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Abstract: The ability to rapidly produce accurate land use and land cover maps regularly and
consistently has been a growing initiative as they have increasingly become an important tool in
the efforts to evaluate, monitor, and conserve Earth’s natural resources. Algorithms for supervised
classification of satellite images constitute a necessary tool for the building of these maps and they
have made it possible to establish remote sensing as the most reliable means of map generation. In this
paper, we compare three machine learning techniques: Random Forest, Support Vector Machines,
and Light Gradient Boosted Machine, using a 70/30 training/testing evaluation model. Our research
evaluates the accuracy of Light Gradient Boosted Machine models against the more classic and
trusted Random Forest and Support Vector Machines when it comes to classifying land use and land
cover over large geographic areas. We found that the Light Gradient Booted model is marginally
more accurate with a 0.01 and 0.059 increase in the overall accuracy compared to Support Vector and
Random Forests, respectively, but also performed around 25% quicker on average.
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1. Introduction

The classification of images acquired by remote sensing in the context of land use mapping
consists of assigning each pixel of the image to a class. The set of classes selected to represent the
scene of interest constitutes a taxonomy, or nomenclature, which varies according to the needs of the
end user. The attribution of these classes is based on the visual analysis specific to the pixel and can
be based on its visual description [1]. Existing works all use supervised classification methods [2],
based on machine learning algorithms. The supervised term comes from the training step of the
algorithm, which consists of modeling the classes in play from a reference data set. After training the
data, one can then infer the unlabeled data classes by applying the model. The reference dataset is
a set of pixels, described by attributes (observations), whose classes are known in advance. Each class
is thus modeled in relation to these attributes, whether they are generative or discriminative methods.

It is important to note that the quality of a classification depends on (a) the choice of attributes to best
discriminate between classes and (b) the training data set. Until very recently, discriminative methods
based on Support Vector Machines or Random Forests have been preferred over generative methods.
They are more flexible as they directly link the attributes with the labels provided via the learning set,
thus directly solving the problem that is being evaluated [3]. Random Forest (RF) has become more
popular due to its ability to be used for both classification of satellite images as well as regression
analysis [4]. Due to its flexibility, RF is perfect for both continuous as well as categorical variables [5].
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RF is also quite durable, it has been used in a wide range of uses from modeling forest coverage [6],
land use/land cover (LULC), and also more complex object-based image analysis [7]. However, with its
flexibility, it also has great accuracy. Rodriguez-Gailano [8] was able to reach an incredible 92%
accuracy in his study of RF. Support vector machines (SVM) have also been shown to have the ability to
generalize complex classifications, with previous research being able to achieve a 95.2% accuracy [9,10].
Similar to our study, they also chose to utilize Sentinel-2 data.

However, while there have been newer algorithms developed, such as Light Gradient Boosting
Machine (LightGBM), not many researchers have utilized them. For a while now, RF and SVM have
been adequate enough to perform the tasks assigned, however, as the study area increases in size,
it becomes increasingly costly in time and effort to perform the functions. With LightGBM, there is the
ability to have rapid and accurate results with the ability to reach accuracy rates of 92.07% [11] when
categorizing crop types, a task that is not easily accomplished by older methods.

Additionally, newer open sourced tools, such as AutoML() developed by mljar for use
in Python [12], aid in performing feature preprocessing and engineering, algorithm training,
and hyper-parameters selection to create less coding need. Utilizing this open source tool allowed us
to perform hundreds of different algorithms rapidly and cost effectively and gave us the best tuned
parameters for our models.

Motivation and Objectives

Recently, we have been seeing increased amounts of deforestation, agricultural expansion, and
overall environmental degradation being pushed by urbanization [13,14]. As well, with the growth of
ecosystem engineering changing the landscapes and ecosystems [15], it is increasingly important to
have accurate and up-to-date LULC maps to better track these changes and target the ones that could
be dangerous or produce negative effects.

We chose to use Sentinel-2 satellite images for multiple reasons: (a) it is a publicly available
source provided at no cost, (b) with a spatial resolution of 10m, it is relatively high when compared to
Landsat or MODIS images, and (c) with four red-edge bands to measure vegetation is ideal for LULC
classification. As well, currently, there are no other studies to our knowledge that utilize this data for
performance assessment of old and new machine learning algorithms for LULC classification purposes
at larger scales such as regions or country wide.

Thus, this work involves assessing the ability to provide an accurate LULC classification map
covering over a 10,000 km2 area of land, at 10 m spatial resolution. The objective and the evaluation
are thus operational in the sense that we seek to propose an alternative solution to Random Forest
and Support Vector Machine analysis with a limited configuration and calculation time but still high
accuracy while using publicly available, no cost, satellite images with a resolution range of 10 m.

