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Abstract: Sudbury (Ontario, Canada) has a long mining history that has left the region with
a distinctive legacy of environmental impacts. Several actions have been undertaken since the
1970s to rehabilitate this deteriorated environment, in both terrestrial and aquatic ecosystems.
Despite a marked increase in environmental health, we show that the Junction Creek system
remains under multiple stressors from present and past mining operations, and from urban-related
pressures such as municipal wastewater treatment plants, golf courses and stormwater runoff.
Water samples have elevated metal concentrations, with values reaching up to 1 mg·L−1 Ni,
40 µg·L−1 Zn, and 0.5 µg·L−1 Cd. The responses of diatoms to stressors were observed at the
assemblage level (metal tolerant species, nutrient-loving species), and at the individual level through
the presence of teratologies (abnormal diatom frustules). The cumulative criterion unit (CCU)
approach was used as a proxy for metal toxicity to aquatic life and suggested elevated potential
for toxicity at certain sites. Diatom teratologies were significantly less frequent at sites with CCU
values <1, suggesting “background” metal concentrations as compared to sites with higher CCU
values. The highest percentages of teratologies were observed at sites presenting multiple types of
environmental pressures.

Keywords: biomonitoring; cumulative criterion units; diatoms; metals; mines; multi-stress; streams;
nutrients; teratologies; urban stressors

1. Introduction

The region of Sudbury (400 km north of Toronto, Ontario, Canada) and its surroundings is
well-known for its legacy of intense mining that resulted in vast ecological damage due to acidification
and metal contamination. Among the seriously impacted aquatic ecosystems in close vicinity to the
Sudbury mining activities is the Junction Creek system. This river and its tributaries were once the
recipients of several untreated industrial and municipal effluents, as well as a sink for atmospheric
deposition. The health of Junction Creek was impacted by the contamination and degradation in its
watershed, and showed highly impaired biological integrity [1]. Still nowadays, despite pollution
control and rehabilitation actions having been undertaken, aquatic ecosystems in the region suggest
slow recovery [2–6]. Mining activities are still present in the region, although under significantly
more restrictive pollution control and regulation, and intensification of urban development represents
a supplementary environmental threat.

The Junction Creek system has been well studied in the past to assess its ecological degradation
in response to mining activities, and its recovery following improved management of atmospheric
deposition and wastewaters. However, to our knowledge, most studies focused on water chemistry,
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invertebrates and fish, leaving a gap in information on biofilms. Composed of algae, fungi, bacteria
and protozoans embedded in a polysaccharide matrix, biofilms are a complex aggregation of
microorganisms and constitute the basis of most lotic ecosystem food webs. Biofilm integrity is,
therefore, essential in keeping a healthy biological status at the ecosystem scale, as it is a key
entry point for contaminants into the trophic chain. For example, biofilms accumulate metals
that are then susceptible to reach higher organisms through their diet [7], causing multiple
deleterious effects on reproduction, behavior, fatty acid composition, survival, etc. (e.g., [8,9]).
Intracellular metal concentrations in biofilms are proportional to free metal concentrations in the
water, offering an interesting proxy to estimate bioavailable metals in the water column [10,11].
Diatoms (unicellular algae), often the dominant constituent of stream biofilms, are sensitive to changes
in water chemistry and respond quickly to environmental fluctuations by changes in the structure
of their assemblages (e.g., increase in pollution-tolerant species) [12]. Due to their sensitivity to
fluctuations in water quality, their ubiquity, ease of sampling, and low analytical costs, this algal
group is widely used as indicators of biological integrity and numerous diatom-based indices have
been developed for routine assessment of overall ecosystem health (e.g., [12–14]). Diatoms have
also been used to specifically reflect metal contamination, and metal-tolerant species are promising
indicators of contamination (see Morin et al. [15] and references therein). Moreover, deformities in
diatom frustules (silica shells) are used as a biomarker in response to environmental perturbations
such as contamination by metals and organic compounds (e.g., [16–18]).

The purpose of this study was to combine chemical and biological monitoring for assessing
health and ecological integrity of aquatic ecosystems in the Sudbury region, including Junction Creek
and its tributaries, with focus on metal contamination. More specifically, the objectives of the study
were (i) to evaluate overall stream biological integrity based on diatom assemblages, (ii) to assess
changes in diatom assemblage composition with increasing metal contamination, and (iii) to investigate
the presence of diatom deformities (teratologies) in response to metal contamination. The selected
sites were also subjected to other environmental pressures such as nutrient loads that may act as
additional stressors affecting the response of diatom assemblages, thus offering interesting conditions
for multi-stress assessment. This particular study area is therefore an interesting example where
environmental pressures such as urban activities may exacerbate stresses from past and present
mining activities and thus affecting system recovery. This has been previously observed where
a greater number of cumulative environmental stressors resulted in more significant impacts on diatom
assemblages [19], although some antagonistically acting stressors have been evidenced (e.g., metals
versus nutrients [20,21]). The present study provides groundwork for assessing stream biological
integrity based on diatom descriptors, and brings valuable information to be used in further monitoring
of the Junction Creek system recovery and health. Mining activities in Canada are expected to increase,
especially in relatively pristine northern regions (e.g., the Quebec Plan Nord, the Ontario Ring of Fire,
and the Northwest Territories Mining Initiative). Despite the fact that mining companies are subjected
to comply with stricter environmental regulations under the Canadian Mining Act (operating since
1995) to ensure site rehabilitation after mine closure, ecosystems in proximity to mining operations
are still at risk of physical, chemical and biological alteration. Monitoring past and present effects of
mining on nearby ecosystems and assessing losses in ecological integrity and services offer strong
support to further reduce emissions from industrial activities and to stimulate research on best
management practices.

