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Abstract: Water quality has a significant influence on human health. As a result, water quality
parameter modelling is one of the most challenging problems in the water sector. Therefore, the major
factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid
techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid
approaches have generally been seen as a potential way of improving the accuracy of water quality
modelling and forecasting compared with individual models. Consequently, recent studies have
focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen
is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are
viable and precise methods for water quality prediction. Additionally, this paper presents future
research directions to help researchers predict freshwater quality variables.

Keywords: water quality parameters; hybrid model; metaheuristic algorithms; machine learning

1. Introduction

The growing scarcity of fresh, clean water is one of the most pressing concerns con-
fronting civilization in the twenty-first century [1]. Recent research has proven climate
change will have a significant impact on freshwater supplies due to the probable reduction
in rainfall [2]. In addition to projected droughts in various river basins throughout the
world due to climate change, several studies have shown potential water quality (WQ)
degradation due to dilution or concentration of soluble chemicals [3]. Additionally, mul-
tiple studies have indicated that pollution has a negative impact on freshwater resources
in general [2]. The decline in river WQ has irreversible consequences for the environment
and human health as more than one billion people do not have access to clean potable
water [4]. Hence, it is necessary to estimate and make predictions regarding water quality
in an attempt to anticipate how WQ will change over time. Additionally, forecasting future
variations in WQ is very important for future aquaculture control intelligence. As a result,
WQ forecasting is quite useful for anticipating WQ and estimating future supply. Robust,
reliable, and flexible models are critically needed [5].

Conventional approaches for time series analysis, such as auto-regressive integrated
moving average (ARIMA, abbreviations are collected in Table S1 in the Supplementary
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Materials) and multiple linear regression (MLR) models have been shown to be limited in
terms of carefully determining WQ due to the intricacy and sophistication of the WQ time
series. Machine learning (ML) methods such as artificial neural networks (ANN) [6–8],
support vector machines (SVM) [9,10], deep neural networks (Deep NN) [11], and k-
nearest neighbours (KNN) [12] have also been applied to simulate WQ [13]. Artificial
intelligence (AI) techniques are superior to traditional models and achieve better results
due to the ability of AI to deal with non-linear and complex properties [14,15]. Additionally,
several combined techniques have been widely employed for WQ modelling because
combined techniques are better than standalone models, and this is improving forecasting
accuracy [16]. The increasing trend in applying hybrid ML methods can be seen in recent
years, as revealed in Figure 1.
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Figure 1. Studies’ number of hybrid ML models for WQ parameters prediction over the last
four years.

Additionally, several other review papers have introduced the applications of the soft
computer to forecast WQ [5,15,17–21], whose keywords and crucial aspects are summarised
in Table 1.

Table 1. Summaries of related review papers.

Reference Keywords Summary

[19] River water quality, state of the art, literature
assessment and evaluation, AI, hybrid model.

A survey on river water quality modelling using
AI models: 2000–2020

[15] Neural networks, water quality, environment,
BPNN, CNN, LSTM.

A review of ANN techniques for environmental
issues prediction

[17] AI, ANFIS, ANN, river, water quality. AI for surface water quality monitoring and
assessment: a systematic literature analysis

[18] Pollutant, sediment load, ML tool, ANN,
discharge prediction

Applications of IoT and AI in Water Quality
Monitoring and Prediction: A Review

[5] ANNs, feed-forward, recurrent, hybrid, water
quality prediction.

A Review of the ANN Models for Water
Quality Prediction

[20]

Water quality criteria, climate change,
Urbanisation, eutrophication, best management

practices, critical source areas, water quality index,
ML algorithms, remote sensing.

Water quality prospective in Twenty First Century:
Status of water quality in major river basins,

contemporary strategies and impediments: A review

[14] AI; hybrid model; Wavelet transform; river water
quality; prediction; review.

AI -based Single and Hybrid Models for Prediction of
Water Quality in Rivers: A Review
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The literature on WQ forecasting can be seen from a variety of perspectives. Emphasiz-
ing the supply side of the problem, Tiyasha, et al. [19] reviewed papers on AI applications
for studying river WQ prediction strategies, including the ANN, kernel-based, fuzzy-based
complementary models, and hybrid models. In addition, model architecture, input vari-
ability, performance criteria, regional generalisation investigation, and comprehensive
evaluations of AI approaches have progressed in river quality research. Han and Wang [15]
published a study on how an ANN model can estimate WQ dynamics and compare with
other approaches such as radial basis function neural network (RBFNN), long short-term
memory (LSTM), and convolutional neural network (CNN) to find precise outcomes and
explain their benefits. Additionally, the study focused on how many parameters of predic-
tion and which country used the ANN model. Ighalo et al. [17] reviewed papers on neural
networks, WQ parameters, location of study, and model accuracy. Mustafa et al. [18] gave
an overview of the internet of things (IoT) in WQ monitoring. Furthermore, their study
briefly explained an ANN model with its advantages, limitations, and its recent application.
Chen et al. [5] focused on an ANN model and basic model architectures in WQ forecast,
such as feed-forward, recurrent, and hybrid structures in addition to data collection, output
strategy, input selection, data dividing, and data pre-processing (normalisation, missing
data imputation, data correct, data abnormal). Giri [20] presented a holistic assessment
of WQ decline in key river basins worldwide as shown in this review. In addition, nine
modern methods, including field-scale assessment, optimisation strategies for placement
of best management practices, a social component in watershed modelling, ML algorithms
to discuss WQ issues in complex natural devices concomitant with spatial heterogeneity,
and remote sensing in monitoring WQ were included. The existing constraints on improv-
ing WQ are then divided into major and secondary barriers. Rajaee et al. [14] reviewed
different kinds of single and combined AI approaches including ANNs, Fuzzy Logic (FL),
Genetic Programming (GP), SVM, hybrid ANN-ARIMA, hybrid Genetic Algorithm–Neural
Networks (GA-NN), hybrid neuro–fuzzy (NF), and wave-let-based combined techniques
such as wavelet–neuro fuzzy (WNF), wavelet–neural networks (WANN), wavelet–support
vector regression (WSVR), and wavelet–linear genetic programming (WLGP) models were
examined for the prediction of WQ in rivers.