2. Literature Review

Multiple researchers have analyzed and discussed issues related to accuracy in remote-sensing
research. For example, Khatami et al. used a supervised technique that included the addition of texture
information, which allowed a machine learning algorithm to access additional spatial information to
more accurately classify land-cover [2]. However, as found by Khatami, practitioners who rely heavily
on maximum likelihood classifiers are bound to achieve lower accuracy levels. This information
highlights some of the primary factors that may impact the accuracy of machine learning algorithms
and models. By understanding these factors, data scientists can use the information in determining
which method would be ideal for analyzing the complex data available [16]. Accordingly, there is a
need to establish whether LightGBM meets these requirements, and the features provide the model
with an advantage over its traditional counterparts in terms of land use and land cover classification.

Other studies have identified specific considerations that would help in determining the accuracy
of a machine learning tool. In their study, Rodriguez-Galiano et al. [8] evaluated how Artificial Neural
Networks (ANNs), Regression Trees (RTs), Random Forests (RF) and Support Vector Machines (SVMs)
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can be used in assessing the availability of minerals in an area [8]. The researchers found that while the
Random Forests models performed the best, the other models studied did not necessarily perform
poorly. However, when compared to simple vector machines, the Random Forests algorithm proved to
more stable and robust. These findings reflect those of other authors, who argued that Random Forests
could be more accurate as long as the model is designed to specify random feature subsets [17].

Some scholars have claimed that Random Forests are the most accurate type of classifier.
For example, Fernández-Delgado et al. [18] performed a study in which they examined 179 classifiers
derived from at least 17 different statistical/methodological families. These families included Random
Forests, Support Vector Machines, and Neural Networks, among others. In doing so, the researchers
used 121 data sets to determine which model was the most accurate. The study’s findings indicated
that Random Forests models were the most accurate, achieving 94.1% inaccuracy [18]. The scholars
also found that Support Vector Machines were second in terms of accuracy to Random Forests, as one
the versions recorded 92.3% in maximum accuracy. These results raise profound questions that data
scientists need to consider when selecting the ideal machine learning tools. In our case, we are focusing
on accuracy and time.

On the other hand, other researchers have refuted that Random Forests models produce the
most accurate results. In their report, Wainberg et al. [19] asserted that the methods of the study that
shown Random Forests to have the highest levels of accuracy were biased and, as such, incorrect.
In line with the authors’ assertions, Fernández-Delgado et al. [18] did not utilize a held-out test
in evaluating the various parameters associated with Random Forests. This approach is incorrect
because selectively setting the hyperparameters was bound to enhance the performance of the model
over others. Wainberg gives great insight for developing a methodology with the aim of comparing
algorithms, such as ours.

Furthermore, studies have evaluated some of the critical shortcomings of Random Forests. In their
report, Lin et al. [20] claimed that the Random Forest algorithm requires relatively more computational
power and other resources compared to other models. The fact that the Random Forest has to
create multiple trees and consolidate their input causes substantial demands. Researchers have also
emphasized the idea that the appropriate use of Random Forests requires much training on the part of
the practitioner [5]. Users who lack adequate knowledge and skills may find it challenging to utilize
the model efficiently. In some instances, attributes with more values tend to have a more significant
effect on the algorithm, making the resulting attribute weights inaccurate and unreliable. Therefore,
data scientists need information about how they can use other models such as LightGBM to avoid and
resolve the drawbacks of traditional alternatives.

Similarly, researchers have discussed some of the main benefits and disadvantages of Support
Vector Machines. Regarding the model’s strengths, Wuest et al. argued that Support Vector Machines
could be highly reliable in instances whereby the practitioner has little knowledge about the data.
The algorithm has also proven to be effective when used on both structured and unstructured data and
is very scalable. However, despite having profound advantages, Support Vector Machines have some
notable shortcomings, which may affect the model’s accuracy and reliability. Wuest et al. observed
that efforts to use Support Vector Machines require an extensive and in-depth understanding of the
hyper-parameters and tuning (25). Besides, SVM can be unreliable when used on large data sets [18].
Since minimal research has focused on the strengths and disadvantages of LightGBM, a study that
examines this specific machine learning tool is warranted. Moreover, a comparison between already
trusted traditional tools such as SVM and RF is useful to open to door to this new method. Indeed,
additional research will offer valuable lessons about how practitioners can leverage the benefits of
LightGBM in addressing the drawbacks of other models.

3. Study Area

The study area (Figure 1) is a 100 km × 105 km mixed-use landscape in the Rhine–Ruhr Functional
Urban Region, spreading from Essen in the north, to the urban areas of the cities in and around
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Düsseldorf down south to Cologne. This area was specifically chosen for its diverse geography with
many farms and croplands, forests, rivers, cities and villages, and mining facilities. In Figure 2, you can
see the split between the western and eastern side of the image between agriculture and forest with the
Rhine river splitting the image down the middle with cities and villages lining it. As well, there is clear
imagery of mining taking place in the western part of the study area, making it quite diverse in its land
use and land cover.