2. Materials and Methods

2.1. A Brief History of Mining Around Sudbury and the Resulting Ecological Damages

Sudbury has a long mining history, with its first smelter having been built at Copper Cliff
in 1888. This region has one of the most productive nickel and copper mining operations in the
world, with other metals such as zinc, cobalt, precious metals and platinum-group elements also
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currently mined and processed in the area. While mining companies are nowadays relatively more
eco-aware, environmental preoccupations were not on the agenda before the 1980s. Open-air roasting
(processing step) occurred, releasing sulfur dioxide. Atmospheric emissions were estimated at over
100 million of tons of SO2 and thousands of tons of metal particles [22,23]. Along with forest fires
and clear-cut logging (large amounts of wood were necessary for roasting), this industrial process led
to the destruction of nearly 20,000 ha of land and to about 80,000 ha of semi-barren landscape [23].
Outdoor roasting was common to the end of the 1920s when it was banned by the Ontario Government,
following which three smelting plants were built (Copper Cliff, Coniston and Falconbridge). Smelter
emissions in the Sudbury area were one of the world’s largest point sources of SO2 emissions during
the 1960s, accompanied by thousands of tons of emitted metal particles [24]. Metal contamination has
been documented since the 1960s in the Junction Creek area and its surroundings [1].

Technological development and legislative control have led to a 90% reduction in SO2 and
particulate matter emissions between 1967 and the 1990s [23,25]. A stack rising 380 m above the
Canadian Shield floor was built in 1972 (Inco Superstack), spreading smelting fumes to a much larger
area. Several rehabilitation actions were taken, such as liming and grassing of the barren areas,
and replanting millions of trees. Life was also slowly reintroduced to the surrounding lakes and
streams, as algae, zooplankton, zoobenthos and fish showed signs of recovery [26]. Since the 1970s,
the health and integrity of the affected area markedly improved, and the region is now on a path
to recovery. Colossal efforts were undertaken to rehabilitate and revive the area, with particular
attention given to Junction Creek (e.g., abatement of mining and municipal untreated effluents,
shoreline stabilization, tree-plantings) and have drastically improved the overall health of this region.
However, anthropogenic inputs such as mining effluents, treated municipal wastewater, urban runoff,
and air-born particles still pose a threat to the integrity of Junction Creek and nearby waterbodies.
In addition, this system suffers from over 100 years of mining-related contamination now accumulated
in sediments, as observed in the lakes along its course. For example, Kelly Lake (2.4 km2) is a water
body well-known for its contamination in copper, nickel, palladium, iridium, and platinum [27].
In addition to being metal-contaminated, Kelly Lake sediments are loaded with phosphorus, as Junction
Creek used to be a point-source of raw sewage effluents [27]. A large creosote plant, in operation from
1921 to 1960, also contributed to the contamination of Kelly Lake sediments by polycyclic aromatic
hydrocarbons (PAH) as waste materials sometimes leaked into Junction Creek [27].

About 7000 lakes were acid-damaged to the point of biological impairment by mining activities in
the Sudbury area [28], and although many now show signs of recovery from acidification [24,29], metal
contamination and other persistent ecological damages still impair their integrity. Biological recovery
has been observed in fish, zooplankton, phytoplankton and zoobenthos, but remained at an early
stage in many lakes lying in close proximity to Sudbury in studies conducted in the late 1990s and
early 2000s (see review in Keller et al. [24], and references therein). On the other hand, analysis of
long-term monitoring data (1988–2002) from 17 acidified lakes located about 200 km south-east of
Sudbury suggests that benthic macroinvertebrate communities have recovered from acidification
due to long-range transport of air pollutants [30]. Despite rehabilitation actions and improved
physico-chemical properties, Junction Creek shows similar responses to what was observed in
surrounding lakes where signs of biological perturbations are still present. For example, a study
on macroinvertebrate assemblages from 2000 to 2008 suggests slow recovery in Junction Creek
(Frood Branch) after diversion of acid mine drainage in 2000, when many large sensitive invertebrates
were still lacking [2]. Although metal contamination has drastically been reduced in the region,
Weber et al. (2008) also showed biological impacts with increasing metal concentrations (Cd, Cu, Rb,
Se, and Sr) in fathead minnow and creek chub along a downstream gradient in Junction Creek.

2.2. Study Area

The study was conducted in streams and creeks of the Greater Sudbury area and its surroundings,
characterized by Canadian Shield bedrock geology. This boreal region has a relatively flat topography,
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and a humid continental climate with long cold/snowy winters (six-months of snow cover) and
warm/hot summers. At the time of sampling (September 2016), air temperature was warm (~20 ◦C)
and water levels in the watershed were low, as recommended for diatom sampling [31].

A total of 19 sites were selected for this study, with nine sites positioned along
an upstream/downstream gradient in Junction Creek (sites JC1–JC9; Figure 1). The Junction Creek
system, which is 54 km in length, is a tributary of the Vermilion River, itself discharging into the
Spanish River (tributary of Lake Huron). This watercourse flows through the City of Greater Sudbury,
has five main tributaries (Nolin Creek, Copper Cliff Creek, Frood Branch Creek, Maley Branch Creek
and Garson Branch Creek), and encompasses several lakes. In addition to potential contamination
from mining effluents and atmospheric deposition, Junction Creek and its tributaries also suffer from
other anthropogenic activities such as discharge from the Sudbury municipal wastewater treatment
facilities (entering Junction Creek 200 m below the Copper Cliff Creek confluence), urban runoff,
and golf courses. JC1 is located in the upper portion of Junction Creek, in the Garson community
(now part of the Greater Sudbury area) and receives water from Garson Branch Creek carrying treated
effluents from Garson mine. Junction Creek then flows through Greater Sudbury (JC2 to JC6) and
receives waters from tributaries along the way. A sampling site was positioned on Frood Branch Creek
(FBC), which reaches Junction Creek between JC4 and after JC5. Frood Branch Creek has a history
of important acid mine drainage from the Frood/Stobie (oldest mine complex in Sudbury) mine
tailings, but diversion construction in 2000 and reclamation action taken at the site greatly improved
water quality [32]. While mining activities ceased at Frood mine in 2012, Stobie was still operating
at the time of the present study (2016). Two sites were positioned on each branch of Nolin Creek
(NC1 and NC2), and a third site was positioned where the branches merge (NC3) and discharge into
Junction Creek between JC5 and JC6. The NC1 branch collects treated mining effluent from Nolin
mine, while NC2 does not receive direct point-source effluents but may still be impacted by diffuse
contamination. JC7 was sampled before Junction Creek enters Kelly Lake and is impacted by inflowing
waters from Copper Cliff Creek (CCC) draining tailings and is receiving treated water effluents from
Copper Cliff mine and smelter as well as effluents from a sewage treatment plant. A sampling site was
positioned downstream of Kelly Lake outflow (JC8). The last site on the Junction Creek gradient (JC9)
was positioned just after Mud Lake.

