

3. Results and Discussion

3.1. Seasonal Vegetation Dynamics

The seasonal dynamics of mean NDVI for different vegetation types, from 1982 to 2013, are shown
in Figure 2. Each vegetation NDVI have specific seasonal dynamics, both in amplitude and range, in
addition to a specific beginning, peak, and end of growing season. The spatial dimensions of NDVI
were randomly selected, based on the dominant vegetation in each zone, such as the evergreen forest
in Laos and the grassland ecosystem in the Qinghai-Tibetan Plateau in China, in order to evaluate
seasonal vegetation dynamics.
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Figure 2. Seasonal vegetation dynamics from 1982 to 2013.

The NDVI value for the evergreen forest, dominant in the lower part of the MRB, was significantly
different compared with other vegetation dynamics. The monthly average NDVI of the evergreen
forest was 0.74, peaking in November at 0.83 with a minimum value of 0.66 in April. The NDVI
dynamic variation was relatively stable from March to October, with a slight increase from September
to December, and a decrease in January to February. At the beginning of the wet season, from May to
July, the evergreen forest seasonal dynamic fluctuated and increased again in September. Thavorntum
and Tantemsapya [5] concluded that precipitation peaks in August for the evergreen forest, but NDVI
reached a maximum around October, which is supported by this study. The evergreen forest’s seasonal
NDVI dynamic remains high until January, then decreases gradually. Moreover, Garcia et al. [34]
also concluded that the evergreen forest ecosystem showed the highest persistence of rainfall effects.
Subsequently, NDVI is low and relatively stable from March to September in the late-dry to the late-wet
season. This agrees with Van Leeuwen et al. [35], who suggested that the tropical forest shows a
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minimum NDVI value during the rainy season. The NDVI value for the deciduous forest was not
as high as that of the evergreen forest. Monthly mean deciduous forest NDVI is 0.64. The seasonal
dynamic of the deciduous forest was steady during the rainy season (May to September) before
peaking during the winter season (October to December) in the lower part of the MRB. The NDVI
value for the deciduous forest decreases slightly from January to March in the dry season, when
trees start to shed their leaves. Leaves begin to fall one to two months after the beginning of the
dry season, which begins in November and continues until the forest becomes leafless in March [36],
which corresponds with the deciduous forest NDVI in the MRB. The deciduous forest’s seasonal NDVI
pattern was the same as that of the mixed forest; it increases in September and drops in January with
the NDVI reaching the minimum value from April to September [36]. The cropland includes single
and multiple cropping systems, such as a rice paddy field, cassava, soybean, sugarcane and maize [37].
This cropland is widely distributed in Thailand, with a maximum greenness of 0.68 in October and
gradually dropping in November to coincide with the harvesting period [38]. The savanna and woody
savanna seasonal NDVI dynamic patterns are the same as the cropland seasonal NDVI, but starts to
green up after October, at the end of the rainy season. This is probably related to the limited water
and temperature; the vegetation starts to green up after soil moisture and optimum temperature
are available for growth [35]. Grassland season dynamics are different compared to others, which
corresponds with Yu et al. [3]; the authors concluded that the grassland ecosystem greening season is in
May, and reaches the “mature” stage in July and August. NDVI then starts senescence from September
to November and ends in October, which is coherent with this study. In addition to the climate
factors and seasons, which might lead to significant uncertainties in the seasonal vegetation dynamics,
Zhan et al. [39] suggested that elevation also had a significant influence on vegetation dynamics and
distribution, while the aspect and slope show a non-significant response to NDVI dynamics.

3.2. Interannual Changes in NDVI and Climate Variables for Different Vegetation Types

Table 2 shows the annual change (Sen’s slope) based on Mann-Kendall analysis of different
variables, during 1982-2013, in the MRB for different vegetation biomes.

Table 2. Sen’s slope and Mann—Kendall test of NDVI (Normalized Difference Vegetation Index),
T (average temperature)) TMN (minimum temperature), TMX (maximum temperature), Prec
(precipitation) and PET (potential evapotranspiration) for six different vegetation type, from 1982
to 2013, in the Mekong River Basin.

