
applied
sciences

Article

Sonum: Software-Defined Synergetic Sampling
Approach and Optimal Network Utilization
Mechanism for Long Flow in a Data Center Network

Lizhuang Tan 1,2,* , Wei Su 1,2,*, Peng Cheng 3, Liangyu Jiao 4 and Zhiyong Gai 5

1 School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
2 National Engineering Laboratory of Next Generation Internet Interconnection Devices,

Beijing Jiaotong University, Beijing 100044, China
3 College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580,

China; z17070643@s.upc.edu.cn
4 School of Information Engineering, SouthWest University of Science and Technology, Mianyang 621010,

China; liangyu0112@126.com
5 School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;

gzhiyong94@bupt.edu.cn
* Correspondence: lzhtan@bjtu.edu.cn (L.T.); wsu@bjtu.edu.cn (W.S.)

Received: 14 November 2019; Accepted: 20 December 2019; Published: 24 December 2019

Featured Application: Compared to traditional ECMP and Hedera, Sonum can significantly
improve network throughput, flow completion time and link utilization. Sonum is expected
to be used in data center network management with the result of increasing data center revenue
and improving user experience.

Abstract: Long flow detection and load balancing are crucial techniques for data center running and
management. However, both of them have been independently studied in previous studies. In this
paper, we propose a complete solution called Sonum, which can complete long flow detection and
scheduling at the same time. Sonum consists of a software-defined synergetic sampling approach
and an optimal network utilization mechanism. Sonum detects long flows through consolidating
and processing sampling information from multiple switches. Compared with the existing prime
solution, the missed detection rate of Sonum is reduced by 2.3%–5.1%. After obtaining the long flow
information, Sonum minimizes the potential packet loss rate as the optimization target and then
translates load balancing into an optimization problem of arranging a minimum packet loss path for
long flows. This paper also introduces a heuristic algorithm for solving this optimization problem.
The experimental results show that Sonum outperforms ECMP and Hedera in terms of network
throughput and flow completion time.

Keywords: packet sampling; long flow detection; load balance; traffic scheduling; heuristic algorithm;
data center network

1. Introduction

A data center (DC) is a large-scale internet facility consisting of thousands of interconnected
servers for computing and storage, supporting large applications such as web search, social networking
and cloud computing. With the increasing demand in recent years, more and more funds have been
invested in optimizing the performance of data centers, which has led to a lot of research on improving
network performance in industry and academia [1]. One way to improve the performance of a data
center network (DCN) is traffic load balancing [2].

Appl. Sci. 2020, 10, 171; doi:10.3390/app10010171 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6826-4596
http://dx.doi.org/10.3390/app10010171
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 171 2 of 22

The traditional traffic load balancing scheme does not distinguish flows [3], but uses the same
scheduling policy for all flows, which makes the load balancing effect extremely poor [4]. From our
perspectives, traffic load balancing should be divided into two parts: Traffic information collection
and traffic scheduling. Traffic information collection is important for the network management and
optimization in data centers, because traffic scheduling requires detailed information on the flows
being transmitted [5].

According to previous research [6], traffic in datacenters obeys a long-tail probability distribution.
Specifically speaking, nearly 90% of all flows are smaller than 10KB and last under a few milliseconds,
while the remaining 10% account for most of the traffic. This means most flows are short flows,
meanwhile most bytes are from long flows [7]. Short flows are generated by web search and HTTP
requests, which must be transmitted before the deadline of flow completion time (FCT). Long flows
are generated by VM migration, data backup, and MapReduce, which applications are sensitive to
throughput [8].

Nowadays, data centers usually use the Equal-Cost MultiPath (ECMP) protocol as a basic load
balance method. ECMP ensures that all path utilizations are balanced by uniformly distributing
the data flows to different transmission paths. However, this mechanism using hashing or polling
may result in congested links become more congested. In order to pursue the full use of bandwidth,
delay-sensitive short flows tend to be queued after long flows and cannot be effectively forwarded in
time. This will increase the FCT of all flows. All in all, An ideal load balancing scheme should design
different scheduling schemes for long flows and short flows [9].

The ideal load balance scheme should look like this: The network runs traffic classification to
distinguish between long and short flows. After all long flows are found from all flows, it would
schedule long flows and short flows for load balancing [10].

Meanwhile, most existing load balancing solutions achieve the goal of minimizing FCT by
equalizing link utilization [11]. However, latency and bandwidth can affect each other. In this paper,
minimizing network packet loss rate instead of equalizing link utilization is an optimization goal of
data center networks. The reason why packet loss rate is used as the target is that it has a great impact
on the application of a data center network and will significantly decrease the long tail distribution
of FCT.

In conclusion, We conducted research on the following three issues in this paper:

• How to collect network traffic information at a lower cost, especially the long flow and short
flow information.

• How to implement dynamic network load balancing for long flows and short flows.
• How much does network performance improve by load balancing based on long flow and short

flow information.

Motivated by the above questions, we present a complete solution named Sonum, which contains
a synergetic software-defined sampling and detection approach for long flow and an optimal network
utilization mechanism for long flow scheduling. Synergetic software-defined sampling and detection
approaches could efficiently identify long flows and short flows with lower latency, missed detection
rate and communication overhead. Optimal network utilization mechanisms could significantly reduce
packet loss and retransmission rate due to switch congestion and link congestion, reduce FCT and
improve network throughput. The contributions of this paper are as follows:

• We introduce a software-defined synergetic sampling and detection approach for long flow and
analyze its performance in a data center network environment.

• We introduce an optimal network utilization mechanism for long flow scheduling, considering
not only link status but also switch status.

• We propose an heuristic long flow scheduling algorithm for Sonum

Appl. Sci. 2020, 10, 171 3 of 22

Experiment results show that Sonum can detect long flows and schedule long flows more
efficiently than existing methods. Compared to ECMP and Hedera [12], Sonum performs better
in terms of flow completion time and throughput.

The remainder of this paper is organized as follows. Section 2 describes the background of this
research and Section 3 reviews the related work. Section 4 details the system design of Sonum from
two parts: Synergetic long flow detection approach and long flow scheduling mechanism, and then
Section 5 presents the simulation experimental results and discussion. At last, Section 6 concludes the
whole paper and points out future work.

2. Background

2.1. Software Defined Networking

The traditional data center network has the characteristics of distributed control, highly coupled
control and forwarding, and best-effort forwarding, with the result that complex scheduling strategy
is difficult to be deployed. The distributed implementation of scheduling strategy means the network
can not be dynamically adjusted according to the current state of the whole network, so more and
more people will consider using a software-defined network (SDN) [13], which is a loosely coupled
and highly scalable network architecture.