A reference site was selected on Maley Branch Creek (MBC), which extends well north and reaches
Junction Creek before JC3. This site does not experience direct mine effluents, although it is still at
risk of atmospheric deposition from mining activities and nutrient input from urban development
and a nearby golf course. A reference site was also sampled on Veuve River (VR), near Markstay
(about 40 km from Sudbury). It should be noted that here, the term “reference” suggests that the sites
are minimally affected by mining activities, but they may still be experiencing certain anthropogenic
pressures. Three other sites were selected on Coniston Creek (CC1–CC3), a tributary of Whatapitei
River. Although the Coniston smelter closed in 1972, the slag pile has been left largely un-remediated
and may contribute to the contamination of nearby aquatic ecosystems [33]. In addition, one of the
sources of the creek is a wetland near a mining property in Falconbridge (where large slag piles are still
present [33]). These sites may also be influenced by past and present atmospheric depositions from
the Sudbury area (about 10 km away). These last three sites were therefore selected as least-impacted
sites, i.e., outside of intense Sudbury activities but still at risk of mining and urban contamination to
a certain extent.
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Figure 1. Sampling sites in the Greater Sudbury area, Ontario, Canada. The shaded zone (light gray)
represents the city of Grand Sudbury. WWTP = wastewater treatment plant.

2.3. Water and Biofilm Collection

Sampling was carried-out within three consecutive dry days and avoiding rain events prior to
sampling with the purpose of collecting biofilms and water samples under low flow conditions.
Samples for water chemistry analyses were collected in triplicates, and inadvertent sample
contamination due to handling was verified by on-site preparation of field blanks using ultra-pure
water. Material used for samples destined for the analysis of cations and dissolved organic carbon
(DOC) was previously soaked for 24 h in nitric acid 10% (v/v), and rinsed eight times with ultrapure
water. Material used for samples for anion concentration analyses was previously rinsed eight times
with ultra-pure water. Water collected for anions, cations, and dissolved organic carbon (DOC) was
collected in 20 ml polypropylene Nalgene bottles using syringes and polysulfonate filters (0.45 µm;
VWR International). Samples collected for cations analyses were acidified to 2.6% nitric acid (v/v) (trace
metal grade; Fisher). Water collected for total phosphorus (TP) was acidified to 0.2% sulfuric acid (v/v).
Biofilms were collected from the top surface of 5–10 rocks (composite samples) using a new toothbrush
at each site. Water and biofilm samples were stored in the dark at 4◦C until they were processed.
Conductivity, temperature and pH were measured on-site with portable instruments (Sevengo SG3,
Mettler Toledo; Denver Instrument UP-10).

2.4. Water Chemistry and Diatom Assemblage Analyses

Anions (F−, Cl−, SO4
2−, NO3

−) were analysed by ion chromatography (Dionex AutoIon; System
DX300), TP was analyzed by persulfate digestion and manual colorimetry (SM 4500-PB), and DOC was
analyzed using a total organic carbon analyzer (TOC-500A; Shimadzu). Cations (Na+, Mg2+, Al3+, K+,
Ca2+, Mn2+, Fe3+, Ni2+, Cu2+, Cd2+, Pb2+, Zn2+) were analyzed by inductively coupled plasma–atomic
emission spectrometry (ICP-AES; Varian Vista AX CCD). Copper, cadmium, zinc and lead were also
analyzed by inductively coupled plasma–mass spectrometry (ICP-MS; Thermo instrument model X7).
Values lower than field blank values were excluded from subsequent analyses. Detection limits are
presented in Table 1.
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Table 1. Physico-chemical characteristics (mean ± SD when available), metal toxicity index (cumulative criterion unit (CCU)) and biological descriptors for the 19
sampling sites.

Sampling
Sites MBC VR CC1 CC2 CC3 JC 1 JC 2 JC 3 JC 4 JC 5 JC 6 JC 7 JC 8 JC 9 FBC NC 1 NC 2 NC 3 CCC

Temperature
(◦C) 13.6 14.3 14.4 16.0 16.7 16.6 14.4 13.4 13.2 14.0 14.9 17.8 16.9 15.5 15.6 13.4 12.1 15.6 17.7

Conductivity
(mS/cm) 0.501 0.0963 1.12 1.13 1.08 NA NA NA 1.33 NA 1.51 3.51 2.56 1.62 1.35 1.43 1.24 1.46 4.70

pH 7.5 6.6 6.5 6.5 6.7 7.2 7.7 7.2 7.3 7.1 8.0 7.8 7.0 7.0 7.7 6.2 7.4 7.9 5.7

Hardness
(mg/L) 177 ± 0 37.6 ± 0.2 331 ± 2 338 ± 2 320 ± 1 1010 ± 13 602 ± 1 506 ± 1 430 ± 2 303 ± 1 256 ± 1 1018 ± 8 637 ± 2 536 ± 2 260 ± 0 336 ± 1 154 ± 1 218 ± 0 1620 ± 8

DOC (mg/L) 5.34 ± 0.00 15.8 ± 0.3 4.06 ± 0.00 4.04 ± 0.07 4.20 ± 0.00 1.68 ± 0.03 3.46 ± 0.07 3.78 ± 0.00 6.28 ± 0.02 5.78 ± 0.07 4.49 ± 0.00 2.21 ± 0.00 4.13 ± 0.00 3.54 ± 0.00 5.49 ± 0.07 1.84 ± 0.04 3.96 ± 0.12 5.26 ± 0.00 5.28 ± 0.14

Mg (mg/L) 14.3 ± 0.1 3.30 ± 0.01 12.5 ± 0.1 12.7 ± 0.1 12.4 ± 0.0 31.9 ± 0.1 23.4 ± 0.1 20.7 ± 0.0 18.9 ± 0.1 15.6 ± 0.0 14.2 ± 0.1 26.9 ± 0.2 20.2 ± 0.0 17.8 ± 0.1 26.5 ± 0.0 12.8 ± 0.0 13.4 ± 0.1 12.8 ± 0.0 39.3 ± 0.5