Despite their comprehensive surveys of recent applications of AI methods to the WQ
field, few researchers have included studies on hybrid algorithms and how they work step-
by-step, and in detail, so we focused on hybrid ML techniques and their classification power,
including data pre-processing methods. The reason to study these hybrid models in detail
is that they have several advantages, such as (a) enhanced predictive performance due
to increased capacity for pattern detection and simulation, (b) reduced risk of employing
a sub-optimal technique (if used in isolation), and (c) a simplified procedure for model
choice due to the utilisation of various components [21]. Hajirahimi and Khashei [22]
classified hybrid models into several categories and explained the unique characteristics of
the models. Based on this literature review, the goal of the paper is to categorise the hybrid
models suggested for WQ modelling and forecasting into four main classes (the components
combination-based hybrid models (CBH), parameter optimisation-based hybrid models
(OBH), pre-processing-based hybrid models (PBH), and hybridisation of hybrid models).

2. Water Quality Parameters

The nature and amount of industrial, agricultural, and other anthropogenic activity
within a region’s catchments considerably influences surface WQ [23]. The WQ parameters
are categorised into three primary groups: physical, chemical, and biological. Different
WQ factors that have been modelled are reported in this paper. Physical WQ parameters
such as temperature (T), total dissolved solid (TDS), electrical conductivity (EC), salinity,
and hydrogen ion concentration (pH) are often of concern as well. Dissolved oxygen (DO),
chemical oxygen demand (COD), and biochemical oxygen demand (BOD) are examples of
chemical sensors. Figure 2 shows various WQ factors modelled in the previous studies that
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used a hybrid model for prediction. It can be seen that most studies have been carried out
to simulate DO and EC parameters in water.
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Figure 2. Number of studies employing each parameter of WQ over the years.

3. Machine Learning (ML)

ML has been applied for a long time and has received considerable attention over the
last few years. It can handle a huge volume of data and permit non-linear constructions
by utilizing complex mathematical calculations [24]. Additionally, ML are categorised
as unsupervised and supervised learning. Supervised learning is employed to learn the
primary relationship between input and output values. Unsupervised learning, in contrast,
gives the learning algorithms no labels or known outcomes [25]. Several ML approaches
have been promoted for modelling WQ parameters. The ML models applied include
ANN [10,26–28], adaptive neuro-fuzzy inference system (ANFIS) [7,29,30], (SVR) [31–33],
random forest (RF) [34,35], k-nearest neighbours (KNN) [36], Naive Bayes [37], decision tree
(DT) [38,39], and extreme gradient boosting (XGB) [40]. The advantages and disadvantages
of the most used ML techniques are summarised in Table 2.

Table 2. Advantages and disadvantages of the ANN, ANFIS, and SVR models.

Model Advantage Disadvantage References

ANN

It can handle non-linear data series and
complicated hydrological processes. Increase the

accuracy of WQ forecasting by training and testing
data series continuously without understanding

the relationship between input and output.

Over parameterisation and overfitting difficulties
are common in ANNs, especially when the

approaches are based on optimal input selection,
and the model is regarded as a black-box model. In
addition, because no consistent principles control
proper ANN model development and construction,

it is not easy to prioritise a suitable model.

[18,41,42]

ANFIS

It can be used when the system input data is
confusing and imprecise. It can manage non-linear

data series and allow the modelling process to
have the least possible uncertainty level.

When the number of fuzzy rules grows, it might
become computationally expensive and may

risk overfitting.
[42–44]

SVR

Its increased generalisation ability, unique and
globally optimum structures, and ability to be

quickly trained. And SVR’s flexibility is one of its
strongest features, dependent on several types of
kernel functions such as linear, polynomial, and

radial basis function (RBF) kernels.

Hyper-parameters like the penalty factor, accuracy,
and kernel function variance significantly impact

the performance of the SVR model.
[45,46]

RF
It is able to manage large datasets with several

features, and the accuracy of modelling improves
when the number of trees increases.

The training process is slowed when using the
model with a high number of trees. [47,48]
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4. Data Pre-Processing Techniques

Data pre-processing techniques are considered essential to the data mining process [49].
Data preparation is vital to ensuring that all predictors receive equal attention during
the learning phase and helps speed up the procedure [50,51]. These methods play an
essential role in models by fostering high accuracy and minimal computational costs at
the learning phase, as noisy and unreliable information that could exist in data records
will adversely impact the training stage and outcome in a poor model [49]. The pre-
processing data method consists of three approaches: normalisation, cleaning, and model
input determination, as in Zubaidi et al. [52]. Previous studies used one or two pre-
processing steps (Table S2 in the Supplementary Materials). In this study, only 48% of the
researchers employed data normalisation, 53% utilised data cleaning, and 67% used best
model selection.

1. Data Normalisation

The goal of data normalisation is to have the same range of values for each of the
ANN model’s inputs and to obtain the time series normally or nearly normally distributed,
as this will aid in the stable convergence of the weights and biases and limit the impact
of noise [2].

2. Data Cleaning

The cleaning strategy aims to determine and eliminate noise from raw data to reduce
the error scale and improve the regression coefficient [2]. Data cleaning is required to
discover and treat unwanted values, because the noise and outliers negatively impact data
analysis and then the suggested model’s performance [51,53].

3. Selecting appropriate descriptors

One of the most critical steps in data pre-processing is selecting the best model input [2].
The selection of explanatory factors influencing WQ metrics as model input data is vital in
creating any successful model [54].

5. Hybrid Models

A hybrid model combines two or more methods, one serving as the primary model
and the others as pre- or post-processing approaches [2]. In recent years, combined models
have arisen as a way to construct flexible and efficient models and improve the forecasting
accuracy of individual algorithms [5,55]. The hybrid models can be classified into four types,
namely: the components combination-based hybrid models (CBH), parameter optimisation-
based hybrid models (OBH), pre-processing-based hybrid models (PBH), and hybridisation
of hybrid models as in Hajirahimi and Khashei [22]. There are different studies in the
hybrid models shown in Figure 3.