SDN is a new network architecture; its core idea is decoupling of data plane and control
plane. Switches are only responsible for simple data forwarding. Decision-making functions are
all concentrated in the controller. As the core of an SDN, the controller can control the entire network
and communicates with switches through OpenFlow message. SDN architecture can develop a flexible
network forwarding strategy for complex and changeable business scenarios, which provides a new
idea for the data center traffic load balancing problem.

2.2. Data Center Network

The Fat-Tree architecture is currently the most popular network architecture in a data center.
Figure 1 shows a typical Fat-Tree architecture. Sixteen groups of servers (S1–S16) are linked to the
edge switches (E1–E8), which is the bottom layer of Fat-Tree. The second layer is composed of eight
aggregation switches (A1–A8), and the top layer is four core switches (C1–C4).

An edge switch and a set of servers connected to it are called a pod. Therefore, the topology in
Figure 1 contains eight pods. According to whether the traffic crosses the pod, the traffic in the data
center can be divided into two types: Inter-pod flows and internal pod flows. The sender and receiver
of an inter-pod flow belong to two different pods. Internal pod flow is the flow of communication
between two servers under the same edge switch.

Generally, the traffic collection function is deployed on the edge switches. Their independent
work has made entire network traffic collection very inefficient. However, we have found that an
inter-pod flow is forwarded by at least two edge switches and two aggregation switches. This means
that packets belonging to one flow have at least four chances to be sampled ideally. So if we can
allow each switch to run a single layer of software sampling, and the switches can exchange their own
sampling information, then the overall network sampling effect should be improved [14].

Appl. Sci. 2020, 10, 171 4 of 22

E1

A1
A5

E6

Servers

Edge

Aggregation

Core

S11S2

A2

E2

C1

Figure 1. Data center network with multi-tier Clos topology (Fat-Tree).

In a data center, there is a large number of optional paths from a source server to a destination
server. These optional paths generally have the same cost metric in the routing table of the switch.
Therefore, switches typically use ECMP mechanisms (IP 5-tuple hashes) to spread traffic across different
optional paths.

2.3. Load Balancing

The key of data center network traffic load balancing is to study how to distribute traffic to
these equivalent links as evenly as possible. Most of the research work used link utilization as
the optimization goal. However, this goal is not appropriate in data center networks. There are
four reasons:

1. Link utilization is a statistical average value, which requires continuity of network traffic on a
time scale. However, data center network traffic characteristics do not meet such needs. Devices
such as servers and switches in the data center network are usually only distributed in a small
physical area, so the transmission delay is lower than the Internet. Therefore, the switch buffer
pool size is typically much larger than the number of packets being transmitted on the link.

2. In data center networks, many-to-one or many-to-many communication modes are widely found
in the parallel computing systems (MapReduce, Dryad and CIEL) and distributed file storage
systems (GFS and HDFS). In order to adapt to these special communication modes, the data
center transmission protocol has also changed compared to the Internet backbone. Even so, there
are still TCP Incast and TCP Outcast problems [15]. TCP Incast is an uncontrolled TCP behavior
that causes considerable link underutilization in many-to-one communication paradigms [16].
TCP outcast is that when traffic that consists of connections of many incoming flows and few
flows at two ports switch (or router) and compete to one common output port, throughput the
few flows is affected implicitly [17]. The main reason for these two problems is competing port
resources. These will not happen on the Internet backbone.

3. The data center network contains a large number of short burst flows. The related measurement
work [18] used Micro-Burst to describe these short burst flows. The results showed that most
of the bursts have a duration of less than 10 s. Other measurements [19] showed that 90% of
burst durations do not exceed 2 s. These traffic bursts are strong, difficult to predict, and have a
short duration. Internet backbone network traffic engineering does not consider this situation.
The traffic in the backbone network is generally regular and relatively stable. This is the main
difference between a backbone network and a data center network. Many previous studies
have used the backbone network approach to the data center. What we want to say is that the

Appl. Sci. 2020, 10, 171 5 of 22

characteristics of these two networks are different, so different research ideas need to be used to
solve load balance problems.

4. The communication between data center servers is widely used in the TCP protocol, accounting
for 95% of the total traffic [20]. TCP is designed for low-bandwidth, low-latency WANs, and
is not suitable for high-bandwidth, low-latency data center networks. Even though there is a
variety of TCP modified transport protocols for data center networks, congestion is inevitable in
these protocols, which do not exist on the Internet backbone.

Therefore, we propose minimizing network packet loss rate instead of balancing link utilization
optimization factor of data center network traffic load balancing.

The loss of packets is a systemic problem of the network [21]. There are five main reasons for
packet loss in the data center network:

1. Unreachable Route

This paper does not consider packet loss due to an unreachable route.
2. Equipment Failure

This paper does not consider packet loss due to equipment failure.
3. Poor Link Quality

Packet loss caused by poor link quality can be solved by improving link quality. Traditional data
center internal networks often use lossy links, but many companies have tried to deploy lossless
network in data centers [22].

4. Link Congestion

Link congestion refers to the random packet loss caused by the data that is not forwarded in time
when the amount of data to be forwarded on one link exceeds the link capacity. Both academia
and industry are paying close attention to the congestion of traditional lossy data center networks
and designing a series of congestion control mechanisms. The well-known DCTCP protocol
can effectively control the switch queue length when network congestion is not serious [20],
but DCTCP is still difficult to avoid overflow of the switch buffer when a large number of
concurrent links occur. Therefore, these mechanisms are also difficult to avoid congestion and
packet loss.

5. Switch Congestion (Switch Buffer Overflow)

Whether the network uses electrical signal transmission or optical signal transmission, when the
data packet enters the switch, data basically needs to be buffered. Usually, the optical signal also
needs to be converted into an electrical signal for processing, and it is difficult to directly process
the optical signal. The electrical signal processing speed of the switch is limited by the processing
capability of the device. As shown in Figure 2, when forwarding the data packet, the packet needs
to be parsed, repackaged and forwarded. These operations need to be performed in the memory.
Moreover, caching the data packets requires a large amount of storage space. When different
types of flows compete for the switch cache, the long flow will occupy most of the switch cache
queues space, making the latency performance of the short flow become worse.

packet

packet

packet

packet

packet

packet

MemoryPort_IN Port_OUT

RepackageParse Forwarding

Figure 2. Shared memory switch mode in data center network.

Appl. Sci. 2020, 10, 171 6 of 22

With the parallel processing, shared buffer space, and buffer management scheduling technology,
such large memory is often not needed. Even so, data center switches are designed with large
memory features.