Vegetation Types NDVI T TMN TMX Prec PET
Cropland 0.007 * 0.017 * 0.020 * 0.014 3.512 0.997
Evergreen forest 0.002 0.021 * 0.026 * 0.020 * 8.627 * 1.272
Deciduous forest 0.004 0.022 * 0.025 * 0.014 * 5.377 1.481*
Mixed forest 0.010 * 0.037 * 0.039 * 0.036 * —1.576 2.861*
Grassland 0.002 0.031 * 0.033 * 0.028 * 0.116 1.381 *
Savanna and woody savanna 0.003 0.020 * 0.027 * 0.015* 0.015* 1.515*

* Represents the significance at the p < 0.05 level.

The annual average NDVI did not show a significantly increasing trend in evergreen forest,
deciduous forest, grassland, as well as savanna and woody savanna (with only a slight increase in these
vegetation types) (Table 2). Nevertheless, NDVIwas found to be significantly increased in cropland and
mixed forest, with Sen’s slope being 0.007 and 0.010, respectively. Average temperature trends during
1982-2013 increased significantly in cropland, evergreen forest, deciduous forest mixed forest, and
grassland, as well as savanna and woody savanna (as shown in Table 2). Annual average precipitation
over evergreen forest increased significantly (around 8.6 mm/year). However, other vegetation types
also showed a non-significant increasing trend, with the exception of mixed forest, which demonstrated
a non-significant decreasing trend. The minimum temperature was raised significantly for every type
of vegetation. On the other hand, only evergreen forest showed a significant increase in maximum
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temperature. PET increased significantly in deciduous forest, mixed forest, and grassland (as shown in
Table 2), which is mostly distributed in the Tibetan Plateau and the Lancang sub-basin located in the
upper part of the MRB. The other vegetation types had no significant changes in PET.

According to the Intergovernmental Panel on Climate Change (IPCC) projection, mean annual air
temperature increases by 0.02-0.03 °C per year in Southeast Asia [40]. Furthermore, Lacombe et al. [41]
also suggested that temperatures will increase by about 0.023 °C/year across the MRB. Our results were
consistent with these previous research findings. Precipitation can show positive or negative trends
across Southeast Asia [42], with a high degree of uncertainty for the different parts of the Mekong
River region. This variation ranges from a few millimeters (mm) less per year up to an additional
30 millimeters per year. PET also increased by 2.9 mm/year for mixed forest and 1.4 mm/year for
grassland, with a significant statistical result at the 0.05 level.

3.3. Spatial Annual NDVI Fluctuations and Trend Analyses

Based on the results from the CV analysis, we classified CV into five levels, namely the lowest and
lower fluctuation, moderate fluctuation in addition to higher and the highest fluctuation (Figure 3a).
The areas with the lowest NDVI fluctuations (CV = 0.00-0.10) consist of 15% of the total MRB. Areas
with lower NDVI fluctuations (CV = 0.10-0.15) are widely distributed and account for 74% of the MRB,
especially in the lower part of the MRB. Finally, the moderate fluctuation zone (CV = 0.15-0.20) covers
around 8% of the basin. Higher fluctuation and the highest fluctuation zones cover only 2% and 1%,
respectively, of the MRB area. Hence, the fluctuations in vegetation at the basin scale were steady over
time, with variations occurring at the regional scale. Figure 3a illustrates that there is a clear pattern
to the spatial distribution of the highest fluctuations, despite this zone only covering approximately
1% of the total basin. Land use change effect [6] and land degradation has probably caused the
highest fluctuation zone to be distributed in the high lands of the Tibetan Plateau, which is mainly
covered by a grassland ecosystem. Moreover, land degradation in the Tibetan Plateau is the result
of warmer temperatures, variations in precipitation, melting glacier overgrazing, rat damage, and
climatic heterogeneity in mountainous areas [4,43—45]. The lowest, lower, and moderate fluctuation
zones (15%, 74%, and 8% of basin, respectively) were widely distributed in the middle, dominated by
a mixed forest biome, to the lower part of the RMB, dominated by evergreen forest, deciduous forest,
cropland, and savanna and woody savanna ecosystems.