5.1. Components Combination Based Hybrid Models (CBH)

In this section, ML models were combined to correct the relative incompetency of
the individual models. The CBH models aim to improve prediction performance by
enabling the remarkable capacity of individual prediction models regardless of combination
structures [22]. For example, Lola et al. [56] developed a combined technique to forecast
daily WQ data (DO, water T, pH, and salinity) using ARIMA and ANN. When compared
to stand-alone ARIMA and ANN, the results of the experiments demonstrate that the
suggested model can be a viable and effective strategy to increase prediction precision
with high correlation coefficients and decrease the error percentage for all indicators up
to the maximum of 87.87% in both mean absolute error (MAE) and root mean square
error (RMSE).
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Barzegar et al. [57] investigated the predictive capability of two single deep learning
(DL) models, the LSTM and CNN models, along with their combined CNN_LSTM tech-
nique to forecast short-term WQ. Two conventional ML methods, (SVR) and (DT), were
also used, and their results were compared with DL models. Various statistical criteria were
considered to assess the models. The results show that both DL models have similar perfor-
mance for predicting Chlorophyll-a (Chl_a), and LSTM is better than CNN for simulating
DO. Generally, the combined technique CNN_LSTM was superior to LSTM, CNN, SVR,
and DT models, and it was able to simulate the high and low levels of WQ parameters,
especially for the DO concentration. Similarly, Baek et al. [58] also suggested a composite
model LSTM with the DL model to forecast the water level (WL) and quality parameters
(Total phosphorus TP, total nitrogen TN, total organic carbon TOC). The outcomes showed
that the hybrid model’s performance was more precise according to the Nash–Sutcliffe
efficiency (NSE).

Yan et al. [59] suggested using the one-dimensional residual convolutional neural
networks (1-DRCNN) and bi-directional gated recurrent units (BiGRU), GRU, LSTM, and
combined 1_DRCNN with BiGRU models, to forecast TN, TP, and potassium permanganate
index (CODMn). The outcomes demonstrate that the combined technique has greater
forecasting precision and generalisation to predict WQ than standalone models (LSTM,
GRU, and BiGRU) based on statistical metrics, such as MAPE and the determination
coefficient (R2).

Hien Than et al. [60] investigated the LSTM-MA model to forecast DO, PH, COD,
BOD, TSS, Tur, ammonia nitrogen oxidation-reduction potential (NH3-NL), and Coliform
variables and classified WQ. The LSTM-MA combined approach was employed to classify
WQ, and this model is dependable and effective. The results revealed that the LSTM-MA
was superior to the ARIMA, NAR, NAR-MA, and LSTM models according to the RMSE.
According to these reviews, combined approaches can be customised by coupling two ML
models together to suit the researchers’ needs.

5.2. Parameter Optimisation-Based Hybrid Models (OBH)

Metaheuristics are commonly employed in WQ forecasting models to modify the
parameters of other approaches, estimate the coefficients of a function, or train an intel-
ligent agent and are a method for finding a good (near-optimal) answer at a reasonable
computational cost [61].

Numerous approaches and algorithms have been developed to allow AI modelers to
employ the computing system in hydrology, predicting and optimizing storage systems.
The tasks are becoming more complex as the management of water resources improves
to a broader scope, with the need to deal with the whims of climate change and more.
Aside from AI models, other areas of research include optimisation algorithms and so-
called evolutionary computing approaches, which can be utilised as a single algorithm for
forecasting or combined with traditional methods to create a hybrid model.

5.2.1. Particle Swarm Optimisation (PSO)

This is a tool for computationally iterative search and optimisation [49]. It is scientif-
ically inspired by social behaviour in animal societies, such as flocking birds or schools
of fish. This technique utilises a swarm of particles, each of which represents a potential
solution [47]. The PSO is evolved depending on two significant aspects of bird flocks’ move-
ment behaviour: their velocity and position [62]. It is applied to obtain the best forecast
technique coefficients that offer the lowest error between measured and forecasted values.
So, it has been effectively used recently in various fields to select the optimal solution, such
as in intelligent agriculture [63], WL [64], streamflow [62,65], drought [66], and WQ [67,68].

Aghel et al. [67] adopted two AI methods, ANFIS and ANFIS-PSO. The results showed
that using two models to forecast inorganic markers of WQ is extremely effective. The
flexibility of the PSO-ANFIS approach in modelling, on the other hand, is superior to the
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standalone ANFIS approach based on performance criteria (i.e., MRE%, MAE, RMSE, R
and t statistics).

Azad et al. [68] applied the ANFIS model in conjunction with PSO and ant colony
optimisation for continuous domains (ACOR) in predicting WQ parameters. The ANFIS
approach, which uses least squares and gradient descent as training algorithms, was
applied and compared with ANFIS_PSO and ANFIS-ACOR. The research revealed that
ANFIS-PSO was the best model to forecast EC, TDS, TH, sodium adsorption ratio SAR,
and carbonate hardness CH parameters. However, PSO may be a suitable strategy for
optimizing and learning the aforementioned technique.

Shah et al. [69] proposed the hybrid feed forward neural network (PSO-FFNN) and
combined gene expression programming (PSO-GEP) to forecast DO and TDS levels. The
more essential input factors for TDS and DO forecasting were determined using principal
component analysis (PCA). The fallouts show that the PSO-GEP model outperforms the
PSO-FFNN model in terms of precision with statistical metrics.

5.2.2. Genetic Algorithm (GA)

This is a robust, powerful, optimised method based on natural selection and evolution-
ary principles [28]. GA was inspired by natural processes of biological evolution and has
been widely employed to generate high-quality solutions to optimisation issues [70]. In the
early twentieth century, genetic algorithms found their way into the field of hydrology [47].
The GA algorithm is applied in several areas, such as water flow [71,72] and WQ [73,74].

Stajkowski et al. [74] utilised the GA-LSTM technique to forecast the river water
temperature (WT), and an RNN model as a benchmark to check the robustness of the
suggested technique. The goal of using GA is to improve the ANN design process. The
results showed that the GA-LSTM model outperformed the RNN, and the fundamental
issue of identifying the ideal time frame and number of memory cell units was overcome.
According to the findings, the GA-LSTM can be applied as an advanced DL approach for
time series analysis.

Azad et al. [73] implemented GA, ACOR, and differential evolution (DE) to improve
the performance of an ANFIS. The most appropriate inputs for each model were first
determined utilizing sensitivity analysis, and then all of the quality characteristics were
forecasted using the aforementioned models. The most acceptable models for simulating
EC and TH were ANFIS-DE, but both the ANFIS-DE and ANFIS-GA techniques showed
improved performance compared to ANFIS in forecasting river WQ parameters.

Jin et al. [75] investigated a hybrid approach known as an improved genetic algorithm
(IGA) back-propagation neural network (BPNN) to forecast variations in surface WQ
for real-time early warning for NH3-N, TURB, and EC parameters. IGA optimises the
reasonable initial weight parameters and prevents the evolved method from choosing an
optimal local outcome. BPNN is used to adjust suitable connection structures and find
the features of WQ variation. The findings revealed that the created AI technique could
significantly increase forecasting accuracy and dependability and provide effective real-
time early warnings for emergency response. The proposed model outperformed BPNN
according to statistical criteria.