In conclusion, packet loss is the most direct cause of the increase of FCT, and the main reasons
for packet loss are link congestion and switch congestion. It is not appropriate to only minimize
the maximum link utilization for the entire network, and we should consider both link resources
and switch resources. Link resources can be represented by link utilization. Switch resources can be
represented by switch load. This paper tries to use link remaining bandwidth and switch idle memory
size to represent link resource and switch resource. Further, we refer to link resources and switch
resources collectively as network resources. In this paper, data center load balancing can be described
as the matching problem between traffic and network resources, that is, the overall load balancing
of the network is realized on the basis of minimizing the network packet loss rate. It also naturally
achieves the traditional goal of minimizing the maximum link utilization in this case.

3. Related Work

We classify the prior work on long flow load balancing into two parts: Traffic information
collection and traffic scheduling.

For traffic information collection, the simplest separation between long and short flows has to pay
a high price in practice, due to the expansion of datacenter server scale and the acceleration of network
rate. At present, there are three categories methods of long flow detection. As shown in Table 1, They
are active measurement, passive statistics and sampling.

1. Active measurement

Active measurement method is usually realized by Openflow protocol [23], such as Hierarchiical
Statistics Pulling [12]. The SDN controller sends Read-State messages periodically to the switches,
then receives feedback containing the packets, bytes and duration for each flow. If the controller
sets a long flow detection threshold and the received result of a flow exceeds the threshold,
the flow is diagnosed as long flow. Nevertheless, collecting flow information on each switch
brings huge communication cost to the controller.

2. Passive statistics

The passive statistics method requires changing switch hardware, by adding a statistical module
to each switch. Like DevoFlow [24], The function of statical module is to count the information
on each flow. If the statistics of a certain flow exceeds the threshold of the long flow detection,
the notification to controller is triggered. This method reduces the communication cost between
controller and switches.

3. Sampling

The sampling method is a universal approach to collect traffic information. However, for long
flow detection, the existing solution often does not meet the requirements of long flow detection
accuracy and suffers from feasibility issues [25]. FlowMon fisrt captured the suspicious long flow
through coarse-grained sampling method optimized the TCAM resource allocation [26].

For traffic scheduling, there are two main methods for solving datacenter network long flow load
balancing, namely, slice spraying and active scheduling.

Table 1. Comparison of current long flow detectiong methods.

Method Accuracy Cost Complexity Hardware Changes

Active measurement High High Easy No
Passive statistics High Low Difficult Yes

Sampling Low Mid Easy Yes

Appl. Sci. 2020, 10, 171 7 of 22

Slice the spraying method forwards flow at the packet level, making the load on each link balanced,
e.g., TinyFlow [27]. However, slice spraying can cause packets thar are out of order, which affects the
actual performance of the network. FlowBender [28] advocated Load balances distributively at the
granularity of flows instead of packets, avoiding excessive packet reordering [29].

For active scheduling, previous researchers have also given many different solutions. Hedera [12]
was a centralized dynamic traffic scheduling algorithm, using a fixed polling cycle to sample network
traffic, which is the earliest research paper based on the SDN architecture. By default, Hedera uses
ECMP to forward traffic. After the switch discovers a long flow in the network, it sends the long
flow information to the centralized scheduler. The scheduler will perform unified scheduling on
all the long flows, and deliver the scheduling results to the switches in the form of OpenFlow flow
entries. The switches forward the long flows indicated by the flow entries in the flow table. Otherwise,
the switch forwards according to the ECMP mechanism. Hedera’s centralized scheduling algorithm
is very effective in theory, however, it does not completely solve the problem of traffic balancing
in practice. The main reason for this phenomenon is that Hedera assumes competition between
long flows leads to network congestion. In fact, short flow can compete due to high instantaneous
rates, resulting in network congestion. Moreover, Hedera’s long flow detection mechanism will also
increase the network burden. DiffFlow was an improved scheme based on the Hedera algorithm.
DiffFlow [30] also uses packet sampling to perceive the existence of long flows in the network, but does
not explore the sampling performance in detail. Other works include MircoTE [31], OpenSample [32],
Sample&Pick [33], etc. These solutions focused on data center network load balancing, and did not
have a good answer to how to obtain network long flow information.

Freeway [34] proposed a dynamic path partitioning algorithm to adjust dynamically with varying
traffic load the number of low latency and high throughput paths. While mice flows are transmitted
over low latency paths using a simple equal cost multiple path (ECMP) scheduling, Freeway loaded
balances elephant flows on different high-throughput paths. Freeway is actually a resource reservation
solution. Similar to Freeway, PIAS [35] minimized the FCT by mimicking shortest job first (SJF) on
the premise that flow size is not known a priori, then leveraged multiple priority queues available
in existing commodity switches to implement a multiple level feedback queue. Based on PIAS [36],
LinkGame applied two-sided matching decision in game theory to solving traffic scheduling problem
in data center network. Considering the preference ordering, path-flow matching problem was
formulated as a multiobjective optimization problem with the target to ensure the stability and
satisfaction from the matching scheme.

Some works had also considered the impact of switches on load balancing, such as SAB [37] and
Fincher [38]. SAB utilized the characteristics of that the switch buffer pool, usually much larger than
the round-trip delay bandwidth product in the data center network. SAB set the congestion window
value of the flow by assigning the switch cache. This scheme reduced the short flow completion
time and effectively solved the problems of TCP Incast and TCP Outcast. However, SAB sacrificed
the performance of long flow to make the short flow completion time shorter, so it is not suitable
for long flow. Fincher proposed that the mapping between data center traffic and switch memory
is a many-to-one stable match problem and proved this problem is an NP-hard problem. Fincher
considered the impact of switch resources on flow completion time, and did not consider long flow
scheduling through multiple paths.

There are also some studies that transfer long flow detection and scheduling from the switch to
the server. Mahout [39] obviously had higher sampling accuracy but this was not compatible with
existing networks. AuTO [40] developed a two-level deep reinforcement learning system, mimicking
the Peripheral & Central Nervous System, to solve the scalability problem. Peripheral System resided
on end-hosts, collect flow information, and make traffic optimization decisions locally with minimal
delay for short flows. Central System aggregated and processed global traffic information and made
individual traffic optimization decisions for long flows. However, the latency of deep reinforcement
learning systems is the major obstacle to traffic optimization at the scale of data centers.

Appl. Sci. 2020, 10, 171 8 of 22

4. System Design and Analysis

In this section, we will detail and analysis Sonum from two parts: The synergetic software-defined
sampling and detection approach for long flow and the optimal network utilization mechanism for
long flow scheduling.

Sonum has four modules: Flow Collector, Flow Counter, Long Flow Detection and Long Flow
Scheduling. The function of the first three modules is discovering long flow. The function of the last
module is re-routing the discovered long flow.

As shown in Figure 3, A packet of a certain flow enters the openflow switch and performs
normal forwarding according to flow table. Based on the sampling rate vs, the Flow Collector
Module determines whether to send the protocol header of the packet to the Flow Counter Module
for processing. OpenFlow SwitchFlow CounterFlow CollectorSDN ControllerControl PlaneData Plane Long Flow SchedulingLong Flow Detection Flow Table

Figure 3. The system model of Sonum.