Significant (p < 0.05) positive and negative annual mean NDVI trends over 30 years, across the
MRB, are shown in Figure 3b. The trends were presented in NDVI units per year. Green represents
positive trends, while dark red represents negative trends. The results demonstrate that the NDVI
intermediately increased significantly, at around 0.002 to 0.003 per year, for many parts of the MRB; most
obviously seen in South China, North and Northeastern Thailand, Myanmar, and Laos. The highest
NDVlI increasing slope, of approximately 0.006 per year, was shown to occur in the evergreen forest
ecosystem in Laos. The NDVI greening trends in these biomes were also found by Chuai et al. [4] and
Guo et al. [19]; they reported that NDVI moderately increases in forest and cultivation areas. However,
a significantly decreasing NDVI trend has been found in the savanna and woody savanna ecosystems
of Cambodia, which is highly related to human activities [18]. In addition, Liu et al. [46] showed a
continuous browning trend in the savanna regime NDVI from 1982 to 2012. We found significantly
increasing NDVI trends in some areas of grassland ecosystem in the high lands of the Qinghai-Tibetan
Plateau, which are consistent with previous research [47,48].
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Figure 3. (a) Spatial distribution of level of annual NDVI fluctuation and (b) spatial distribution of
NDVI annual trend analysis (NDVI point/year) while insignificant pixels (p > 0.05) are marked out.

3.4. Correlation Analysis between NDVI and Climate Variables

Based on the results from the correlation analysis, each spatial correlation coefficient was
categorized into six levels (Figure 4), which are the highest significant negative (r = —1.00 to -0.75),
higher significant negative (r = -0.75 to -0.60), significant negative correlation (r = -0.60 to —0.30),
significant positive correlation (r = 0.30 to 0.60), significant higher positive (r = 0.60 to 0.75), and the
highest significant positive correlation (r = 0.75 to 1.00) coefficient, while the white area represents
insignificant correlation between NDVI and climate variables (r = -0.3 to 0.3).

The spatial correlation between NDVI was positively correlated to average, maximum, and
minimum temperatures in the upper part of the MRB grassland in the Qinghai-Tibetan Plateau, and the
mixed forest biome in the Lancang River Basin (Figure 4a,d,e). There was a positive correlation between
temperature and precipitation that was also found in the Qinghai-Tibet Plateau alpine vegetation [48].
The Lancang River Basin in China, and the headwaters of the Mekong River, experienced rising
temperatures [18], which might promote the grassland’s primary production in head water, especially
during the growing season. Moreover, Huang et al. [17] suggested that, while annual land surface
temperature shows a weak relationship with the vegetation’s net primary production, alpine vegetation
would be more sensitive to temperature during the growing season. The forest biome in the Lancang
sub-basin demonstrates a positive correlation with the average, maximum, and minimum temperatures.
This finding suggests that the warming effect may increase forest growth at the beginning of the
growing period, while increasing minimum and maximum temperatures may reduce forest growth in
the middle of the growth period [19].

In the lower part of the basin, the vegetation was mostly non-significantly correlated with
average, maximum, and minimum temperatures, with the savanna and woody savanna ecosystems
presenting the highest and higher negative correlations, especially in the west of Cambodia. It was
clear that temperature has a negative effect on cropland, which is widely spread in Northeast Thailand.
Precipitation was correlated with NDVI in grassland ecosystems in the southeast of the headwaters
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regions (Figure 4b), which is consistent with previous studies [17]. Mixed forest, savanna, and woody
savanna biome were negatively correlated with precipitation.
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Figure 4. (a) The spatial distribution of the correlation level of NDVI with temperature, (b) precipitation,
(c) PET, and (d) maximum and (e) minimum temperature in the Mekong River Basin. Insignificant
pixels (p > 0.05) are marked out.