5.2.3. Other Optimisation Algorithms

The firefly algorithm (FFA) proposed by Yang [76] in 2010 is a heuristic optimisation
algorithm that is biologically inspired, and it depends on a specific behavioural pattern,
especially the fireflies’ light flashing characteristic [77].

Raheli et al. [78] evaluated the ability of a newly suggested combined prediction
technique that depends on the FFA as a heuristic optimiser, coupled with the MLP. The
model was applied to forecast monthly WQ (i.e., BOD, DO, COD, K, EC, PH, PO4, Cl,
Na, and NH4N). Considering the performance criteria outcomes, the MLP-FFA technique
outperforms the corresponding MLP model.
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The cuckoo search (CS) was proposed by Yang and Deb. It is effective in tackling global
optimisation issues [79]. Chatterje, et al. [80] used CS to increase support in the classification
technique to predict WQ. To identify the best weight vector for the ANN model, the
suggested approach (NN-CS) gradually diminishes an objective function (RMSE). The
suggested technique was compared to other well-established approaches, such as NN-GA
and NN-PSO, concerning the precision, Matthews correlation coefficient (MCC), recall,
Fowlkes–Mallows index (FM index), and f-measure. The simulation outcomes showed that
NN-CS outperformed the other models.

Li et al. [81] applied a combined approach that depends on LSTM and sparse auto-
encoder (SAE) to enhance the forecasting precision of DO in aquaculture. SAE pre-trained
the hidden layer data containing deep latent WQ aspects and then fed it into the LSTM to
improve forecast precision. The outcomes showed that SAE-LSTM outperforms LSTM and
SAE-BPNN.

The artificial bee colony (ABC) was proposed by Karaboga [82]. It has ushered in a
new technique of thinking about optimisation algorithms. It was inspired by the study
of the life cycle of bees and included two core concepts: self-organisation and division of
labour [82]. The ABC optimisation approach has not been employed broadly in hydrology
issues. However, there have been limited attempts to adopt it in optimizing WQ variables,
such as Chen et al. [83], which used an improved artificial bee colony (IABC) algorithm
with BPNN to predict DO, BOD, and CODM parameters. The IABC algorithm optimised
the connection weight values between network layers and the threshold of each layer using
a BP neural network. When compared to the regular BP, ABC-BP, and PSO-BP neural
network models, it was revealed that the IABC-BP neural network has better prediction
capability and could reach considerably higher accuracy—about 25% higher than the BP
neural network. The new technique is beneficial for predicting WQ in a water diversion
project and might be quickly used in this area.

Grey Relational Analysis (GRA) is a subdivision of the grey system method that deals
with ambiguous or uncertain problems and circumstances involving discrete data and
inadequate knowledge [84]. Zhou et al. [85] proposed three models (LSTM, BPNN, and
ARIMA) to forecast DO concentrations. Additionally, the improved grey relational analysis
(IGRA) method was used for the feature selection of WQ information. The result revealed
that LSTM outperformed the other models, and the hybrid IGRA-LSTM technique was
the best.

Melesse et al. [4] proposed ten approaches: M5 prime M5P, bagging-M5P, AR-RF,
random subspace (RS)-M5P, RF, RC-RF, random committee (RC)-M5P, bagging-RF, RS-RF,
and additive regression (AR)-M5P to forecast salinity. The results revealed that the AR-
M5P exceeded other models according to performance criteria. The combination of ML
algorithms enhanced model performance in terms of capturing extreme salinity values,
which is critical in managing water resources.

Tiyasha et al. [28] suggested four tree-based predictive models: RF, random forest
geneRator (Ranger), conditional random forests (cForest), and XGBoost compared with
algorithms, XGBoost, multivariate adaptive regression splines (MARS), and Boruta, GA.
Additionally, four feature selector techniques (GA, Boruta, XGBoost, and MARS) were
used to determine the optimum independent variables employed to forecast DO changes.
The outcomes show that the performance of all predictive approaches was good as per
the features selected by the algorithms MARS and XGBoost. Additionally, the XGBoost
predictive technique recorded the best performance when combined with MARS and
XGBoost algorithms in terms of applied various statistical criteria.

Kadkhodazadeh and Farzin [86] explored a novel gradient-based optimiser (GBO)
algorithm coupled with a least square support vector machine (LSSVM) technique for
the evaluation of WQ parameters. The LSSVM-GBO method’s performance is examined
using three benchmark datasets to demonstrate its superiority (Housing, LVST, Servo).
The novel hybrid algorithm’s findings were then compared to ANN, ANFIS, and LSSVM
techniques. The modelling results based on evaluation criteria revealed that LSSVM-GBO
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outperformed all other benchmark datasets and techniques. Then, EC and TDS modelling
was done at varying time delays using the best input combination and the best algorithm.
The Gotvand station has the highest modelling accuracy for EC and TDS parameters.

Dehghan, et al. [87] used SVR in stand-alone and hybrid versions. SVR was integrated
with four metaheuristic algorithms, such as chicken swarm optimisation (CSO), social
skidriver (SSD) optimisation, black widow optimisation (BWO), and the algorithm of the
innovative gunner (AIG) to predict sufficient monthly DO. All the hybrid models produced
good performance based on the different statistical criteria, and SVR–AIG offered better
results. Moreover, combined techniques improved the precision of the stand-alone SVR
method by 6.52–1.75%.

5.3. Preprocessing-Based Hybrid Models (PBH)

In this method, the input data are pre-processed using various methods such as
decomposition-based, filter-based, denoising-based, feature selection, and data cleaning
approaches. Following this, the appropriate individual model forecasts the screened
time series [88].

Solg, et al. [89] investigated two models: SVR and ANFIS. The wavelet transform
approach was used to clean raw data from noise and analyse the data set into sub-series.
Additionally, principal component analysis (PCA) is applied to determine the best predictors.
The outcomes showed that the SVR was better than the ANFIS model, the wavelet transform
approach improved data quality, and the hybrid W-PCA-SVR is the best technique.

Zhang et al. [23] designed Kernal PCA (kPCA) with a recurrent neural network
(RNN) model to estimate the trend of DO. The kPCA technique is used to reconstruct WQ
variables, which tries to minimise the noise in raw sensory data while preserving actionable
information. The model can use previous knowledge to forecast future trends because of
the RNN’s recurrent connections. When compared to present AI techniques such as FFNN,
SVR, and the general regression neural network model (GRNN), the kPCA-RNN model
attained the predicted accuracy and outperformed the comparative models.