In step 1, The Flow Counter matches the header of the protocol submitted by the Flow Collector
with the established entry. If there is a match and the counter does not overflow, the counter
increments. If there is no match, a new count entry is created according to the protocol header
data. As shown in Figure 4, in order to facilitate lookup and counting, each flow is identified by 5-tuple:
Source/destination IP, source/destination port number and transport protocol. Flow Counter Module
perform a hash calculation on the 5-tuple of each flow, then record the flow information and count
result plus 1.

SrcIP_1 DestIP_1 SrcPort_1 DestPort_1 Protocol_1

Hash Key Counters

FHK 1 5

FHK 2 8

FHK 3 ...

SrcIP_2 DestIP_2 SrcPort_2 DestPort_2 Protocol_2

SrcIP_n DestIP_n SrcPort_n DestPort_n Protocol_n

SrcIP_1, DestIP_1, SrcPort_1, DestPort_1, Protocol_1

SrcIP_2, DestIP_2, SrcPort_2, DestPort_2, Protocol_2

SrcIP_n, DestIP_n, SrcPort_n, DestPort_n, Protocol_n

Flow Information

Figure 4. Count operation of flows.

In step 2, the controller broadcasts the detection parameters according to the network status,
including the sampling rate vs and the long flow threshold Tl . OpenFlow switch sends all the flow
information whose counter value is greater than Tl to the Long Flow Detection Module of the controller.

In step 3, the controller caches the flow information and determines whether the flow is a potential
long flow or not. If yes, the Long Flow Detection Module sends the flow information to the Long

Appl. Sci. 2020, 10, 171 9 of 22

Flow Scheduling Module. Long Flow Scheduling Module generates flow tables according to optimal
network resource utilization mechanism and send flow tables to all switches.

Steps 1–3 can detect and schedule long flows. Specifically, they can be realized through interaction
information between different switches.

4.1. Synergetic Software-defined Sampling and Detection Approach

Synergetic software-defined sampling and detection is the foundation of Sonum. The emergence
of a Software-Defined Networks makes software traffic collection possible. Compared to hardware
traffic collection, software solutions are more flexible to deploy and can dynamically adjust sampling
rate as needed. The disadvantage of software solutions is that performance is often not good. On the
basis of existing network topology and transmission mode, through collaborative optimization, using
a lower sampling rate to achieve a better sampling effect is the goal of software traffic information
collection. The responsibility for synergetic software-defined sampling and detection is to effectively
detect long flow using a lower sampling rate and a lower communication cost between controller
and switch. Therefore, we designed three mechanisms to achive this goal: Synergetic Sampling,
Self-Adaption Sampling and Lifecycle Management.

The problem of long flow detection is as follows: Given a threshold parameter Tl and a traffic
information F = F1, F2, . . . , Fn, a long flow is a flow Fi includes more than Tl percent of packets since
the beginning of the transmission.

4.1.1. Synergetic Sampling

The sampling probability of the switch that a flow passes through can be expressed as:

P(Si) = e
−Γ
Si , Si ≥ 0 (1)

where Γ is the average of the statistics of each switch, Si is the sampling statistics of each switch for
this flow. Si is related to sampling rate v and all flow number m. For any switch, if preset flow statistics
threshold is γ. the probability that the statistical result is greater than the threshold is The sampling
probability of the switch that a flow passes through can be expressed as:

P[Si ≤ γ] = 1− e
−Γ
Si (2)

The joint probability that all switch statistics are less than the threshold is

P[S1,2,...,n < γ] = (1− e
−Γ
Si)n (3)

where n is the number of switches that deploy synergetic software-defined sampling approach. We are
concerned about whether the long flow can be detected, so the probability that at least one switch
detected the long flow is

P[S ≥ γ] = 1− (1− e
−Γ
Si)n (4)

If the network has already been running ECMP, we can use the path as the basic unit instead of
the switch to consider the relevant probability.

4.1.2. Self-Adaption Sampling

Almost all of the conventional sampling schemes rely on fixed period (e.g., NetFlow) or a fixed
percentage (e.g., Hedera). The advantages of these two fixed samplings are reducing the sampling
operation overhead of the switch and facilitating the deployment of the sampling strategy. However,
the disadvantage is missing important data packets.

Appl. Sci. 2020, 10, 171 10 of 22

If the purpose of sampling is long flow detection, a self-adaption sampling approach can adjust
the sampling rate dynamically according to the packet arrival rate and the length of the sampled
queue. It is generally believed that the abnormal increase of network traffic is usually caused by long
flow transmission. Therefore, the increase in packet arrival rate implies that a potentially long flow is
generated and being transmitted. For ease of deployment, Sonum cannot take up too much storage
resources. The queue length indicates the number of statistics in a table. As the sampling progresses,
queue length also fluctuates. The increase in the average queue length means that the number of
statistics has been added to the already established list. The decrease in the average queue length
means that the new sample item is established.

Taking into account the above two parameters, we have established a formula for the relationship
between the two parameters and the sampling rate. First, the synergetic software-defined sampling
approach windowed historical sampling rate data.

R = {v1, v2, ..., vp} (5)

where p is the window size, and vi is the sampling rate when t = i. Then this approach calculates the
statistical average of the packet arrival rate and the average queue length in the window period, which
are r̄ and l̄. According to the change of packet arrival rate and queue length at the latest sampling time,
this approach determines the sampling rate for the next cycle, as shown in the Equation (6).

Rp+1 =
Rp

2
(

rp

r̄
+

lp

l̄
) (6)

where Rp is the sampling rate of the previous sampling period. As long flow detection needs to meet the
demands of the traffic characteristics, the sampling rate should not be too slow. To make the sampling
rate adjustment smoother, this approach uses the rate adjustment by means of an Exponentially
Weighted Moving Average (EWMA) [41] , as shown in Equation (7). EWMA is a commonly used
method of sequential data processing. By weighting historical data and recent observations, EWMA
makes the rate adjustment smoother, avoiding the situation that the sampling rate is repeatedly
adjusted due to the rapid change of the packet rate.

REWMA
p+1 = λ · Rp+1 + (1− λ) · Rp, 0 < λ < 1 (7)

where λ is the smoothing parameter. The bigger λ is, the sampling adjustment function is more
concerned with the latest sampling data. The complete Rate Adjustment Algorithm is described in
Algorithm 1.