To further demonstrate the wide LULC variety of the area, our study found that 23 of the
25 European Urban Atlas 2018 classes occurred in our study area and those were aggregated down
to seven classes (Appendix A, Table A1). These are: (1) Urban: comprising areas that are considered
“built-up”; (2) Infrastructure: comprising highways, roads, airports, ports, etc.; (3) Mines, dump and
construction sites: comprising mineral extraction spots, construction sites, and sites without any
classification; (4) Low density vegetation: comprising urban parks, herbaceous areas, and wetlands;
(5) Crops: comprising arable land and pastures; (6) Dense vegetation: comprising forests; (7) Water:
comprising lakes and rivers. This variety gives us a great data set to work with.

However, beyond the simple variety of the area, this region has also seen quite significant growth
and urbanization over the past few years. Due to this growth, it is now considered a possible threat to
the European Union’s goal of hitting its target of a 60% reduction in greenhouse gasses by the year
2050 [21]. With the region being an economic hub of Germany, and Europe, it is an attractive place to
move to due to its strong economic security. This being so, it is important to have up to date LULC
maps for these regions to better aid in tracking changes and allow planners and stakeholders to better
plan and make quicker decisions with more reliable and up-to-date data.
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4. Data

Sentinel-2 Data

We chose to use the Sentinel-2 L2A data as it is already atmospherically corrected using the
Sen2Cor processor and PlanetDEM Digital Elevation Model (DEM) with 10 m, 20 m, and 60 m spatial
resolutions, depending on the spectral band [23]. Among all of the publicly available satellite images,
Sentinel-2 has the highest spatial resolution at 10 m, making it a good choice for classification projects.
For our scene selection, we used the Earth Observing System (EOS) LandViewer [24] tool to filter
scenes that were of the L2A dataset with less than 1% cloud coverage for 5 August 2020 (Figure 2).
Our date selection was also intentional; we wanted to show that the recent satellite images captured
could be used for LULC with minimal data manipulation and cleaning. The satellite imagery was
downloaded directly from the EOS LandViewers platform on 10 May 2020. Eleven bands at various
wavelengths of the electromagnetic spectrum were selected for use in our classification procedure
(Table 1). Each of the 20 m and 60 m resolution bands were resampled down to 10m using ESRI ArcMap
and bilinear interpolation.

Table 1. Sentinel-2 Bands with wavelength and resolution [25].

Sentinel-2 Bands Central Wavelength (µm) Resolution (m)

B1—Coastal aerosol 0.443 60 1

B2—Blue 0.490 10
B3—Green 0.560 10
B4—Red 0.665 10
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Table 1. Cont.

Sentinel-2 Bands Central Wavelength (µm) Resolution (m)

B5—Vegetation red edge 0.705 20 1

B6—Vegetation red edge 0.740 20 1

B7—Vegetation red edge 0.783 20 1

B8—NIR 0.842 10
B8A—Vegetation red edge 0.865 20 1

B9—Water vapor 0.945 60 1

B11—SWIR 1.610 20 1

B12—SWIR 2.190 20 1

1 Resampled to 10 m.

5. Methods

5.1. Study Design and Sample Selection

Training the data is an immensely important part of any supervised machine learning algorithm
and requites a large amount of good data. Moreover, satellite imagery has its own complexities and
can be a challenging task to collect. It can be difficult to obtain a representative training dataset that is
an acceptable resolution and covers a large enough area to adequately train the model [26]. Even more,
to obtain adequate reference data that is up to date with your current data can be quite costly and
restrictive. Due to that, it has become common to use older LULC maps and data to classify past
satellite images and then apply that model to more modern images. For instance, by using thematic
maps from the 1970s as a training dataset to classify satellite (Landsat-1) imagery from around the
same time period in Vietnam, Tran [27] was able to build a classification model that worked well on
more recent 2015 datasets. Another new approach that has been developing in more recent studies is
that of using city/government-provided LULC maps as a reference for their training dataset [28–30].
One great benefit of this is that land cover maps with a high enough quality and accuracy have the
ability to produce a very large amount of training samples for many different features [30].

The design of our methodology (Figure 3) first involved collecting the satellite images for our
study areas; for that we used the Sentinel-2 satellite images collected from EOS LandViewer [24].
After the images were collected, we then processed them in ArcMap by first generating a fishnet over
the raster files with a 30m resolution corresponding with the raster pixels themselves, and then used
the feature extraction tool to give each point the value of each of the spectral bands, as well as utilizing
the calculate geography tool to also add an x and y coordinate. After, we followed a similar approach
as mentioned previously [30] and used the previously existing European Urban Atlas LULC maps for
the 2018 year. These maps provide reliable, inter-comparable, high-resolution land use and land cover
data for a large part of Europe [31]. This data was then also extracted to the previously created points
to complete our dataset with x and y coordinates, all spectral bands, and now LULC classifications.