Ca (mg/L) 47.3 ± 0.1 9.64 ± 0.06 112 ± 1 115 ± 1 108 ± 0 352 ± 6 202 ± 0 169 ± 0 141 ± 1 95.5 ± 0.5 79.0 ± 0.2 364 ± 3 222 ± 1 185 ± 1 60.4 ± 0.1 113 ± 0 39.4 ± 0.3 66.5 ± 0.0 584 ± 4

SO4 (mg/L) 34.0 ± 0.0 5.00 ± 0.00 241 ± 2 245 ± 1 230 ± 1 942 ± 4 453 ± 3 363 ± 3 166 ± 1 194 ± 1 254 ± 2 1202 ± 33 701 ± 3 561 ± 3 194 ± 1 268 ± 4 137 ± 1 172 ± 2 1923 ± 7

NO3 (mg/L) 0.94 ± 0.06 0.78 ± 0.00 7.64 ± 0.58 6.24 ± 0.58 5.0 ± 1.6 19.7 ± 0.3 7.63 ± 0.15 5.98 ± 0.06 0.95 ± 0.03 3.20 ± 0.00 7.23 ± 0.58 28.6 ± 2.1 20.6 ± 1.2 16.4 ± 0.4 3.20 ± 0.00 6.6 ± 1.2 3.7 ± 1.1 5.30 ± 0.58 3.20 ± 0.00

TP (µg/L) 22.6 ± 0.4 29.9 ± 1.1 9.00 ± 0.20 8.87 ± 0.12 38.5 ± 0.4 12.7 ± 0.5 47.3 ± 0.4 46.1 ± 0.7 41.5 ± 1.3 29.1 ± 0.7 36.0 ± 0.8 48.1 ± 2.2 70.2 ± 3.0 137 ± 1 15.7 ± 0.3 11.5 ± 0.9 9.63 ± 0.06 16.9 ± 0.1 6.57 ± 0.15

Al (µg/L) 13.1 ± 0.8 41 ± 16 19.6 ± 6.1 16.3 ± 3.8 14.6 ± 0.3 15.1 ± 1.7 14.0 ± 1.5 16.5 ± 0.1 16.1 ± 0.4 15.0 ± 1.0 18.1 ± 2.5 15.9 ± 1.2 15.5 ± 1.3 13.5 ± 1.4 10.9 ± 0.5 13.0 ± 3.1 14.2 ± 1.5 15.5 ± 0.5 17.9 ± 2.5

Ni (µg/L) 18.1 ± 0.2 7.22 ± 0.22 25.1 ± 0.1 25.7 ± 0.0 197 ± 1 226 ± 1 199 ± 1 152 ± 0 113 ± 0 41.9 ± 0.4 89.6 ± 0.4 290 ± 1 211 ± 1 185 ± 0 788 ± 3 1037 ± 3 804 ± 6 689 ± 2 32.9 ± 1.0

Cu (µg/L) 1.72 ± 0.05 1.97 ± 0.07 2.47 ± 0.04 2.72 ± 0.06 5.4 ± 2.1 3.11 ± 0.06 2.09 ± 0.02 2.33 ± 0.06 3.48 ± 0.04 2.62 ± 0.09 7.40 ± 0.24 5.91 ± 0.10 4.32 ± 0.11 3.90 ± 0.05 5.72 ± 0.17 10.2 ± 0.2 38.0 ± 2.7 19.3 ± 1.4 5.96 ± 0.18

Zn (µg/L) NA 1.8 ± 3.0 NA NA 1.6 ± 2.7 3.3 ± 0.5 7.43 ± 0.03 6.2 ± 1.0 6.1 ± 2.0 1.5 ± 1.1 5.06 ± 0.49 5.79 ± 0.13 NA NA 2.02 ± 0.08 23.8 ± 0.2 23.2 ± 0.1 11.4 ± 0.6 0.38 ± 0.08

Cd (µg/L)
0.029 ±

0.000
0.006 ±

0.001
0.039 ±

0.002
0.038 ±

0.002
0.041 ±

0.002
0.101 ±

0.001
0.050 ±

0.003
0.045 ±

0.003
0.047 ±

0.001
0.016 ±

0.001
0.043 ±

0.002
0.161 ±

0.001
0.025 ±

0.004
0.021 ±

0.001
0.080 ±

0.003
0.298 ±

0.002
0.476 ±

0.009
0.278 ±

0.008
0.096 ±

0.002

Pb (µg/L)
0.016 ±

0.002 0.20 ± 0.06
0.006 ±

0.001
0.005 ±

0.000
0.007 ±

0.004
0.155 ±

0.002
0.041 ±

0.002
0.042 ±

0.003
0.036 ±

0.002
0.012 ±

0.003 0.04 ± 0.02
0.038 ±

0.001
0.042 ±

0.001
0.011 ±

0.002
0.006 ±

0.002 NA NA NA
0.012 ±

0.002

CCU 0.7 (B) 2.6 (M) 0.6 (B) 0.6 (B) 1.8 (L) 0.7 (B) 0.9 (B) 0.8 (B) 1 (L) 0.7 (B) 2.1 (M) 1.1 (L) 1 (L) 1 (L) 5.3 (M) 6.7 (M) 19.9 (H) 9.4 (M) 0.4 (B)

%
teratologies 0.7 0.0 0.0 0.2 0.5 1.0 1.0 1.7 1.2 1.0 1.0 1.2 6.1 8.7 1.5 1.2 1.0 4.5 1.5

IDEC
score/Class 24/C 42/C 64/B 62/B 31/C 83/A 6/D 14/D 1/D 26/C 27/C 36/C 6/D 21/C 85/A 100/A 100/A 78/A 43/C