Algorithm 1 Rate adjustment algorithm (RAA)

Require: Historical sampling rate data R, Smoothing parameter λ
Ensure: Next sampling rate data Rp+1

1: Calculate Rp+1 according to Equation (6);
2: if Rp+1 6= Rp then
3: Calculate REWMA

p+1 according to Equation (7);

4: Rp+1 = REWMA
p+1 ;

5: else
6: Rp+1 = Rp;
7: end if
8: Return Rp+1;

4.1.3. Lifecycle Management

In order to implement Sonum, we need to optimize the sampled information in order to reduce
the need for storage resources. Deleting old entries and reserving storage space for new flow is an

Appl. Sci. 2020, 10, 171 11 of 22

effective way. With reference to the relevant provisions of the OpenFlow protocol timeout release, we
perform probabilistic selective deletion of entries whose statistics are much lower than the sampling
threshold, and delete flows with longer dwell times.

4.2. Optimal Network Utilization Mechanism

Sonum attempts to analyze the load balancing problem in the datacenter network, define the
purpose of optimizing network utilization and give the feasible solution.

4.2.1. Long Flow Scheduling and Network Utilization Analysis

Load balance based on ECMP can only be achieved if the network is symmetric, because ECMP is
stateless. Under the influence of the randomness of the hash algorithm and flow size, the distribution
of network traffic at a certain moment in an entire network is not uniform. ECMP cannot cope with
network topology asymmetry caused by switches and link failure. At the same time, Uniform traffic
distribution tends to result in insufficient link bandwidth, which is a hot spot as shown in Figure 5.
As an example, assume there are n long flows with a peak bandwidth requirement of d in the network,
and distribute them in m links with capacity c. If nd > mc, there will be an overall bandwidth shortage.
If nd < mc, there will also be a link congestion. All in all, ECMP protocol is less flexible.Switch with SonumSwitch without SonumLong Flow (1)Long Flow (2)Hot-spot Link

Figure 5. Host-spot Link and Deployment of Sonum.

The performance of the entire network can be measured by two main metrics, the FTC and
throughput. The goal is to minimize FCT for shot flows, while maintaining an acceptable throughput
for long flows. The FCT is described as the interval between the start time stamp ts when the first
packet of a flow leaves the source server and the end time stamp te when the last packet of the flow
arrives at the destination server [30]. The ideal FCT is the best achievable where only the service times
of the intermediate nodes and the transmission time of the packets are considered. Because it is not
easy to get the FCT of the network, previous studies have indirectly measured the flow completion
time through bandwidth, and the more balancing the bandwidth utilization, the shorter the FCT.

As described in Section 2, minimizing network packet loss rate instead of balancing link utilization
is more suitable for data center network traffic load balancing. Packet loss is the most direct cause of
the increase of FCT, and the main reason for the packet loss are link congestion and switch congestion.
We should consider both link resources and switch resources to reduce packet loss rate. Link resources
can be represented by link remaining bandwidth. Switch resources can be represented by switch
idle memory. Data center load balancing can be described as the matching problem between traffic
and network resources, that is, the overall load balancing of the network is realized on the basis of
minimizing the network packet loss rate.

It is worth noting that the utilization of network resources for each available path should be
described as the maximum link or switch utilization on the path rather than the sum of link or switch
utilization [42].

Appl. Sci. 2020, 10, 171 12 of 22

4.2.2. Optimal Network Utilization Model

As mentioned above, there are three objects involved when performing long flow scheduling in
a data center. They are long flows, switches and links. Long flows are flows whose packet number
is greater than threshold. Switches is the set of entire network switches, including core switches,
aggregation switches and edge switches. Links is the set of all links that connect switch to server and
connect switch to switch. Some denotations and symbols used in optimal network utilization model
and algorithm are described in Table 2.

Table 2. Denotations used in model and algorithm.

Denotations Description

F The set of all long flows
P The set of all paths in entire network
S The set of all switches
L The set of all links
l The number of network layers
n The number of all servers

P(s, d) The set of all paths from server s to server d
p(s, d)i The ith path in P(s,d), i = 1, 2. . . , |P|
l(s, d)ij The jth section of ith path in P(s,d), i = 1, 2. . . , |P|, and j = 1, 2, 3, 4 if l = 3
s(s, d)ik The kth switch of ith path in P(s,d), i = 1, 2. . . , |P|, and k = 1, 2, 3, 4, 5 if l = 3
lc(s, d)ij The link capacity of jth section of ith path in P(s,d)
ll(s, d)ij The link load of jth ection of ith path in P(s,d)

mc(s, d)ik The memory capacity of kth switch of ith path in P(s,d)
m f (s, d)ik The memory footprint space of kth switch of ith path in P(s,d)

fm The mth flow in F, n = 1, 2..., |F|
rm The rate of long flow fm
M The matching between paths and flows

Then we can define the Link Resource Utilization (LRU) of jth section in path p(s, d)i:

LRUp(s,d)i
=

ll(s, d)ij

lc(s, d)ij
, j = 1, ..., 2l−1 (8)

the Switch Resource Utilization (SRU) of the kth switch in path p(s, d)i:

SRUp(s,d)i
=

m f (s, d)ik
m f (s, d)ik

, k = 1, ..., 2l−1 − 1 (9)

So, the Network Resource Utilization(NRU) of path p(s, d)i:

NRUp(s,d)i
= max{LRUp(s,d)i

, SRUp(s,d)i
} (10)

NRUp(s,d)i
contains j + k parts: j LRUs and k SRUs.

Therefore, the long flow scheduling problem of the data center network can be described as:
Given the network paths set of P = {Ps1,d1 , ..., Psn ,dn−1} and long flow set F = { f (s, d)1, f (s, d)2, ...},

to find a matching MF,P = { f (s, d)m, p(s, d)i| f (s, d)m ∈ F, p(s, d)i ∈ P(s, d)} with minimum
entire NRU.

Obviously, NRU can also be expressed as

NRU ⇐⇒∑
s

∑
d

∑
i

NRUp(s,d)i
(11)

In summary, long flow scheduling can be described as:

Appl. Sci. 2020, 10, 171 13 of 22

min ∑
s

∑
d

∑
i

NRUp(s,d)i
(12)

s.t. (lc(s, d)ij − ll(s, d)ij) ≥ ∑
fm∈M(p(s,d)i)

rm (13)

(mc(s, d)ik −m f (s, d)ik) ≥ ∑
fm∈M(p(s,d)i)

rm (14)

E(fm, M(fm)) = 0 (15)

|M(fm)| ≥ 1 (16)

1 ≤ j ≤ 2l−1, j ∈ Z (17)

1 ≤ k ≤ 2l−1 − 1, k ∈ Z (18)

1 ≤ s, d ≤ 2n, s, d ∈ Z (19)

The goal of long flow scheduling is to minimize the overall network resource utilization, including
switch resource and link resource. The constraint (13) is to ensure that all links do not saturate.
The constraint (14) is to ensure that all switches do not experience memory overflow. The constraints
(15)–(16) are to ensure that each long flow should be mapped to at least one path. This mapping
problem has been proven to be an NP-Hard problem.