With the European Urban Atlas data, we were able to obtain 27 separate LULC classifications,
which we then categorized into seven separate categories: urban; infrastructure; mines, dump and
construction sites; low density vegetation; high density vegetation; crops; and water. We chose to
use a sample size of 500 for each category, taking advantage of the large number of available data.
Furthermore, to avoid any possible misclassification issues due to changed LULC types between 2018
and 2020, each sample from both years was analyzed and compared against RGB and false color
composites of the Sentinel-2 image to pick out any samples that have undergone change between the
years, meaning that the LULC in 2018 would not be the same as for today. If a change was detected,
then a new sample was chosen.
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Figure 3. Flow chart of methodology.

Twenty-three of the 25 European Urban Atlas 2018 classes occurred in our study area and those
were aggregated down to seven classes (Appendix A, Table A1). These are: (1) Urban: comprising areas
that are considered “built-up”; (2) Infrastructure: comprising highways, roads, airports, ports, etc.;
(3) Mines, dump and construction sites: comprising mineral extraction spots, construction sites,
and sites without any classification; (4) Low density vegetation: comprising urban parks, herbaceous
areas, and wetlands; (5) Crops: comprising arable land and pastures; (6) Dense vegetation: comprising
forests; (7) Water: comprising lakes and rivers.

Next, we increased our sample size further to keep up with the data-driven framework of our
machine learning models [32]. We used a stratified random sampling method producing and increased
4600 samples per class. This number was selected after running multiple models and stopping at the
point the model accuracy rate became flat, meaning that more samples did not really increase the
accuracy. We did this in consideration of computing power and time. The 32,200 samples were then
split into two portions: a training dataset making up 70% (22,540) of the samples and an evaluation
dataset comprising the remaining 30% (9660). Each LULC class was assigned the same number of
training (3220) and evaluation (1380) samples (Appendix A, Table A1).

Figure 4 gives a few examples of our training area comparing the European Urban Atlas LULC to
the real color satellite images of the same area after we performed the first training and evaluation of the
area. For these, 1a/2a shows our methods of classifying infrastructure, with multiple highways, train
tracks, and train stations in the image. Image 1b/2b is used to show the classification of urban areas and
how the classification is able to distinguish between urban areas and infrastructure to an okay extent.
Image 1c/2c shows the classification of a large mine that is present in the study area. Image 1d/2d
demonstrates the classification of low-density vegetation in the area, especially those near urban areas
that are many times park; in this specific image (2d), you can see that this low-density urban area
has infrastructure going through it and is bordered by crops. Image 1e/2e shows the classification of
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dense vegetation, in this case a forest. Image 1f/2f shows the classification of water bodies, the highest
performing classifier. Lastly, 1g/2g shows the classification of crops.

Environments 2020, 7, x FOR PEER REVIEW 8 of 21 

 

density urban area has infrastructure going through it and is bordered by crops. Image 1e/2e shows 
the classification of dense vegetation, in this case a forest. Image 1f/2f shows the classification of water 
bodies, the highest performing classifier. Lastly, 1g/2g shows the classification of crops. 

 
Figure 4. Comparison between the real color satellite image and the LULC classification for the first 
training and evaluation. 

  

Figure 4. Comparison between the real color satellite image and the LULC classification for the first
training and evaluation.

5.2. Machine Learning Algorithms

Continuing with our model in Figure 3, after collecting our satellite data and processing the raster
files in ArcMap to convert the images into a more processable dataset, we then began the algorithm
and classification parts of our study. This following section provides more detailed descriptions of the
various algorithms that we used for our study.

5.2.1. Random Forests (RF)

RF is an ensemble learning algorithm working off the theory that a combination of bootstrap
aggregated classifiers performs better than a single classifier [4]. In this case, bootstrap means that
each individual tree is parameterized using a randomly sampled set of observations from the training
dataset [33]. By doing this, there is a reduced risk of multicollinearity since the trees are naturally
de-correlated via this process. RF works by creating several decision tree models based on different
groupings from the input variables from the training data, resulting in an output that is an unweighted
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majority vote of each class that is averaged across all of the produced trees. Breiman (2001) defines
Random Forest as:

“a classifier consisting of a collection of tree-structured classifiers {h(x, k), k = 1,...} where the {k }
are independent identically distributed random vectors and each tree casts a unit vote for the most
popular class at input x” [4],

He provides a more in-depth mathematical explanation and proofs of RF in his 2001 paper [4].
In our paper, we utilized Python Scikit-Learn to perform our Random Forest analysis. With the
final parameters:

params: {
max_features: 0.5,
min_samples_split: 4,
min_samples_leaf: 5
}

5.2.2. Support Vector Machines (SVM)

SVM is a supervised learning technique that is frequently used with research related to remote
sensing. The SVM algorithm works by finding the “decision boundary”; this boundary is better
referred to as the hyperplane and it is used to differentiate the classification problem into a predefined
set of separate classes that are in line with the provided training data. Through numerous iterations,
the algorithm attempts to find the optimum hyperplane boundary so that it can better distinguish
patterns in the training data. When these patterns are found, the algorithm then applies them to the
evaluation dataset to check its accuracy [10]. There are different kernels through which the hyperplane
boundary can be defined. In our research, we use a radial basis function kernel due to some of the
Sentinel-2 spectral bands not being linearly separable. For a more detailed mathematical explanation
of this algorithm, please refer to Cortes [34]. In our paper, we utilized Python Scikit-Learn to perform
our Support vector machine analysis, with the final parameters:

params: {
C: [10, 100, 1000],
gamma: [0.1, 1, 10],
kernel: [’rbf’, ’poly’, linear’]
}