In bold: Exceed water quality criteria by a factor of 1.5× or more. B = baseline, L = Low, M=Moderate, and H=High refer to the toxicity category based on CCU values. Biological integrity
classes related to IDEC scores; A = reference, B = good-moderate, C = moderate-poor, D = very poor. NA: not available. Detection limits: Cu = 0.009 µg/L; Zn = 0.03 µg/L; Cd = 0.005 µg/L;
Pb = 0.004 µg/L; Al = 0.4 µg/L; Mn = 0.17 µg/L; Fe = 0.9 µg/L; Na = 1.9 µg/L; Mg = 4.9 µg/L; K = 1.7 µg/L; Ni = 0.7 µg/L; Ca = 1.1 µg/L; SO4 = 0.022 mg/L; NO3 = 0.016 mg/L; Cl =
0.03 mg/L; F = 0.011 mg/L; DO = 0.05 mg/L; TP = 0.8 µg/L. MBC: Maley Branch Creek; VR: Veuve River; CC: Coniston Creek; JC: Junction Creek; FBC: Frood Branch Creek; NC: Nolin
Creek; CCC: Copper Cliff Creek.
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Lyophilized biofilms were digested to remove organic matter and to clean diatom frustules
from cell content. Biofilm subsamples were placed in 800 µL of 100% (v/v) nitric acid for 48 h,
and 200 µL of hydrogen peroxide 30% (v/v) were added for another 48 h. Following complete
digestion of organic material, samples were rinsed several times to remove nitric acid. Microscope
slides were prepared for cleaned diatom observation using Naphrax® as the mounting medium
(refractive index: 1.74; Brunel microscopes Ltd., Wiltshire, UK). Diatom assemblages were observed
under a Reichert-Jung Polyvar microscope equipped with differential interference contrast
(magnification 1250×). A minimum of 400 diatom valves were identified on each slide and diatom
assemblages were expressed as relative abundances of the species assemblage. Taxonomic identification
mainly followed Lavoie et al. [34]. Diatom frustule deformations were noted and classified as
(i) irregular valve shape, (ii) irregular raphe, (iii) irregular striae, (iv) mixed [35].

The Eastern Canadian Diatom Index (IDEC; Indice Diatomées de l’Est du Canada [12,36]) was
used to evaluate general biological integrity of the sampling sites. The IDEC was specifically developed
to estimate water quality in Quebec and Ontario streams in agricultural and urban areas, and mainly
informs on trophic status (nutrients), salinity, pH and organic matter loads [12,36]. An IDEC value was
calculated for each diatom assemblage using the IDEC-neutral, which is the recommended sub-index
to use based on the characteristics of the studied watersheds (geology, surficial deposits [12,36,37]).
IDEC scores range between 0 and 100, with low values indicating poor biological integrity. The IDEC
provides an overall water quality evaluation, and was not developed for metal contamination assessment.
The abundance of abnormal diatom valves (% teratologies) was used as a complementary proxy of
diatom-specific response to metals, as well as the presence of diatom species known as tolerant to metal
contamination. A canonical correspondence analysis (CCA) was performed using Canoco 4.5 [38] to
explore the diatom assemblage-water chemistry relationships and to visualize site distribution. Only the
taxa with an abundance of at least 1% in at least one sample were included in the CCA. Diatom data were
square root transformed and rare taxa were down weighted prior to running the CCA. Indicator species
analysis, an approach used to determine indicator species characterizing groups of sites (based on the
species relative abundance and its relative frequency of occurrence in each group), was conducted with
the method of Dufrêne and Legendre [39] using PC-ORD version 6 [40].

2.5. Toxicity Criteria and CCU Calculation

Cumulative criterion unit (CCU) [41] was calculated at each site as the sum of the ratios between
metal concentrations in a sample and their toxicity criterion values (CCU = Σi(mi/ci), mi = total
recoverable metal concentration, ci = criterion value for the ith metal). The metals included in the
CCU calculation were Al, Cu, Cd, Ni, Pb, and Zn. Toxicity criteria were based on the Canadian
water quality guidelines for the protection of aquatic life established by the Canadian Council of
Ministers of the Environment [42]. The criteria were adjusted for water hardness to account for the
competitive effect of major cations like magnesium and calcium for binding sites on cell membranes,
which reduces metal toxicity (e.g., [10,11]). Hardness was calculated at each site based on aqueous
concentrations of Ca and Mg (in mg/L) using the equation: hardness (mg equivalent CaCO3/L) = ([Ca]
× 2.497) + ([Mg] × 4.118) following Standard method for the examination of water and wastewater
2340B—Hardness by calculation). Calculated hardness values and criteria for metal toxicity at each
site are shown in Table 1. The criteria used in the present study differ from the US EPA guidelines [43].
However, the values are generally in the same order of magnitude and therefore comparable. Only the
criterion for aluminum was based on the US EPA recent guidelines because it accounts for pH, DOC,
and hardness [43], rather than pH only. Four categories of CCU were used following the thresholds
proposed for biofilms [44], and later modified for diatoms [15]: geochemical background (B) = CCUs
below 1.0; low metal category (L) = CCUs between 1.0 and 2.0; intermediate metal category (M) =
CCUs between 2.0 and 7.0; high metal category (H) = CCUs above 7.0.
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3. Results and Discussion

3.1. General Water Chemistry

Water chemistry data showed strong variability between sites for several parameters (Table 1).
This is attributed mostly to anthropogenic activities, as the study area does not vary markedly in
terms of geological characteristics or vegetation. Hardness values varied from 37.6 ± 0.2 mg CaCO3/L
at VR to 1620 ± 8 mg CaCO3/L at CCC, where elevated values may in part reflect lime addition.
For example, the sharp increase in hardness between JC6 and JC7 (256 ± 1 to 1018 ± 8 mg CaCO3/L)
clearly illustrates the effect of lime addition coming from the Copper Cliff Creek input, and JC1
hardness value of 1010 ± 13 mg CaCO3/L reflects mining activities from the Garson mine. Observed
values for natural hardness in the region are around 50 mg/L, or below [45]. A comparable value was
obtained at our site VR considered as a reference (relative to mining pressure). The hardness value of
177 mg/L obtained at our other reference site (MBC) is comparable to the value of 122 mg/L observed
by Davidson [46], but other studies reported lower values for this creek (23–59 mg CaCO3/L) [32,47].
The sites from Coniston Creek (CC1–CC3) have rather elevated hardness considering the fact that
these sites do not receive direct lime-containing effluents from operating mines. However, large
piles of tailings left on decommissioned sites in Falconbridge and Coniston may be leaching some
contaminants, including Mg+ and Ca+, into Coniston Creek and other nearby aquatic ecosystems.