4.2.3. Heuristic Somun algorithm

The goal of long flow scheduling is to find the best candidate from all optional paths for each long
flow [43]. The heuristic long flow scheduling algorithm HSA is described in Algorithm 2. The inputs of
HSA are long flow set F and path set P, and the output of HSA is the mapping solution set M. Firstly,
HSA initializes the mapping set M and polls the set F. Secondly, When the set F is not empty, it means
that a long flow is detected and the long flow needs to be scheduled. HSA calculates the SRU for each
path based on the source and destination addresses of the long flow. If there is a suitable path that
satisfies the constraints and is available for allocation, HSA deletes this long flow from F, and records
the matching relationship between the long flow and the path in M. Finally, HSA updates the path
information, outputs the mapping relationship, and generates a flow table for delivery.

HSA’s time complexity is O(n). The speed of HSA is related to the size of long flow set F and path
set P. The processing of the HSA is extremely simple, which means that the HSA does not need to
consume too much computing resources of the controller, and can quickly generate routing policies.

5. Performance Evaluation

In this section, we first analyzed realistic performance of the Synergetic software-defined sampling
spproach. Then, we analyzed the sampling and detection performance of Sonum from the aspects of
missed detection ratio and storage requirements. Finally, we evaluated Sonum compared with ECMP
and Hedera.

We have implemented the functional modules of Sonum that is described above using ONOS,
Mininet in Ubuntu 16.04. As shown in Figure 1, the simulated topology has four core switches,
eight aggregation switches, eight edge switches and 16 servers. ONOS is a lightweight controller
that have the enough processing power of acquisition, so we only deployed Sonum Sampling on
edge switches A1 and A5 to detect long flow information in above topology. The detailed simulation
parameters can be found in Table 3.

Appl. Sci. 2020, 10, 171 14 of 22

Algorithm 2 Heuristic Scheduling Algorithm (HSA)

Require: Long flow set F, Path set P
Ensure: The mapping solution M between paths and long flows F, P

1: M = �;
2: while F 6= � do
3: for i = 0→ (|F| − 1) do
4: Obtain the source and destination addresss s, d of fi ∈ F;
5: Calculate the SRUp(s,d)i

according to Equation (10);
6: Sort increasingly SRUp(s,d)i

according to Equation (13) to 19 and save them to an array
candidate;

7: if candidate 6= � then
8: Generate optional path p(fi) according to min(SRUp(s,d)i

);
9: F = F\ fi and M = M

⋃
(fi, p(fi));

10: Update link load ll(s, d)ij and memory footprint space m f (s, d)ik according to Equation (13)
and Equation (14);

11: else
12: Return mapping failed;
13: end if
14: end for
15: Generate route policy according to M;
16: end while

Table 3. Simulation Parameters.

Parameters Value

Core Switches Number 4
Aggregation Switches Number 8

Edge Switches Number 8
Server Number 16
Max Packet Size 1500 Bytes

Switches Interface Rate 1 Gbps
Short Flow Size 1 KB–100 KB
Long Flow Size 100 KB–2000 MB
Long Flow Size 100 KB–2000 MB

Short Flow Number:Long Flow Number 1:9
Simulation Time 20 min

Initial Sampling Rate 1000:1, 10,000:1, 100,000:1

5.1. Performance of Synergetic Software-defined Sampling Approach

The long flow detection result is shown in Figure 6. Figure 6a is the result of switch A1 and
Figure 6b is switch A5. Although both switches undetect some long flows, the controller can still
further reduce the missed detection ratio based on switches sampling information and the long flow
detection results. The circled flow in Figure 6c is the flow that have been undetectable. In traditional
detection schemes, the cost of these streams is detected to increase the sampling rate. In Sonum, they
are discovered because the exchange of information between switches, rather than the increase in the
sampling rate. Sonum reduces the consumption of hardware resources.

Appl. Sci. 2020, 10, 171 15 of 22

(a) (b) (c)

Figure 6. Long flow detection result of top 1000 flows. (a) Switch-A1. (b) Switch-A5. (c) Controller.

We compare the missed detection ratio of Sonum with FlowMon [26] in Figure 7. FlowMon
is a sampling method based on SDN. The results show that both have achieved better sampling
results at higher sampling rate. The missed detection rate of Sonum reduced by 2.3%–5.1% compared
with FlowMon.

As shown in Figures 8 and 9, we compare the susceptibility of three different solutions to long
flow detection: Regular sampling, Sonum (no RAA) and Sonum. We use the average number of
packets processed until determining long flow in the network as the measure result of sensitivity.
Sonum significantly reduces the waiting time required to detect long flow.

M
is

se
d

D
et

ec
ti

o
n

 R
at

io

Figure 7. Comparison of Sonum with FlowMon.

M
is

se
d

D
et

ec
ti

o
n

 R
at

io

R

Figure 8. Comparison result of missed detection ratio.

Appl. Sci. 2020, 10, 171 16 of 22

(a)

R

Figure 9. Comparison result of number of packages.

Figure 10 shows the Sonum sampling performance when λ = 1 and λ = 0.6. λ = 1 means there is
no smoothing. After EWMA smoothing (λ = 0.6), the sampling rate adjustment becomes more stable.
This operation work better in high-speed situations where the flow rate change frequently, as shown in
Figure 10c.

(a) (b) (c)

Figure 10. Statistic results of sampling interval when different λ. (a) sampling rate = 1000:1.
(b) sampling rate = 10,000:1. (c) sampling rate = 100,000:1.

Figure 11 shows the storage requirements of Sonum. The primary factor related to the queue
length is the sampling rate. The larger the sampling rate, the longer the queue length. This is because
the large sampling rate causes some short flows to be sampled and occupy the buffer queue for a long
time. In addition, the sampling rate is larger, the sampling accuracy is higher, and the number of long
flows in the storage queue is also larger, which is another reason. The controller has a longer cache
queue than the switches because the controller needs to process the long flow information reported
from switches. The storage overhead that the controller needs to maintain is greater. Our experiment
only counts the deployment of Sonum between switch A1 and switch A5. If all the switches in the
data center network need to deploy Sonum, the length of storage queue that the controller needs to
maintain will be extremely longer. However, the length of queue is not longer than the number of all
long flows in the entire network.

Figure 12 shows the queue length fluctuation of switch A1. Due to the addition of the life cycle
management mechanism, the queue length change can be stabilized within an acceptable range.

Appl. Sci. 2020, 10, 171 17 of 22

Figure 11. Results of queue length.

Figure 12. Queue length fluctuation (sampling rate = 1000:1).