Al-Sulttani et al. [90] proposed five various hybrid ML techniques, including Gradient
Boosting Machines (GBM H2O), RF, Quantile regression forest (QRF), radial SVM, and
Stochastic Gradient Boosting (GBM). Furthermore, the techniques were integrated by
employing two various algorithms for identifying features, e.g., GA and PCA, to predict
monthly BOD values. GA was used to select the best-fitting predictions based on their
evolutionary potential. The findings show that the combined PCA-QRF approach was the
best performing approach to predict WQ compared to the other models.

Bi et al. [91] suggest ANN, SVR, ARIMA, XBoost, and LSTM models to forecast DO
and CODmn. The outcomes reveal that the SE-LSTM technique is superior to the other
methods based on statistical metrics. Hence, The Savitzky–Golay filter can remove possible
noise from the WQ time series, and the LSTM can examine non-linear properties in a
complex water environment.

Ahmed et al. [92] created a hybrid model by combining the MARS model with the
maximum overlap discrete wavelet transformation (MODWT) (i.e., MODWT-MARS). The
suggested model was also compared against various ML techniques (MARS, CEEMDAN-
MARS, CEEMDAN-SVR, SVR, KRR, KNN, RF) to estimate daily WQ parameters. The
results revelated that the combined algorithm (i.e., MODWT-MARS) was superior to the
other methods according to statistical criteria. This hybrid approach could be used to
anticipate WQ characteristics using fewer predictor factors in the future.

Ahmadianfa, et al. [93] proposed a novel hybrid model discrete wavelet transform
coupled with locally weighted linear regression (LWLR) and employing the mother wavelet
Bior 6.8 to analyse data into two levels. The outcomes reveal that the W-LWLR technique
outperforms other methods such as LWLR, MLR, SVR, ARIMA, W-MLR, W-ARIMA,
and W-SVR.

Eze et al. [94] developed a new combined forecast approach that depends on hy-
brid empirical mode decomposition (EEMD) and an LSTM neural network. Initially, the
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integrity of the datasets is improved by using moving average filtering and linear interpo-
lation techniques to pre-treat the WQ indicator datasets in this combined EEMD-DL-LSTM
technique. Then, the EEMD technique decomposes the dataset of measured real sensor WQ
characteristics. Finally, a multi-feature selection procedure is used to carefully choose a
collection of IMFs that are substantially linked with the measured real-world WQ parameter
datasets and integrate them as inputs to the DL-LSTM neural network. The innovative hy-
brid prediction model’s performance is validated by comparing the results to real datasets.
Various measurement criteria, such as (MAE, MAPE, RMSE, and MSE), were utilised to
assess the overall precision of the unique hybrid prediction technique.

5.4. Hybridisation of Hybrid Models

The hybridisation of hybrid models is a novel idea proposed to improve forecasting
precision over traditional hybrid classes [22].

In 2020, several researchers used a combined hybrid model with a pre-processing
algorithm, such as Ya, et al. [95], who suggested a technique for forecasting WQ parameters
(TN) that depends on the deep belief network (DBN) method. The deep belief network’s
network is optimised using the PSO algorithm, which extracts feature vectors from WQ
data at several scales. The PSO-DBN WQ prediction model is then integrated with the
least squares support vector regression (LSSVR) machine, which is used as the top forecast
layer of the approach. When comparing the proposed model (PSO-DBN-LSSVR) to the
classic back propagation (BP) neural network, the DBN neural network, LSSVR, and the
DBN-LSSVR hybrid technique, the outcomes display that the model can accurately forecast
the WQ parameters and has good robustness based on statistical metrics.

Wang et al. [96] established a combined assembly wavlet analysis (WA-PSO-SVR) to
simulate three WQ metrics: KMnO4(CODMn), (NH3-N), and (DO). The results showed that
the combined WA-PSOSVR technique outperformed two other methods (PSO-SVR and a
single SVR) in predicting non-linear stationary and non-stationary time series, particularly
for extreme value prediction. Daily forecasts were more precise than monthly forecasts,
indicating that the combined technique was better suited to short-term forecasting in
this case.

In 2021, Son, et al. [97] suggested a novel hybrid technique (SWT-ISSALSTM). An
improved LSTM model was presented to overcome the gradient disappearance or explosion
in standard RNNs, as well as the inability to handle the issue of long-time dependence and
enhance the model’s performance. Additionally, a hybrid model using synchrosqueezed
wavelet transform (SWT) to clean the raw data was used to resolve the non-stationarity,
unpredictability, and nonlinearity of the WQ parameters data. The improved sparrow
search algorithm (ISSA), a novel heuristic optimisation technique integrating Cauchy
mutation and opposition-based learning (OBL), was also used to obtain the optimum
hyperparameter values for the LSTM method. The suggested combined system was
assessed utilising weekly WQ parameters. The results show that the addressed model,
which combines the SWT’s strong noise-resistant resilience and the LSTM’s non-linear
mapping, outperforms the peer models (stand-alone LSTM, BPNN, SVR, SWT-LSTM, and
ISSA-LSTM) at two gauging stations. The suggested combined technique (SWT-ISSA-
LSTM) can be utilised as a replacement framework for predicting WQ.

Jamei et al. [98] aimed to find two novel wavelet-complementary intelligence method-
ologies: the wavelet least square support vector machine coupled with improved simulated
annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with an
artificial neural network (W-EKF- ANN), to predict monthly Mg and SO4 metrics. The
findings showed that both novel complementary paradigms could provide acceptable
accuracy for WQP prediction based on correlation coefficient R and RMSE.

Sha et al. [99] evaluated various DL approaches such as CNN, LSTM, and CNN-LSTM
models. Moreover, they employed a complete ensemble empirical mode decomposition
algorithm (EEMD) with adaptive noise (CEEMDAN) to decompose and reduce the intricacy
of DO and TN concentration. The outcomes reveal that the CNN–LSTM performed better
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than the stand-alone CNN and LSTM models, the techniques using CEEMDAN-based
input data performed significantly better than the techniques using original input data, and
the technique precision incrementally reduced with the rise of forecasting stages, while the
original input data decayed more rapidly than the CEEMDAN-based input data, indicating
that the input data pre-processed by the CEEMDAN method could significantly enhance.