5.2.3. Light Gradient Boosting

The typical gradient boosting machine (GBM) constructs an additive model of simple decision
trees that are not very well optimized and then generalizes them by optimizing an arbitrarily defined
loss function to make stronger predictions [33]. At the moment, a widely used GBM, especially in
remote sensing, is Extreme Gradient Boosting (Xgboost). The utility behind Xgboost that does not
exist with other algorithms is that it builds an objective function, which combines the loss function
and a regularization term that controls model complexity. This enables parallel calculations and the
maintenance of optimal computational speed. While Xgboost has been successful [35,36], we chose
to take a different approach and analyze Light Gradient Boosted Machine (LightGBM) for a few
key reasons: (1) it has a faster training speed and higher efficiency than many other algorithms.
LightGBM uses a histogram-based algorithm i.e., it buckets continuous feature values into discrete
bins which fastens the training procedure. (2) It has lower memory usage by replacing continuous
values to discrete bins. (3) It has better accuracy than any other boosting algorithm. It produces much
more complex trees by following a leaf wise split approach rather than a level-wise approach, which is
the main factor in achieving higher accuracy. (4) It has better compatibility with large datasets. It is
capable of performing equally well with large datasets, with a significant reduction in training time, as
compared to Xgboost. A more detailed mathematical explanation of LightGBM is provided in Ke [37].
This study utilized Python Scikit-Learn to perform our Light Gradient Boosting machine analysis,
with the final parameters:
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params: {
num_leaves: 1024,
bagging_freq: 3,
objective: regression,
bagging_fraction: 0.3,
learning_rate: 0.005,
feature_fraction: 1
},

5.3. Model Training and Tuning

Optimization, i.e., tuning, of the parameters was an important part of the training process in
order to get the best possible outcome. For this, we utilized mljar, an open-sourced program [12,38]
developed for training and testing machine learning models. With mljar’s AutoML() function, we were
able to train and test hundreds of models while fine-tuning the parameters along the way. In the case
of our chosen algorithms, we chose to optimize our parameters by using randomized sampling of all
hyper-parameter combinations up to a certain number of iterations [39]. In order to utilize AutoML(),
the best format for the data was a csv file that could then be used by Python Pandas to create a data
frame. As mentioned in Section 5.1, we were able to easily accomplish changing the images into
a more usable dataset by processing the satellite image raster files in ArcMap through a process of first
generating datapoints via the fishnet function to create a net of points corresponding with the images
30m resolution, and then doing a simple feature extraction to get the spectral band values as well as
the LULC data, before calculating the x and y coordinates. In our dataset, our independent variables
were the spectral bands and our dependent variable was the LULC class value (Appendix A).

For the purpose of AutoML(), our training dataset was split (via random sampling) into multiple
sets of equal sized blocks (k); of those, a single one was kept for later validation, leaving a total
sample size equal to k − 1. This procedure was repeated multiple times to reduce the variance in the
model [39,40]. We chose to use a 10-fold cross-validation with 5 repeats to help us reach a suitable
balance between ensuring a robust model and a lower computational time, to help us get the maximum
number of accurate and highly tuned models in the shortest time. However, after utilizing AutoML()
to find the best parameters, we went with a 70/30, training and testing, split for our final models,
as mentioned in Section 5.1, as it produced a more accurate results.

5.4. Accuracy and Misclass Assessment

In Table 2, you can see a breakdown of the Overall Accuracy (OA), Kappa, Producer’s Accuracy
(PA), and User’s Accuracy (UA), with UA corresponding to error of commission (inclusion) and PA
corresponding to error of omission (exclusion). From looking at the OA and Kappa coefficient, it can
be seen that the LightGBM has the highest accuracy among the three at a 65.3% OA and 0.596 Kappa.
This compared to SVM with 64.2% and 0.583, followed by RF with 59.4% and 0.527. The accuracy and
misclass of each algorithm are represented in Figure 5 with confusion matrices. In that matrix, it seems
that the hardest classes to classify for the algorithms as a whole were C2, C3, and C4 (Infrastructure;
Mines, dump, and construction sites; and Low-density vegetation).

Table 2. Algorithm OA, Kappa score, PA, and UA.