In the savanna and woody savanna biome, Chamaille-Jammes et al. [11] highlighted that there is
a weak relationship between interannual NDVI and precipitation, because the stability of the seasonal
rainfall patterns seems to be the major contributing factor to long-term ecosystem stability. For mixed
forest biomes located in cold regions, the findings for the mixed forest biome located in cold regions
are consistent with those of Feng et al. [49], who concluded that forest growth tends to decrease with
increasing precipitation in relatively cold regions. No correlation was found between precipitation and
evergreen forest, except in the north of Laos, where precipitation was found to be positively correlated
with evergreen forest and cropland in part of Northeast Thailand; this finding is also supported by
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Thavorntam and Mongkolsawat [5]. Moreover, they also noticed that dense vegetation cover tended to
show the highest correlation with precipitation, while cropland in some parts of the Mekong Delta
showed a negative correlation with precipitation due to irrigation being available during the dry
season [5]. PET (Figure 4c) mostly shows the negative effect on vegetation in the headwaters, but
shows a positive effect in the lower part of the Lancang sub-basin. In the lower part of the MRB,
vegetation in the northeast of Thailand showed negative correlations with PET, which could imply that
water (such as precipitation) might be an important factor in controlling vegetation growth in these
areas. Higher temperature conditions accelerate the evaporation process, which leads to a water deficit
and obstructs vegetation growth. However, this different correlation could be explained by dissimilar
temporal and spatial vegetation growth conditions and the degree of human disturbance influence [4].

3.5. Climate Driving Factors of Vegetation Dynamics

Variable importance in projection (VIP) score and partial least square regression coefficient (PLSR
coeff.) were used to identify the driving climatic factors and their effects on vegetation dynamics [2,3].
The conclusions are illustrated in Table 3.

Table 3. Variable Importance in Projection (VIP) score and Partial Least Square Regression coefficient
(PLSR coeff.) for six vegetation types using Normalized Difference Vegetation Index (NDVI) as a
predicted variable and climatic factors, which are average temperature (T), minimum temperature
(TMN), maximum temperature (TMX), precipitation (Prec) and potential evapotranspiration (PET), as
a predictor, where VIP score’s threshold = 0.8; numbers in bold represent the VIP score, which is >0.8

and PLSR coeff..
T TMN TMX Prec PET

Vegetation Types VIP score, VIP score, VIP score, VIP score, VIP score,
PLSR coeff. PLSR coeff. PLSR coeff. PLSR coeff. PLSR coeff.
Cropland 1.174, 0.790 1.140, -0.427 1.160, -0.442 0.277,0.0002 0.950, -0.0006
Evergreen forest 1.372,0.344 1.489, 0.534 0.872, 0.019 0.144, -0.481 0.347, -0.464
Deciduous forest 1.077,-0.130 0.935, -0.077 1.168, -0.178 1.065, 0.348 0.685, 0.0009
Mixed forest 1.095, 0.452 1.088, —-0.296 1.101, -0.129 0.672,-0.003 0.977,-0.012
Grassland 0.768,-0.117 0.486, -0.021 0.833, -0.091 0.914, 0.016 1.626, —-0.056
Savanna and woody savanna 0.470,1.271 0.656, —0.540 0.416, -0.742 1.898, -0.0008 0.756, -0.0031