5.2. Performance of Optimal Network Utilization Mechanism

We have simulated the traffic processing of the shared memory switch through the setting of the
single queue of the switch in Mininet, so as to be added as the switch resource to the verification of this
mechanism. Link resources are represented by bandwidth. We have implemented Sonum on ONOS
controller, which is connected to the Mininet. It should be noted that the following experiments were
performed at a sampling rate of 10,000:1.

Similar to previous research [12], Sonum generates traffic using a probabilistic model, stag(p,
q) model, stride(i) model and random model. Sonum adopts ECMP for short flows and HSA for
long flows. Both traffic models are implemented by calling iperf in Mininet. We have evaluated and
compared the performance of Sonum, ECMP and Hedera [12] on standardized average bisection
bandwidth and FCT.

Figure 13 shows the overall standardized average bisection bandwidth performance of ECMP,
Hedera and Sonum. In most of traffic models. Sonum has the best performance. Under the stag(1, 0)
model, all three schemes have achieved almost the same results. The reason is that this traffic model
does not generate traffic across core and aggregation switches. Almost all of the three schemes use the
ECMP method for traffic scheduling. In this model, all three schemes are equivalent to ECMP. In other
words, the performance of all scheduling schemes is related to traffic models.

In order to test the impact of different schemes on the long flow FCT, we set all the long flow sizes
in the network to 100 MB, and all the short flows are set to 50 KB. Figure 14 shows the long flow FCT
of three schemes. Sonum has achieved the best performance in all traffic models.

Appl. Sci. 2020, 10, 171 18 of 22

Figure 13. Result of average bisection bandwidth of different load balancing schemes under different
traffic models.

Figure 14. Result of long flow FCT of different load balancing schemes under different traffic models.

Figure 15 shows the improvement performance of standardized average bisection bandwidth
of Sonum. Sonum increases bandwidth utilization by 18.3–36.9% compared to ECMP, and 2.1–13.5%
compared with Hedera except stag(1, 0) model.

Figure 16 shows the improvement performance of long flow FCT of Sonum. Sonum decreases
FCT by 10.3–56.1% than ECMP, and 2.4–40.2% than Hedera except stag(1, 0) model.

%

％

%

％

5

0

5

0

2

2

1

1

OJ'.lE
"M
 :iua
waAo.rd
 EI

q
:ipJ
Mpue
9

0%

心
� 0

4 G·

汔
个

G
令o
％

仓
夕可e

侬可

j
o.

夕'

e

f令
小

q
Q1

f

令丫
小

Figure 15. Improvement Performance of standardized average bisection bandwidth of Sonum
compared with ECMP and Hedera.

Appl. Sci. 2020, 10, 171 19 of 22

Figure 16. Improvement Performance of long flow FCT of Sonum compared to ECMP and Hedera.

Figure 17 shows the packet loss rate results of three schemes. In order to be convincing, we set the
link loss rate in all schemes to 1%, and used iperf to record the network packet loss rate. Simulation
results show that Sonum has the lowest packet loss rate. ECMP lacks congestion awareness, which may
increase network congestion and further lead to network packet loss. Also, ECMP cannot avoid packet
loss due to link congestion and switch congestion. Both Hedera and Sonum schedule on the long flow,
which can avoid the long term occupation of network resources caused by long flow, and reduce the
flow completion rate while reducing the packet loss rate. But because we use a single queue cache for
the switch in Mininet, in order to simulate a shared memory switch. Hedera has packet loss due to
switch congestion. So Sonum has the lowest packet loss rate. The traffic distribution of the stag(p, q)
model is not concentrated, so under the stage(0.3, 0.3) and stage(0.5, 0.3) models, all three schemes
perform well.

Figure 17. Improvement Performance of long flow FCT of Sonum compared to ECMP and Hedera.

6. Discussion

This paper proposes a synergetic software-defined sampling and optimal network utilization
mechanism called Sonum. Sonum divides load balancing in data center networks into two parts:
Sampling and scheduling. For sampling, Sonum detects long flows throughout consolidating long
flow sampling information from multiple switches, with the result of increasing the exchange of
the sampling information and reducing the single switch sampling rate. For scheduling, Sonum
minimizes the packet loss rate instead of maximizing the link utilization as the optimization target of
load balancing. Sonum translates load balancing into arranging minimum packet loss path for long
flows. This paper also introduces a heuristic algorithm to solve scheduling problems. The experimental
results show that, compared with ECMP and Hedera, Sonum had a better performance on long flow

Appl. Sci. 2020, 10, 171 20 of 22

detection, network throughput and flow completion time. However, the verification of Sonum is based
on the simulation environment, and the deployment effect in the real environment is something to
be studied.

Author Contributions: L.T. proposed software-defined synergetic sampling approach and optimal network
utilization mechanism, designed the algorithm, and drafted the manuscript. W.S. contributed significantly to
manuscript preparation and funding acquisition. L.J. performed the analysis with constructive discussions,
and revised this manuscript. P.C. and Z.G. designed and performed the experiment and evalution. In addition,
we would like to thank K.Y. and M.L. They participated in the discussion and writing of this manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China under Grant No. 2018YFB1800305,
Fundamental Research Funds for the Central Universities of China under Grant No. 2018YJS002, CERNET
Innovation Project under Grant No. NGII20180120 and Jingmen Science and Technology Research and
Development Plan Project under Grant No. 2018YFYB055.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ICT Information Communcaiton Technology
DC Data Center
DCN Data Center Network
FCT Flow Completion Time
ECMP Equal-Cost Multipath
ECN Explicit Congestion Notification
SJF Shortest Job First
EWMA Exponentially Weighted Moving Average
LRU Link Resource Utilization
SRU Switch Resource Utilization
NRU Network Resource Utilization

References

1. Ahmed, H.; Arshad, M.J. Buffer Occupancy-Based Transport to Reduce Flow Completion Time of Short
Flows in Data Center Networks. Symmetry 2019, 11, 646. [CrossRef]

2. Xu, G.; Dai, B.; Huang, B.; Yang, J.; Wen, S. Bandwidth-aware energy efficient flow scheduling with SDN in
data center networks. Future Gener. Comput. Syst. 2017, 68, 163–174. [CrossRef]

3. Chowdhury, M.; Stoica, I. Efficient coflow scheduling without prior knowledge. ACM SIGCOMM Comput.
Commun. Rev. 2015, 45, 393–406. [CrossRef]

4. Guo, Z.; Hui, S.; Xu, Y.; Chao, H.J. Dynamic flow scheduling for power-efficient data center networks. In
Proceedings of the 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing,
China, 20–21 June 2016; pp. 1–10. [CrossRef]

5. Tan, L.Z.; Su, W.; Gao, S.; Cheng, P. L4S: Low-Speed Software Synergetic Sampling and Detecting Long Flow
for Data Center Network. In Proceedings of the 2018 International Conference on Networking and Network
Applications (NaNA), Xi’an, China, 12–15 October 2018; pp. 169–174. [CrossRef]