Class Producer’s Accuracy User’s Accuracy

SVM
OA = 0.642, Kappa =

0.583

Urban 0.61 0.56
Infrastructure 0.42 0.45

Mines, dump and
construction sites 0.59 0.72

Low density vegetation 0.42 0.40
Crops 0.74 0.70

Dense vegetation 0.80 0.69
Water 0.87 0.95
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Table 2. Cont.

Class Producer’s Accuracy User’s Accuracy

RF
OA = 0.594, Kappa =

0.527

Urban 0.73 0.45
Infrastructure 0.18 0.38

Mines, dump and
construction sites 0.47 0.84

Low density vegetation 0.45 0.36
Crops 0.73 0.60

Dense vegetation 0.74 0.71
Water 0.85 0.96

LightGBM
OA = 0.653, Kappa =

0.596

Urban 0.73 0.56
Infrastructure 0.45 0.54

Mines, dump and
construction sites 0.60 0.75

Low density vegetation 0.39 0.40
Crops 0.75 0.68

Dense vegetation 0.77 0.70
Water 0.87 0.95
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Figure 5. Error matrices showing correct and incorrect prediction percentages for each machine learning
algorithm. C1–C7 match with the LULC category, as shown in Appendix A, Table A1. Support Vector
Machines—(A), Random Forests—(B), Light Gradient Boosting Machine—(C). With the color gradient
going from white (no prediction) to dark green (high number of predictions).
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By using a simple, but powerful, Chi-squared test [41] we can compare (statistically) the error
matrices by investigating the equality in the overall distributions of variables predicted by one
algorithm compared to another. As well, a two proportion Z-test [42] was used to compare the
proportions of correctly classified pixels for two algorithms at a time. With a null hypothesis that
there will be no difference between the algorithms, this will be another method for us to check if there
are any statistically significant similarities between the algorithms. For both tests, we will be using
a 0.05 confidenceinterval.

6. Results and Discussion

6.1. Comparing the Alogrithms

The highest OA was produced by LightGBM (0.653), closely followed by SVM (0.642) and then
RF (0.594) (Table 2). All three algorithms produced roughly similar maps that did a decent job of
representing the area (Figure 6). In order to limit class biases by OA, all seven LULC classes had the
same number of training and evaluation samples [43]. It is possible to obtain higher OA values if the
classes are not standardized with respect to samples. When using an imbalanced class distribution,
the accuracy of more well-represented classes increases the OA. However, we believe that this focus
on OA negates the individual performance of the classes and does not fully account for the lesser
represented classes in the study [44]. With that as a consideration, sampling design decisions should
focus on whether the objective of the study is to find the highest OA possible regardless of distribution
of class or to equally represent all classes being researched. In our case, with comparing multiple
algorithms, we chose the latter.
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The lowest PA across all three algorithms was for Infrastructure (Table 2), which highlights the
difficulty in distinguishing these classes from the rest. This class comprised many subclasses including
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roads, highways, train tracks, airports, shipping ports, etc. From looking at the confusion matrix
(Figure 5), it can be seen that the biggest confusion with Infrastructure (C2) was with Urban classes (C1).
This is likely due to similarities in materials between infrastructure and urban areas having similar
spectral reflectance. The Random Forest algorithm demonstrates this best; it incorrectly predicted
Urban areas as Infrastructure 46% of the time, it’s largest misclass percentage, and correctly predicted
Infrastructure 18% of the time. This error could have been minimized with the inclusion of land
surface temperatures [45]; however, there is currently no thermal imagery on the Sentinel-2 satellite.
This should be a consideration in future study, to develop more of a hybrid approach utilizing multiple
data sources.

Looking at Figure 5, each of the three algorithms appeared to have an easier time classifying natural
and green spaces such as water, dense vegetation, low density vegetation, and crops, with an average
PA of 0.86 for Water (C7), 0.77 for Dense vegetation (C6), and 0.74 for Crops (C5). This is likely due in
large part to the availability of the four separate red edge bands provided by Sentinel-2, making it
able to detect vegetation at an increased level of accuracy. In the case of low density vegetation
(mean PA = 0.42), where the data was harder to separate as the class borders and connects with other
classes frequently (i.e., bordering the Dense vegetation, being contained in the Urban class, etc.),
the algorithms had a harder time deciding which was the true class [34].

McNemar’s Chi-square test results (Table 3) showed that 42.9% of the classification predictions
between paired algorithms were significant at p = 0.01; 14.3% at p = 0.05; and 4.8% at p = 0.10.
Additionally, 38.1% of pairings were not statistically significant. All of the pairings for C5 (Crops) were
statistically non-significant as well as the classes C2, C3, C4, C5, and C7 for the LightGBM vs. SVM
pairing. These non-significant values show that there is no significant difference between the accuracy
of the paired models. In our case, all models performed equally in regard to the accuracy of classifying
Crops (C5). As well, LightGBM and SVM have only slight differences (at p = 0.1) in performance
when classifying Urban (C1) and Dense vegetation (C6). Furthermore, LightGBM and SVM both have
statistically high differences in accuracy when compared to RF. This information, paired with the
confusion matrix (Figure 5), leads us to believe that, in this case, RF is the less adequate model for this
specific project.