Yan et al. [100] suggested four stand-alone models (GA-BPNN), (PSO-BPNN), (PSO-
GA-BPNN), and (BPNN) to forecast DO concentration. The finding indicated that the
PSO-GA-BPNN technique had enhanced forecasting precision and robustness compared
with other methods. The connection weight and threshold of BPNN were optimised using
PSO and GA in this work. This hybrid PSO and GA algorithm are based on the PSO
algorithm, with the GA inserted during the PSO method’s execution. It combines the
benefits of both algorithms, resulting in less processing, faster convergence, and better
global convergence performance.

The details of the selected papers, including authors, and the location, time scale,
methods, input variables, output prediction, and evaluation criteria, are given in Table 3.

An analysis of several reviewed articles on optimisation algorithms revealed the following:

• The general optimisation approaches demonstrated their ability to tune all AI models
to achieve a far higher score on various evaluations as compared to a single model,
which does not use any optimisation technique. In addition, when compared to a trial-
and-error procedure, the probability of achieving ideal values is substantially higher.

• The most commonly employed algorithm in the WQ area and paired with AI ap-
proaches to forming a combined model is the PSO algorithm.

• Several studies used pre-processing algorithms to overcome the data’s non-stationarity,
randomness, and nonlinearity of the WQ indicators. However, all pre-processing data
steps were not used in most papers.

• The trend of using hybrid models has increased in recent years.
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Table 3. Summary of application of different type hybrid models in WQ monitoring.

Authors River Location Scale Predictors Target Models Used Best Model Measures of Accuracy

[4] Babol-Rood River Northern iran Monthly PH, HCO3, CL, SO4,
Na, Mg, Ca, Q, TDS, EC

M5P, RF, bagging-M5P,
bagging-RF, RS-M5P,
RS-RF, RC-M5P, RC-RF,
AR-M5P, AR-RF

AR-M5P RMSE, MAE, NSE, BPIAS

[59] Luan Tangshan City Every 4 h
T, PH, DO, BOD, Tur,
COD-Mn, NH4-N, TP,
TN

TP, TN, COD-Mn 1-DRCNN,
BiGRU, GRU, LSTM

Combined
(1-DRCNN-BiGRU) MAE, MAPE, RMSE, R2

[31] Pearl China Used six different time
scale

PH, EC, Tur, DO,
NH3-N, TP, COD-Mn,
TN, WL, WT

DO SVR MIC-SVR NSE, R2, RMSE

[69] Indus river Asia monthly
Ca, Mg, Na, Cl, SO4,
HCO3, PH, EC, WT,
DO, TDS

DO, TDS PSO-FFNN, PSO-GEP PSO-GEP NSE, RMSE, RRMSE, P, R

[60] Dong Nai River Vietnam Month
DO, PH, COD, BOD,
TSS, Tur, NH3-NL,
Coliform

DO, PH, COD, BOD,
TSS, Tur, NH3-NL,
Coliform

ARIMA, NAR,
NAR-MA, LSTM, and
LSTM-MA

LSTM-MA MSE, RMSE, MAPE

[86] Karun Iran Monthly
Ca, Cl, Mg, Na, SO4,
SAR, Sum.C, Sum.A,
PH, Q, HCO3

TDS, EC ANN, ANFIS,
LSSVM, LSSVM-GBO LSSVM-GBO MAE, RRMSE, R, R2

[57] Greece’s Small Prespa
Lake south-eastern Europe Every 15-min PH, ORP, T, EC, DO,

Chl-a DO, Chl-a LSTM, CNN, SVR,
and DT, CNN-LSTM CNN-LSTM

R, RMSE, MAE, PBIAS, NSE, WI,
and graphical plots (Taylor
diagram, box plot and
spider diagram)

[58] Nakdong South Korea Monthly WL, TOC, TP, TN TOC, TP, TN CNN-LSTM CNN-LSTM NSE, R2, MSE

[97]

Yongding River and
Gangnan gauging
stations in the Haihe
River Basin,

Chain weekly DO DO

SWT-LSTM,
ISSA-LSTM,
SWT-SSA-LSTM,
SVR, BPNN,
and single LSTM

SWT-ISSA-LSTM AEmax, MAE, MAPE, RMSE, R2,
CC, NSE, IA, 1.96 Se

[98] Maroon Southwest Iran monthly Q, EC, Mg, SO4 Mg, SO4

LSSVM-ISA, EKF-ANN
W-LSSVM-ISA,
W-EKF-ANN

W-LSSVM-ISA R, RMSE, KGE

[90] the Euphrates River Iraq monthly
T, PH, EC, TSS, BOD,
ALK, Ca, COD, SO4
TDS, TSS, Tur

BOD (QRF), (RF), (SVM),
(GBM) (GBM_H2O) PCA-QRF R2, RMSE, AE, NSE, W index,

PBIAS

[99] Xin’anjiang River Huangshan City, 4-h DO, TN DO, TN

CNN, LSTM,
CNN-LSTM,
CEEMDAN-CNN-
LSTM

CEEMDAN-CNN-
LSTM CE, RMSE, MAPE

[100] Beihai Lake Beijing Hourly PH, CAHL-A, NH4H,
BOD, EC DO

BPNN, PSO-BPNN,
GA-BPNN,
PSO-GA-BPNN

PSO-GA-BPNN APEmax, MAPE, RMSE, R2
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Table 3. Cont.

Authors River Location Scale Predictors Target Models Used Best Model Measures of Accuracy

[85] Tai Lake, Victoria Bay China.
Monthly in Tai lake,
every two weeks in
Victoria Bay

Tai lake (TN, TP,
NH3-N, SS, WT, DO,
PH, Transparency, CL,
Precipitation
Victoria Bay (E. coli,
BOD5, NH3-N, Nitrite,
phosphate, PH, WT,
salinity

DO LSTM, BP, ARIMA IGRA -LSTM RMSE,

[38] Tualatin Oregon, USA Hourly

T, DO, PH,
Specific conductance,
Tur, fluorescent
dissolved organic
matter

T, DO, PH,
Specific conductance,
Tur, fluorescent
dissolved organic
matter

RF, XGboost,
CEEMDAN-RF,
CEEMDAN-XGBoost,
PSO-SVM, RBFNN,
LSSVM and LSTM

CEEMDAN-RF,
CEEMDAN-XGBoost

MAPE, MAE, RMSE, RMSPE, U1,
U2

[28] Klang Malaysia Monthly daily
15 WQ parameters, 7
hydrological
components

DO

XGBoost-XGBoost
MARS-XGBoost
Boruta-XGBoost
GA-XGBoost
Boruta-Ranger
GA-Ranger
MARS-Ranger
XGBoost-Ranger
. . . . . .