Except for CCC and NC1 (with pH of 5.7 and 6.2, respectively), all sites had pH values above 6.5,
reaching up to 8 at JC6. TP concentrations were relatively elevated along the Junction Creek gradient
starting at JC2, with a particularly high value at JC9 (137 ± 1 µg P/L). High levels of phosphorus
in the lower Junction Creek sites suggest nutrient inputs from the Sudbury wastewater treatment
plant effluents discharging a few kilometers upstream of Kelly Lake. In addition, untreated sewage
is still occasionally bypassed during heavy rainfall events [48]. Site CC3 on Coniston Creek also
showed relatively elevated phosphorus, probably due to its location downstream of the Coniston
municipal sewage treatment plant and a golf course. Sites MBC and VR, although selected as reference
relative to metal contamination, showed TP concentrations suggesting some nutrient inputs, which is
not surprising considering that they are both influenced, to different extents, by urban activities.
Specifically, the MBC sampling site is located in a dense residential development with a golf course
immediately upstream. VR is in the small municipality of Markstay and there seems to be very
minimal human activity in the upstream portion of the watershed except for two farmlands and a golf
course. However, Markstay is on the list of water and wastewater projects that were approved under
the Canada-Ontario Clean Water and Wastewater Fund agreement [49] for improving wastewater
infrastructures (anticipated starting date set for some time in 2017), which suggests that sewage water
may not have been managed properly at the time of sampling. Aside from the two sites considered as
references and JC4, NO3 concentrations were elevated at all sites, especially along Junction Creek (at JC7
to JC9, as well as at JC1). These elevated values may result from actual and past blasting activities in
the mining areas (ammonium nitrate-based explosives) and/or may come from municipal wastewater
effluents as previously mentioned. Sulfate concentrations also fluctuated markedly between sites,
with a low value of 5.0 ± 0 mg/L at VR and a peak value of 1923 ± 7 mg/L at CCC. The highest
SO4 values along the Junction Creek gradient were observed at JC1 and JC7, located downstream of
tributaries receiving mining effluents (Garson Branch Creek and Copper Cliff Creek).

3.2. Metal Concentrations and CCU

The sites on Nolin Creek showed the highest concentrations for all metals except for Al. CCME
water quality criteria were exceeded for Ni and Cu (Table 1, in bold). For example, Cu concentration at
NC2 (38 ± 3 µg/L) was 11× higher than the CCME criterion. A press release in a local newspaper in
the summer of 2015 reported the first sightings of fish in Nolin Creek since at least the early 1990s [50].
This is a sign that although metals are still present, the system is recovering. Nickel concentration
(788 ± 3 µg/L) at FBC was more than 3× the criterion, while Cu did not exceed the CCME guideline



Environments 2018, 5, 30 9 of 17

at this site. Cu and Ni values in Frood Branch Creek were respectively 1170 µg/L and 4220 µg/L
in 1999 [1], while values had drastically dropped by 2004 (respectively 54.3 and 224.8 µg/L) [32],
following diversion work to stop mining from entering the watercourse. Interestingly, our values
from 2016 indicate that Ni increased compared to the reported value from 2004, while Cu markedly
decreased (5.72 ± 0.17 µg/L). Although Cu concentration at the reference site VR was not elevated,
the water quality criterion was exceeded by a factor of almost 2×, likely due to the low water hardness
at this site. Cadmium concentration only exceeded the water quality criterion at site NC2.

CCU values ranged between <1 and 20 (Table 1). The highest CCU values were obtained for the
Nolin Creek sites (NC1-NC2-NC3) and Frood Branch Creek (FBC). CCUs along Junction Creek were
relatively stable and low, with values generally <1, except at JC6 and JC7 where they were slightly >1.
Interestingly, the VR reference site showed a CCU value of 2.5, which is mostly attributed to the low
hardness value influencing the criterion for Cu, as previously mentioned. As a general trend, the sites
that were selected as references or least-impacted relative to metal contamination (MBC, VR, CC1,
CC2, CC3, and upper portion of Junction Creek) represented “background” concentrations, except for
VR and CC3. Copper Cliff Creek also obtained a low CCU score, which is surprising considering the
mining activities in close proximity. Nickel and copper generally exceeded the CCME water quality
criteria and consequently contributed the most to the CCU values.

3.3. Relationships between Environmental Factors and Biological Indicators

3.3.1. Biotypology, IDEC Scores and Metal-Tolerant Taxa

The relative abundances of the dominant diatom species (more than 5% in at least one sample)
observed in each of the 19 assemblages are presented as Supplementary Material. While some
diatom taxa such as Achnanthidium minutissimum and Nitzschia palea aff. debilis were abundant at
many sites, other taxa were restricted to only certain sites. Diatom-based monitoring using the IDEC
revealed that several sites were severely impaired, with very low index values and poor biological
status (Table 1). A CCA was performed including diatom and chemistry data, with IDEC scores,
% teratologies and CCU as passive variables. Site distribution on the ordination suggests three
main groups characterized by particular diatom assemblages and reflecting distinct environmental
conditions. The taxa dominating in each group (labeled groups 1, 2 and 3) are presented on the CCA
(Figure 2). In addition, significant indicator species for each group are presented in Table 2. The
environmental variables included in the CCA (excluding the passive variables) explained 39% of
the variance in diatom species distribution (first two axes). Group 1, on the left-hand panel, was
characterized by sites receiving treated mining effluents, with elevated metal concentrations and higher
CCU values. On the lower panel, sites identified as Group 2 are reference or least-disturbed sites,
and correspond to background conditions of the area (in terms of metals). Finally Group 3 (right-hand
panel) discriminates the sites with the highest nutrient loads.

Table 2. Significant indicator species for each of the three groups based on the method from Dufrêne
and Legendre [39]. Indicator values range from 0 to 100 (excellent indicator). SD = standard deviation.