Table 3. McNemar’s chi-squared test (χ2) with associated probability (p). *** = p ≤ 0.01, ** = p ≤ 0.05,
* = p ≤ 0.1, NS = Not Significant.

Result C1 C2 C3 C4 C5 C6 C7

LightGBM
vs. RF

χ2 46.745 100.947 55.125 8.256 1.76 6.282 5.263
p *** *** *** *** NS *** **

LightGBM
vs. SVM

χ2 2.481 1.215 1.306 0.125 1.161 3.361 0.1
p * NS NS NS NS * NS

RF vs. SVM
χ2 30.862 88.506 43.5224 10.803 0.093 20.023 5.882
p *** *** *** *** NS *** **

The Z-test results (Table 4) showed that the proportions of correctly classified pixels of two of
the algorithm pairs (LightGBM vs. SVM (χ2 = 3.19) and RF vs. SVM (χ2 = 3.06)) were not statistically
significant, indicating that there is not a difference in the proportion of correctly classified pixels
between the pairs. Based on these results, we can infer that the proportions of correctly classified pixels
produced by SVM are different from those correctly classified by RF and LightGBM. For the LightGBM
vs. RF pairing, the null hypothesis was not rejected, meaning their accuracies are similar.
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Table 4. A two-proportion z-test at p < 0.05.

Z-Test Results

LightGBM vs. RF χ2 0.123
p 0.45

LightGBM vs. SVM χ2 3.19
p 0.00

RF vs. SVM
χ2 3.06
p 0.00

6.2. Variable Importance Metrics

As part of the output, each of the three algorithms provides variable importance charts (Appendix B,
Figures A1–A3.). In Appendix B, Figures A1 and A2 the Shapley Additive Explanation (SHAP) score is
used to explain the importance of the SVM (Figure A1) and LightGBM (Figure A2). SHAP measures the
impact of variables, taking into account the interaction with other variables. On each chart, the y-axis
represents each band of the Sentinel-2 satellite image used in the analysis, in order of importance from
top to bottom. On the x-axis is the SHAP value, which indicates the extent of the change in log-odds.
From this information, we can extract the probability of success. For Figure A1, SVM, it is shown that
B12 (SWIR2), B03 (Green), B11 (SWIR2), B8A (NIR narrow), and B02 (Blue) are the top five bands,
with the other bands not falling too far behind in importance. For Figure A2, LightGBM, the top
five bands were B09 (Water vapor), B01 (Coastal aerosol), B12 (SWIR2), B11 (SWIR1), and B04 (Red).
Both models had quite different importance applied to each band despite having similar results in the
end. We were surprised to not see more utilization of the NIR (near infrared) bands; however, the SWIR
(short-wave infrared) bands both seemed important for both models. In Figure A3, RF used a different
method to categorize the importance of each of the bands, utilizing a more traditional approach of
percentages. The top bands for this model were B01 (Coastal aerosol), B11 (SWIR1), B12 (SWIR2),
B09 (Water vapor), and B04 (Red). These bands aligned very closely with those in the LightGBM
model; however, as mentioned before, the RF model performed less precisely than the LightGBM
model. However, in all three models, SWIR bands seemed to hold importance in the predictions.

The high importance of the SWIR bands could be due to the large amounts of forests and foliage
in the study area [46]. The Sentinel-2’s SWIR bands are centered at 1610 nm (B11) and 2190 nm (B12),
allowing them to more easily and accurately detect subtle differences in water content between different
types of foliage [47]. With that ability, it is easier for the models to use that band when working in
areas with larger tree coverage.

6.3. Calculation Times

With OA’s. of 0.653, 0.642, and 0.594 for the LightGBM, SVM, and RF models, respectively,
there was not much variation in the accuracy of each model. However, when it came to calculation
times, we noticed more difference (Table 5). The quickest model was LightGBM at 287 s vs. SVM at
367 s and RF at 410 s. These processing times are based on using an 8 CPU, 15gb RAM machine to
process the data. With these results, we see that LightGBM performed 1.33 min faster than SVM (21.8%
decrease) and 2.05 min faster than RF (30% decrease).

Table 5. Process time for each model in seconds.

Model Process Time (s) Machine Size

LightGBM 287 s 8 CPU and 15GB RAM

SVM 367 s 8 CPU and 15GB RAM

RF 410 s 8 CPU and 15GB RAM
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7. Conclusions

Compared to other available satellite imagery devices, Sentinel-2 is very useful with its four
separate red edge bands (B05, B06, B07, B8A) that are very useful and intelligent for observing
vegetation at a comparably high spatial resolution (10 m). To the researcher’s knowledge, this paper is
one of the first to utilize the Light Gradient Boosting (LightGBM) model to classify land-cover and
land-use using Sentinel-2 data over a large and varied landscape. Our study compares three separate
models, two of which, Support Vector Machines and Random Forests, are widely used today in remote
sensing research. The other, Light Gradient Boosting, has been growing in popularity in other fields
but has not yet been widely utilized in urban sciences or remote sensing.