XGBoost-XGBoost
MARS-XGBoost
Boruta-XGBoost

R2, RMSE, MAE, NSE, MD

[91] GuBeiKou, Beijing, China. Every 4-h DO, CODmn DO, CODmn
ANN, SVR, ARIMA,
XBoost, LSTM,
SE-LSTM

SE-LSTM MAE, MAPE, RMSE

[83] Yangtze river China Daily DO, BOD, CODmn, T,
PH, NH3-N DO, BOD, CODmn BP, ABC-BP, PSO-BP,

IABC-BP IABC-BP R2, NSE, RE,

[81] Shrimp pond China Every 10 min DO, WT, Am, PH, AT,
Hu, AP, WS DO

SAE-LSTM,
SAE-BPNN, LSTM,
BPNN

SAE-LSTM MSE, RMSE, MAPE

[23] Burnett river Australia Hourly T, EC, DO, PH, Chl-a DO KPCA-RNN, FFNN,
SVR, GRNN KPCA-RNN MAE, R2, RMSE

[94] Abalone farm South African Monthly DO, T, Tur, PH DO, T, Tur, PH
BP, SAE-BP, DL-LSTM,
SAE-LSTM,
EEMD-DL-LSTM

EEMD-DL-LSTM RMSE, MAE, MSE, MAPE

[96] Grand Canal China Daily and Monthly CODMn, NH3-N, DO COD SVR, PSO-SVR,
WA-PSO-SVR WA-PSO-SVR RMSE, NSE, MAPE, R2

[68] Zayandehrood River Iran (2001–2015)
TDS, EC, pH, HCO3, Cl,
SO4, Mg, Na, K, CO2,
Ca, CH, and TH

EC, TDS, SAR, CH, and
TH

ANFIS, ANFIS-PSO,
ANFIS-ACOR

ANFIS-PSO MAPE, RMSE, R2, d

[87] Cumberland River Southern United States Monthly T, Q DO
SVR, SVR-CSO,
SVR-SSD, SVR-BWO,
SVR-AIG

SVR–AIG RMSE, R2, MAE, NSE, BIAS
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Table 3. Cont.

Authors River Location Scale Predictors Target Models Used Best Model Measures of Accuracy

[80] Hooghly River West Bengal, India Monthly
H, Cl, TH, total
alkalinity, Turbidity
and Residual Chlorine

H, Cl, TH, TALK, Tur
and Residual Chlorine

NN-CS, NN-GA,
NN-PSO NN-CS RMSE, accuracy, precision, recall,

f-measure, (MCC) (FM index)

[67] Kermanshah Province Iran Monthly pH, T, SC, SA TAlk, TH, TDS, EC ANFIS, PSO-ANFIS PSO-ANFIS MRE, RMSE, R

[95] Juhe River China Every 4 h
T, pH, DO,
conductivity, NTU,
CODmn, TP, NH4N

TN
BPNN, LSSVR, DBN,
DBN-LSSVR,
PSO-DBN-LSSVR

PSO-DBN-LSSVR R2, RMSE, MAE, MAPE

[78] Langat Rive Malaysia Monthly COD, PO4, TS, K, Na,
Cl, EC, PH, NH4-N BOD, DO MLP, MLP-FFA MLP-FFA RMSE, R, WI

[92] Surma River Bangladesh Monthly Humidity, WT, rainfall,
TDS, pH, turb, AT DO

MARS,
CEEMDAN-MARS,
CEEMDAN-SVR, SVR,
KRR, KNN, RF

MODWT-MARS R, WI, RMSE, MAE

[93] Sefidrud River Iran Monthly EC, Q EC

SVR, W-SVR, ARIMA,
W-ARIMA, MLR, and
W-MLR, LWLR,
W-LWLR

W-LWLR RMSE, NSE, MAE, RAE, MSRE

[101] Kinta River Malaysia Monthly DO, BOD, COD, Temp,
NH3, TS, Cl, Ca, PH Na DO

LSTM, ELM, HW,
GRNN, SAE, WAE,
LSTM-RF, ELM-RF,
GRNN-RF and HW-RF

HW-RF NSE, WI, RMSE, MAE, MSE, CC

[102] Yangtze River China Weekly DO DO

LSSVM, SSA-LSSVM,
VMD-LSSVM, SVR,
BPNN,
VMD-SSA-LSSVM

VMD-SSA-LSSVM NSE, RMSE, MAE, MAPE, CC, R2

[103] Tolo Harbour China biweekly/monthly BOD, TIN, DO, PO4,
Temp, Chl-a, SDD, pH HAB

ANN (LM-PSO),
ANN(LM-GA),
ANN (GDM-PSO)
ANN (GDM-GA), SVM

ANN (LM-PSO) RMSE, CC

[104] crab culture ponds China 10 min DO DO

CEEMDAN-LZC-
GOBLPSO-GRU,
CEEMDAN-GOBLPSO-
GRU, GRU,
CEEMDAN-LZC-
GOBLPSO-LSTM,
CEEMDAN-GOBLPSO-
LSTM, LSTM,
CEEMDAN-LZC-
GOBLPSO-RNN,
CEEMDAN-GOBLPSO-
RNN, RNN,
BPNN

CEEMDAN-LZC-
GOBLPSO-GRU MAPE, RMSE R2

[105] Huaihe River,
Potomac River China, US Weekly, every 15 min COD, DO, NH3-N COD, DO, NH3-N ANN, ARIMA, MLE,

W-MLE W-MLE ARE, MRE
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Table 3. Cont.