Species Group on the CCA Indicator Value Mean SD p-Value

Brachysira vitrea (BVIT) 1 96.4 54.3 14.70 0.002
Navicula gregaria (NGRE) 2 75.0 41.0 15.77 0.05
Nitzschia palea var. debilis (NPAD) 2 70.8 42.8 12.43 0.02
Eolimna minima (EOMI) 3 70.1 44.9 12.25 0.043
Eolimna subminuscula (ESBM) 3 99.9 25.5 14.35 0.004
Nitzschia palea aff. debilis form 2 (NPAD2) 3 99.7 25.1 14.22 0.004
Amphora veneta (AVEN) 3 99.7 29.0 14.57 0.003

CCA: canonical correspondence analysis.
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Figure 2. Canonical correspondence analysis showing diatom assemblage distribution in relation
to environmental variables. IDEC scores, CCU values and % teratologies were added a posteriori,
as passive variables. Brachysira vitrea (BVIT); Nitzschia palea (NPAL); Navicula veneta (NVEN);
Achnanthidium minutissimum complex (ADMI); Encyonema silesiacum (ELSE); Rhoicosphenia abbreviata
(RABB); Planothidium lanceolatum (PTLA); Navicula gregaria (NGRE); Hippodonta capitata (HCAP);
Caloneis bacillum (CBAC); Navicula germainii (NGER); Encyonopsis microcephala (ENCM); Fragilaria
capucina (FCAP); Nitzschia palea var. debilis (NPAD); Nitzschia palea aff. debilis form 2 (NPAD2); Amphora
veneta (AVEN); Eolimna subminuscula (ESBM); Eolimna minima (EOMI); Gomphonema clavatum (GCLA).
Group 1: sites receiving treated mining effluents, with elevated metal concentrations and higher CCU
values. Group 2: reference or least-disturbed sites corresponding to background conditions of the area
(in terms of metals). Group 3: sites with the highest nutrient loads.

Group 1, including NC1, NC2, NC3, CCC and FBC, was dominated by A. minutissimum complex,
Brachysira vitrea, Nitzschia microcephala, Nitzschia palea, Encyonema silesiacum, and Navicula veneta. Group 1
sites were characterized by elevated metal concentrations, and their above-mentioned dominant diatom
taxa are often reported in metal-contaminated sites [11,15,51–56]. While these assemblages suggest metal
contamination, they are also positioned at the lower end of the nutrient enrichment gradient on the
CCA (and clustered at the higher end of the IDEC gradient), which suggests excellent water quality in
terms of nutrient and ion enrichment. FBC, NC1, NC2 and NC3 were categorized as reference status
(class A). Indeed, while nitrates are relatively elevated, phosphorus at those sites is low, which partly
explains the good biological integrity (high IDEC scores despite metal contamination) generally observed
for the sites in group 1. One should be careful with the interpretation in this situation because the IDEC
scores most likely reflect the strong dominance of A. minutissimum and B. vitrea, together making up for
60–90% of the assemblages at these sites. While these species are indeed good indicators of lower nutrient
concentrations [57–59], they are also known to be tolerant of metal contamination (see above references).
However, other dominant taxa in this group can tolerate higher nutrient levels (e.g., Nitzschia palea, Navicula
veneta, Encyonema silesiacum) which explains lower IDEC scores at CCC.

Group 2 diatom assemblages had many species in common, and IDEC scores obtained mainly
reflect the marked differences in the relative abundance of the A. minutissimum complex that fluctuated
between <10% and >60% between sites. This taxon was also very abundant in diatom assemblages
from group 1. It must however be noted that group 2 was dominated by a long and narrow form of
A. minutissimum, while group 1 was dominated by a small and round form of A. minutissimum. These
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two forms of A. minutissimum may be different varieties of the species within the A. minutissimum
complex, or morphological variants of the species as a response to environmental variables (e.g., [60]).
The IDEC scores obtained for the group 2 sites varied from 6 (class D) to 83 (class A), but assemblages
generally indicated poor biological integrity (classes C and D). Indeed, except for the A. minutissimum
and Fragilaria capucina complexes, most species characterizing group 2 are indicators of low biological
status based on the database used to develop the IDEC. The lowest index values (biological integrity
class D) were observed at sites JC2, JC3, and JC4. Sites JC5, JC6, JC7, CC3, MCB and VR fell into class
“C”, also indicating degraded environments. The sites CC1, CC2 were categorized as slightly impaired,
with an IDEC class B, while only JC1 in this group suggested reference status (class A). The IDEC
informs on overall biological health, but mainly reflects eutrophication. It is, therefore, not surprising to
observe low IDEC values at sites located downstream of small municipalities or in the Greater Sudbury
area where nutrient levels are higher (IDEC scores correlated with TP; r = −0.6, p ≤ 0.05). Most
species from group 2 are indicators of baseline or low metal concentrations (low CCU), as suggested
by Morin et al. [15], although certain taxa from the A. minutissimum and F. capucina complexes were
frequently observed in metal-contaminated conditions. However, the presence of metal-tolerant taxa
does not necessarily suggest contamination, especially in the case of the two above-mentioned taxa,
which are ubiquitous.

Amphora veneta and Eolimna subminuscula dominated the assemblages at sites JC8 and JC9
(group 3) and were rare or absent at other sites, which explains that these sites clustered apart from
the other sites on the CCA. A. veneta was reported as an indicator of moderate to low biological
status [57,58], which is in agreement with the higher phosphorus concentrations observed and
poor ecological integrity (class C and D) based on IDEC scores. E. subminuscula is also reported
as a nutrient-tolerant species [57,61,62]. The other taxa characterizing group 3, such as small species
identified here as belonging to the Eolimna minima complex and Nitzschia palea aff. debilis form 2 are
indicators of nutrient-rich environments as well [36,57,59]. Gomphonema clavatum (sensu Krammer and
Lange-Bertalot [63]) was also abundant at site JC9 (8%), but this species is usually not typical of high
nutrients concentrations [63]. The low IDEC values observed for group 3 sites reflect the presence of
nutrient-tolerant taxa. Interestingly, the dominant taxa from group 3 have also been reported in water
bodies affected by mining activities [10,15,54], and references therein], although metal concentrations
at sites JC8 and JC9 were not particularly elevated, being designated as CCU class L.