For cropland, air temperature (average, minimum, and maximum temperature) was found to
be an important contributing factor, compared to PET and precipitation (Table 3). Minimum and
maximum temperature had negative effects on cropland NDVI, with PLSR coefficients of -0.427 and
—0.442, respectively. This leads to PET having a negative impact on the cropland ecosystem, caused by
the effect of rising temperatures, which initiates a decreasing crop yield, in addition to intensive human
activities, such as fertilization and changing crop types [19,50-53]. Average, minimum, and maximum
temperatures were important driving factors in the evergreen forest dynamic, having positive effects.
Similarly, Prasad et al. [2] concluded that the Continental Index—the difference between minimum
and maximum temperature—demonstrated a higher influence on the evergreen forest compared
with the combined precipitation parameters and topographic parameters. Moreover, Guo et al. [19]
suggested that the rising temperature may increase forest growth at the beginning of the growing
period, but precipitation may decrease NDVI in the forest biome. However, the precipitation effect
was not significant for the ecosystem dynamics in this study [19]. The negative effect of precipitation
can provide increased cloud cover, which reduces crucial factors for forest growth, such as solar
radiation and air temperature [53]. Liu et al. [54] also confirmed that in (sub) humid climate zones,
vegetation shows a strong relationship with temperature and a negative correlation with precipitation.
However, this is in contrast to the findings of Thavorntam and Tantemsapya [5], who showed that
the negative effects of temperature in the forest types of Northeastern Thailand might be attributed
to stress and different limiting factors for plants, which vary in space and climate zones. Deciduous
forest was sensitive to all temperature ranges and precipitation. Average, minimum, and maximum
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temperatures were found to have negative effects on deciduous forest vegetation, while precipitation
promotes productivity and encourages greenness. This might be due to deciduous trees needing to
shed their leaves in order to prevent losing water from the stomata through evapotranspiration when
temperatures rise, especially at maximum temperatures. Nevertheless, there is limited precipitation
for deciduous trees to build up greenness. Precipitation solely drove the savanna and woody savanna
ecosystems, with increased precipitation possibly leading to decreased greenness. However, the PLSR
coefficient for this effect is very weak compared to others. This finding corresponds with previous
studies [11], which suggest that the NDVI-precipitation effect becomes weaker when studied at the
inter-annual scale. In addition, the stability of the seasonal effect of precipitation seems to be a
controlling factor in the long-term stability of this ecosystem.

In the upper basin, driving factors for the mixed forest NDVI dynamics are (minimum) maximum
temperature and PET with negative effects over the NDVI dynamics. It is, thus, clear that maximum
temperature causes PET to have a negative influence on mixed forest ecosystem greenness. While
temperature can contribute to a rise in NDVI, this effect might be governed by precipitation, which
demonstrates a negative effect on NDVI, despite it not being vital in this model. Grassland ecosystem,
maximum temperature, precipitation, and PET are crucial factors driving the NDVI dynamics.
The rising effect of temperature will stimulate the evapotranspiration process. Due to this effect
being significantly related to water deficiency and a dried soil layer, there is a subsequent reduction in
vegetation growth. Precipitation is also a significant positive control factor, which means that water
conditions is a limiting factor for vegetation growth. Evapotranspiration is a key factor in controlling
grass growth [6,17]. In addition, anthropogenic activities have little influence on the grassland
ecosystem, hence, precipitation is one of the main positive driving factors in this ecosystem [6].

4. Conclusions

Analysis of the relationships between NDVI and climate factors in the MRB using different
statistical tools over the past three decades shows that:

(1) The patterns of seasonal vegetation dynamics vary depending on vegetation types. The highest
seasonality was shown by grassland, which is logic being annual plants, while evergreen forest
was the one showing less seasonality. The average trends of NDVI seasonal dynamics were
similar in the majority of vegetation types, with the main exception being grasslands, which
displayed a significantly different pattern. However, there needs to be more focus on elevation
and other topographic factors in future research.

(2) NDVI, air temperature, precipitation, and PET were shown to have increasing temporal trends at
all locations. Moreover, the spatial trend of NDVI confirmed that NDVI at the basin scale was
found to be mostly increasing relative to the lowest and lower fluctuation levels during the last
three decades.

(3) Climate variables, air temperature, precipitation, and PET were shown to have positive
correlations with vegetation in the upper part of the basin. In the lower part of the basin,
evergreen forest demonstrated non-significant relationships with these variables. Cropland
was only found to have a positive correlation with precipitation, while the savanna and woody
savanna ecosystems were shown to have significant negative relationships with precipitation.

(4) The climatic factors driving NDVI were dependent on vegetation types. Air temperature and PET
governed the greenness of cropland, while the different types of forest show different controlling
climatic factors; the evergreen forest biome is controlled by air temperature, while air temperature
and precipitation are crucial for deciduous forests. The average rise in temperature drives
greenness in a mixed forest. PET was important for the grassland biome in order to promote
greenness, while precipitation could reduce its greenness. For savanna and woody savanna,
precipitation was the sole negative contributor.
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