Authors River Location Scale Predictors Target Models Used Best Model Measures of Accuracy

[106] Bam Normashir Plain Iran Monthly EC, Cl, Na, Ca, Mg,
SAR Cl, EC, SAR

FCM, GP, ANN,
ANN-PSO, IDW, RBF,
kriging, NF-GP,
NF-MCF

NF-GP RMSE, MAE, CC

[107] Karaj River Iran Monthly BOD, Q BOD WANN, ANN, GP, DT,
BN, WGP WGP MAE, RMSE, R

[74] Credit River Canada hourly WT WT GA-LSTM, LSTM, RNN GA-LSTM R2, MAE, RMSE, RSR, mNSE, md,
KGE

[108] River of Shanghai Shanghai Daily P, N, BOD, NH4-NO3
COD index COD GM, RNN, LSTM-RNN LSTM-RNN RMSE, MAPE

[75] Ashi River China Every 4 h NH3-N, TURB, EC NH3-N, TURB, EC BPNN, IGA-BPNN IGA-BPNN RMSE, MAE, MRE, R2

[109] Qiantang River,
Zhejiang Province China Every 4 h permanganate index,

pH, TP, DO
permanganate index,
pH, TP, DO

BPNN, SVR, LSTM,
GRU, SRN, RNNs-DS RNNs-DS RMSE MAE MAPE

[110] Yamuna India Monthly BOD BOD ANFIS, ANN,
W-ANFIS W-ANFIS MAE

[111] Isfahan-Borkhar Iran Monthly SO4, Cl, HCO3, K, Na,
Mg, Ca EC, SAR, TH

ANFIS-CGA,
ANFIS-ACOR,
ANFIS-DE,
ANFIS-PSO, ANFIS

ANFIS-CGA R2, RMSE, MAPE, SI

[112] Small Prespa Lake Greece Daily Chl-a, DO Chl-a, DO

LSSVM,
CEEMDAN-LSSVM,
VMD-CEEMDAN-
LSSVM, ELM,
CEEMDAN-ELM,
VMD-CEEMDAN-ELM

VMD-CEEMDAN-ELM R, RMSE, MAE, BIAS

[113] South-to-NorthWater
Diversion Project China Daily PI, Ph, TN, WT, turb,

EC, Chl, DO, DOM
TN, WT, DOM, DO,
WVP, AT, PM 2.5

BPNN, CS-BP, PSO-BP,
GRNN, CS-BP RMSE, MAPE

[114]
Nazlu Chay, Tajan,
Zayandeh Rud
and Helleh

Iran Seasonal TDS, Cl, EC, Na TDS

ANN, ANFIS-GP,
ANFIS-SC, GEP,
WANN, WANFIS, GP,
WANFIS-SC, WGEP

WGEP R, RMSE and MAE

[56] offshore of Kuala Terengganu Daily WT, pH, salinity, DO WT, pH, salinity, DO ARIMA, ANN,
ARIMA-ANN ARIMA-ANN RMSE, MAE

[115] Pearl River China Daily COD, NH4N, DO, EC,
WT, pH, TU COD, Tur WNN, ANN, FWNN FWNN R, R2, MAPE, RMSE, MSE

[116] Aji-Chay River Iran Monthly EC EC ELM, ANFIS, WA-ELM,
WA-ANFIS

boosting
multi-WA-ELM,
multi-WA-ANFIS

RMSE, R2, NSE

[89] Karun River Iran Monthly DO, Q, WT, BOD BOD SVR, ANFIS, WSVR,
WANFIS WSVR RMSE, R2
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6. Future Research Directions

Azad et al. [68] suggested employing modified algorithms to enhance other types of
ML methods that suffer comparable shortcomings and comparing these changed hybrid
models to different physical and soft computing models. Shah et al. [69] proposed that
other studies should employ extra AI models, such as ensemble forecasting combined with
PSO, to further develop their performance with optimum parameters in modelling WQ
factors. Li et al. [81] recommended that it is possible to create a deep network through layer-
wise pre-training to collect deeper latent features to investigate the impact of raising the
network layers of SAE (sparse auto-encoder) on predictive performance. Tiyasha et al. [28]
mentioned that the MARS algorithm as a feature selector and the XGBoost algorithm as
both a feature selector and a predictive method should be investigated to create various
types of WQ data. In addition, the Boruta algorithm should be used to create scenarios to
determine the best predictors’ cutoff value. Furthermore, an examination of uncertainty
is required to determine the stochasticity of the data application using the suggested AI
techniques (RF, cFores, Ranger) and XGBoost. Song et al. [97] stated that more effective
pre-processing procedures for WQ data should be investigated to increase the model’s
precision. Jamei et al. [98] stated that, in the future, an ensemble multi-wavelet transform
(EMWT) paradigm could be employed to utilise the wavelets simultaneously. On the other
hand, an ensemble tree-based method could be effective for combining the benefits of
each complementary strategy to estimate surface water WQPs. Additionally, combined
versions that incorporate more than one training technique for predictability improvement
are recommended for such an issue of WQ parameters.

Additionally, all of the studies reviewed here support the suggestions below:

• It is recommended that the three data pre-processing steps be applied to avoid out-
liers and noise and to select the most reliable and precise data to be employed as
predictors later.

• Other techniques for pre-treatment data, such as EEMD and singular spectrum analy-
sis, are proposed.

• Selection predictors are significant in determining the model’s performance and pre-
cision. Accordingly, it is advised that more efforts be made to select the optimal
predictors’ combination; consequently, it is proposed that other techniques be used
to choose the predictors, such as feature extraction methods, feature selection, and
dimensionality reduction methods.

• Applying hybrid metaheuristic algorithms and soft computing techniques in WQ
parameter prediction has grown considerably in recent years. Nevertheless, there is
still room for improvement concerning WQ parameter prediction.

7. Conclusions

This work attempted to review papers that employed hybrid methodologies to simu-
late WQ parameters. The selected papers in this review revealed that there has been an
increasing tendency toward employing these methods in the area of WQ modelling in
recent years. Combining data pre-processing techniques with metaheuristic algorithms and
soft computing models has enhanced WQ prediction accuracy among the many modelling
approaches. Therefore, hybrid models are the most effective techniques that must be used
to enhance the precision of WQ parameter predictions. A comprehensive hybrid model
incorporates both pre-processing techniques and metaheuristic algorithms. Accordingly, a
key strength of the current study is that it represents a comprehensive examination of all
the above factors.

Most of the previous research used the WQ parameters as predictors, and few of them
applied other factors such as weather. For this type of data, models that incorporate only
factors that have been proven effective are more precise than models that incorporate all
factor data without testing variables’ efficiency. Additionally, most previous studies used
one or two steps of pre-processing, which impacted the accuracy of prediction models.
Therefore, in future studies, the efficiency of the factors should be tested (predictors)
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before applying all of the data as input to the forecast models and using normalisation
and cleaning. Furthermore, although significant advances in hybrid model techniques
have been made recently, no new techniques have emerged as the best forecasting model.
Consequently, WQ parameter forecasting remains a research problem, which leaves room
for scholars to improve hybrid techniques for specific applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/environments9070085/s1, Table S1: Abbreviations; Table S2: Review of
researchers who used data pre-processing [4,16,23,28,38,56–60,67–69,73–75,78,80,81,83,85–87,89–116].
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