The three algorithms yielded near similar overall accuracies with LightGBM having the highest
OA of 0.653, closely followed by SVM at an OA of 0.642 and then RF at 0.594. When comparing the
classifier accuracies with a Z-test, we found that two-thirds of the algorithm pairings were statistically
distinct from one another. Likewise, with the McNemar’s test, we found that 67% of the class-wise
predictions were statistically significant. Finally, the variable importance metrics show that there is
a clear importance with the SWIR bands, which can likely be described by the study area’s makeup.
However, despite the similarities in accuracies, LightGBM was able to more quickly process the model
in each instance, performing 25.9% quicker on average.

When compared to previous studies, our models did not produce accuracy scores that were as high.
Those such as Rodriguez-Gailano [8] attained an accuracy of 92% using an RF model. Neither were they
as high as other researchers who were able to reach over 95% accuracy with their SVM model [9,10],
or compared to previous researchers who were able to get accuracies of 92.07% [11] when categorizing
crop types using LighGBM. However, these previous studies were not the same scale as our study in
both size and scope. The aim of our study was to generate large scale LULC maps quickly and cheaply
(cost wise and with minimal variables) and compare multiple methods to determine if LightGBM is
a valid contender, while, on the other hand, these other studies were more focused on specific case
examples that have more specific and direct classification needs. However, this does present one
limitation to our study, the inability to focus more specifically on a single case or class, as our models
are built to be more generalized and focused on classifying multiple, vastly different, classes.

In studies, like ours, that are comparing multiple machine learning algorithms, it is important to
avoid the introduction of accidental bias in the analysis. To lessen that issue, each algorithm should
undergo equally robust hyper-parameter selection. If one model is calibrated with prior knowledge of
the best parameters for that model whilst the others are calibrated more randomly or by using just
default parameters, there is a large chance that the comparison will not be accurate, and bias may be
present. For that, the use of random iterations over a defined number of parameter combinations,
as we have done in this research, can be used to eliminate potential bias; however, coming at the
extends the algorithms not reaching optimum accuracies. To be better able to reach higher accuracies
within the models, we suggest increasing the number of iterations (however, this can significantly
increase the computing requirement) or assessing each model individually to find the most suitable
thresholds for the parameters to get the best result possible.

While we did our best to control for any issues or limitations, there are a few worth mentioning.
The first being that of computational power, a typical limitation in ML research. While we were
able to maintain a relatively low computational load, there is always room for improvement in this
area. As the study area increases in size, this limitation becomes increasingly prominent. As well,
another obvious limitation is our satellite image resolution. However, as mentioned multiple times
in the paper, we intentionally chose our satellite images due to access and cost aspects of obtaining
more high-resolution images. In future studies, it would be valuable to use higher resolution satellite
images; however, we still believe that the cost and access should remain variables when selecting the
images to ensure the widest available usability of the research.

Furthermore, we did have a few other limitations that could be solved more readily. Our models
all had a difficult time in distinguishing between water and areas of dense, healthy forests. This could
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have been overcome by incorporating more variables into the study such as topography or DEM data
points. As well, future research could benefit by incorporating indices such as normalized difference
vegetation index (NDVI), normalized difference water index (NDWI), and normalized difference
built-up index (NDBI) into the models to help further differentiate between the water and vegetation
and built-up areas.
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Appendix A

Table A1. LULC classification with total pixel count for the sample area.

LULC Type Class ID Urban Atlas Class Total Pixels Pixels
(Training/Evaluation)

Urban 1

11100: Continuous
Urban fabric

216,422 3220/1380

11210:
Discontinuous
Dense Urban

Fabric
11220:

Discontinuous
Medium Density

Urban Fabric
11230:

Discontinuous
Low-Density
Urban Fabric

11240:
Discontinuous very
low-density urban

fabric
11300: Isolated

Structures
12100: Industrial,

commercial, public,
military and
private units

Infrastructure 2

12210: Fast transit
roads and

associated land

54,568
12220: Other roads
and associated land 3220/1380

12230: Railways
and associated land

12300: Port areas
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Table A1. Cont.

LULC Type Class ID Urban Atlas Class Total Pixels Pixels
(Training/Evaluation)

Mines, dump and
construction sites 3

13100: Mineral
extraction and

dump sites 49,441 3220/138013300:
Construction sites

13400: Land
without current use

Low density
vegetation

4

14100: Green urban
areas

53,722 3220/1380

14200: Sports and
leisure facilities

32000: Herbaceous
vegetation

associations
40000: Wetlands

Crops 5
21000: Arable land 474,464 3220/1380

23000: Pastures

Dense vegetation 6 31000: Forests 149,775 3220/1380

Water 7 50000: Water 28,908 3220/1380
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