3.3.2. Diatom Teratologies as a Response to Stress

Very low proportions of deformed valves were observed at the reference or least-disturbed
sites (CC1, CC2, CC3, MBC, VR), with values ranging from 0 to 0.7% (Table 1). As suggested by
Morin et al. [64] and Arini et al. [65], deformity frequencies between 0.5 and 1% are considered as
naturally occurring. With abnormal valve frequencies of 1–1.2%, it is difficult to confirm a specific
response to metal contamination at sites JC1, JC2, JC4, JC5, JC6, JC7, NC1, and NC2, as these values are
close to the estimated natural background. JC3, FBC and CCC showed low frequencies of teratologies,
with values around 1.5%. These values are more likely to reflect metal contamination, although this
is risky to confirm without replicated analyses accounting for inter-sample variability. Sites JC8,
JC9 and NC3 revealed higher proportions of deformed diatom valves, with values reaching up to
8.7% at JC9. Deformities in such high numbers are very likely due to the presence of metals (or to
unmeasured organic compounds or mixture of contaminants), and despite the absence of replication
are expected to reflect a ‘’true” response of the diatom assemblages. It is difficult to explain the high
deformity frequency observed at JC8 and JC9 as metal contamination does not seem severe (based on
a single water sample collected). However, it is possible that multiple stressors exerted pressure on the
assemblage, leading to an increased sensitivity of the diatom cells. Differentially-acting stressors may
have cumulative (synergistic or additive) deleterious effects on the individuals: either stressor may
target certain cellular functions (e.g., detoxification), while the other stressor would reduce another
metabolic pathway involved in frustule formation, with the effect of reducing the overall capacity of
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the cell to cope with the combined stressors and produce normal cells [15]. For example, the former
creosote plant located along Junction Creek upstream of Kelly Lake contaminated the system with
PAH. There is no data available on PAH concentrations for the present study, but Jaagumagi and
Bédard [1] reported up to 4.54 µg/g in sediments in 1999 just above Kelly Lake. It is possible that
diatom deformities at these particular sites are a response to organic contamination, as observed
in other studies [66–68], or that metals and organic compounds have additive or synergistic effects
leading to a stronger stress on diatoms. Sites JC8 and JC9 were also the sites showing the highest
phosphorus concentrations, suggesting that eutrophication may act as an additional environmental
stress as observed in a study combining metal and nutrient load effects on diatoms [19]. Another
possible explanation for the high number of teratologies is the proneness of the present species to
deformation as discussed in Lavoie et al. [17].

No correlation was observed between the % teratologies and metal concentrations or CCU values,
but there was a significant difference in deformation frequency between sites categorized as CCU class
B compared with the sites categorized as CCU classes L, M and H together (t = 1.82; n = 19 p = 0.048;
Figure 3). This situation has been encountered in other studies (see discussion in Lavoie et al. [17]),
where deformities were observed in higher proportions in contaminated sites compared to reference
sites while a relationship between % teratologies and a gradient in metal contamination was lacking.
The difficulty in directly relating % teratologies and abundance of metal-tolerant taxa with metal
concentrations is due to multiple factors such as the variability in water chemistry, metal bioavailability,
and species proneness to deformities [17]. Although correlations between % deformities and metal
concentrations are sometimes unclear, the presence of teratologies is a red flag for environmental stress,
suggesting that additional water quality measurements may be needed to highlight contamination from
other sources and types than those initially analyzed. From a biomonitoring perspective, including the
% deformities in a multi-metric index could broaden the range of anthropogenic impacts detected by
current diatom indices and allow identification of the main pressures under multi-stress scenarios [69].

Figure 3. Mean % teratologies (±SE) for sites with background metal contamination versus low,
moderate and high toxicity based on CCU values (left panel). Examples of normal (left) and abnormal
(right) specimens observed at JC 8 and JC 9, scale bar = 10 µm (right panel).

As a general trend, abnormal valve shape was the most frequent type of teratology encountered,
although striae/fibulae aberrations were common at JC4, NC1 and NC2, and abnormal sternum/raphe
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were often observed at JC6 and JC7. Lavoie et al. [17] discuss the possible interest in considering the
type of deformation in monitoring, where the nature and timing of environmental stressors may have
an influence on the response. However, in this study, no trend or relationship was observed beyond
the above-mentioned observation.

4. Conclusions

This study on water chemistry and diatom assemblages revealed that Junction Creek and its
tributaries are under multiple stressors, both from present and past mining operations in the region,
but also from urban development and related activities. Diatom assemblages reflected the contrasted
environmental conditions in the area and the different types of pressures (metals and/or nutrients
and/or salinity and/or PAH). As a general summary of water quality in the study area, it seems
that the three Nolin Creek sites are the most contaminated by metals and are the main contributors
to the metal loads in the lower portion of Junction Creek. As expected, these sites are dominated
by metal-tolerant diatoms. Sites JC7-JC8-JC9 along the Junction Creek gradient seem to be the most
nutrient-enriched based on phosphorus concentrations and on the presence of nutrient-loving taxa,
reflecting past and present urban activities. The level of abnormal diatoms in the samples from sites
JC8 and JC9 undoubtedly reflects a response to one or multiple stressors, and suggests that the lower
portion of the watercourse needs to be further investigated.

Considerable efforts have been deployed to rehabilitate the Junction Creek watershed and to
decrease SO2 emissions and airborne particles, leading to marked improvements in the chemical,
physical and biological integrity of the system and surrounding water bodies. However, despite
an obvious increase in water quality, the Junction Creek system is still relatively impaired. The extent
of recovery differs among organisms, and the confounding effects of multiple anthropogenic activities
renders difficult the task of “measuring” the success of rehabilitation actions. As Junction Creek
and the nearby aquatic ecosystems are slowly recovering from their past industry-related pressures,
water managers must now deal with rapid urban and residential development and their associated
problems. Climate change will also be an important variable to consider in future monitoring of
aquatic ecosystems in Sudbury and its surroundings. According to information from the Greater
Sudbury Climate Change Consortium [70], it is estimated that Ontario will warm an average of 2 to
5 ºC within the next 75 to 100 years, with more frequent and severe extreme events such as floods and
droughts. In the Greater Sudbury region, climate change is projected to result in an increase of 2 °C
in summer and 1 °C in winter for the 2010–2039 period. These climate-related changes will certainly
interact with environmental pressures and affect recovery processes and trajectories. Diatom-based
monitoring is a reliable, sensitive and cost-effective approach for assessing aquatic ecosystem health;
changes in diatom assemblage structure are quickly observed as a response to changing environmental
conditions. As warming-induced effects on diatom communities were previously shown to interplay
with metal stress [71], long term monitoring of the area’s recovery is recommended. The present study
lays the foundation for future diatom-based monitoring in the region, and will serve as a point in time
reference for assessing further recovery (or potential degradation as a result of climate change) of the
Junction Creek system.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3298/5/2/30, Table S1:
Relative abundances of the dominant taxa (at least 5% in a least one sample) observed in the 19 samples.
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