6. Sreekumari, P. Multiple Congestion Points and Congestion Reaction Mechanisms for Improving DCTCP
Performance in Data Center Networks. Information 2018, 9, 139. [CrossRef]

7. Benson, T.; Akella, A.; Maltz, D.A. Network Traffic Characteristics of Data Centers in the Wild. In
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, New York, NY, USA, 1–3
November 2010; pp. 267–280. [CrossRef]

8. Zhu, H.; Liao, X.; de Laat, C.; Grosso, P. Joint flow routing-scheduling for energy efficient software defined
data center networks: A prototype of energy-aware network management platform. J. Netw. Comput. Appl.
2016, 63, 110–124. [CrossRef]

9. Luo, S.; Yu, H.; Zhao, Y.; Wang, S.; Yu, S.; Li, L. Towards practical and near-optimal coflow scheduling for
data center networks. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3366–3380. [CrossRef]

http://dx.doi.org/10.3390/sym11050646
http://dx.doi.org/10.1016/j.future.2016.08.024
http://dx.doi.org/10.1145/2829988.2787480
http://dx.doi.org/10.1109/IWQoS.2016.7590399
http://dx.doi.org/10.1109/NANA.2018.8648748
http://dx.doi.org/10.3390/info9060139
http://dx.doi.org/10.1145/1879141.1879175
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://dx.doi.org/10.1109/TPDS.2016.2525767

Appl. Sci. 2020, 10, 171 21 of 22

10. Cao, Z.; Kodialam, M.; Lakshman, T. Joint static and dynamic traffic scheduling in data center networks.
IEEE/ACM Trans. Netw. (TON) 2016, 24, 1908–1918. [CrossRef]

11. He, K.; Rozner, E.; Agarwal, K.; Felter, W.; Carter, J.; Akella, A. Presto: Edge-based load balancing for fast
datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 465–478. [CrossRef]

12. Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. Hedera: Dynamic Flow Scheduling
for Data Center Networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, San Jose, CA, USA, 28–30 April 2010; pp. 19–19.

13. Hu, F.; Hao, Q.; Bao, K. A survey on software-defined network and openflow: From concept to
implementation. IEEE Commun. Surv. Tutor. 2014, 16, 2181–2206. [CrossRef]

14. Zhang, H.; Chen, K.; Bai, W.; Han, D.; Tian, C.; Wang, H.; Guan, H.; Zhang, M. Guaranteeing deadlines for
inter-data center transfers. IEEE/ACM Trans. Netw. (TON) 2017, 25, 579–595. [CrossRef]

15. Zhang, J.; Ren, F.; Tang, L.; Lin, C. Taming TCP incast throughput collapse in data center networks. In
Proceedings of the 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen,
Germany, 7–10 October 2013; pp. 1–10. [CrossRef]

16. Qin, Y.; Yang, W.; Ye, Y.; Shi, Y. Analysis for TCP in data center networks: Outcast and incast. J. Netw.
Comput. Appl. 2016, 68, 140–150. [CrossRef]

17. Anelli, P.; Diana, R.; Lochin, E. FavorQueue: A parameterless active queue management to improve TCP
traffic performance. Comput. Netw. 2014, 60, 171–186. [CrossRef]

18. Benson, T.; Anand, A.; Akella, A.; Zhang, M. Understanding Data Center Traffic Characteristics. SIGCOMM
Comput. Commun. Rev. 2010, 40, 92–99. [CrossRef]

19. Kandula, S.; Sengupta, S.; Greenberg, A.; Patel, P.; Chaiken, R. The Nature of Data Center Traffic:
Measurements & Analysis. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement,
Chicago, IL, USA, 4–6 November 2009; pp. 202–208. [CrossRef]

20. Alizadeh, M.; Greenberg, A.; Maltz, D.A.; Padhye, J.; Patel, P.; Prabhakar, B.; Sengupta, S.; Sridharan, M.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30
August–3 September 2010; pp. 63–74. [CrossRef]

21. Li, Y.; Miao, R.; Kim, C.; Yu, M. Lossradar: Fast detection of lost packets in data center networks. In
Proceedings of the 12th International on Conference on Emerging Networking Experiments and Technologies,
Irvine, CA, USA, 12–15 December 2016; pp. 481–495. [CrossRef]

22. DeCusatis, C. Optical interconnect networks for data communications. J. Light. Technol. 2013, 32, 544–552.
[CrossRef]

23. Lin, C.Y.; Chen, C.; Chang, J.W.; Chu, Y.H. Elephant flow detection in datacenters using OpenFlow-based
Hierarchical Statistics Pulling. In Proceedings of the 2014 IEEE Global Communications Conference, Austin,
TX, USA, 8–12 December 2014; pp. 2264–2269. [CrossRef]

24. Curtis, A.R.; Mogul, J.C.; Tourrilhes, J.; Yalagandula, P.; Sharma, P.; Banerjee, S. DevoFlow: Scaling Flow
Management for High-performance Networks. In Proceedings of the ACM SIGCOMM 2011 Conference,
Toronto, ON, Canada, 15–19 August 2011; pp. 254–265. [CrossRef]

25. Bi, C.; Luo, X.; Ye, T.; Jin, Y. On precision and scalability of elephant flow detection in data center with SDN.
In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December
2013; pp. 1227–1232. [CrossRef]

26. Xing, C.; Ding, K.; Hu, C.; Chen, M. Sample and fetch-based large flow detection mechanism in software
defined networks. IEEE Commun. Lett. 2016, 20, 1764–1767. [CrossRef]

27. Xu, H.; Li, B. TinyFlow: Breaking elephants down into mice in data center networks. In Proceedings of the
2014 IEEE 20th International Workshop on Local & Metropolitan Area Networks (LANMAN), Reno, NV,
USA, 21–23 May 2014; pp. 1–6. [CrossRef]

28. Kabbani, A.; Vamanan, B.; Hasan, J.; Duchene, F. Flowbender: Flow-level adaptive routing for improved
latency and throughput in datacenter networks. In Proceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technologies, Sydney, Australia, 2–5 December 2014; pp. 149–160.
[CrossRef]

29. Chakraborty, S.; Chen, C. A low-latency multipath routing without elephant flow detection for data centers.
In Proceedings of the 2016 IEEE 17th International Conference on High Performance Switching and Routing
(HPSR), Yokohama, Japan, 14–17 June 2016; pp. 49–54. [CrossRef]

http://dx.doi.org/10.1109/TNET.2015.2434879
http://dx.doi.org/10.1145/2829988.2787507
http://dx.doi.org/10.1109/COMST.2014.2326417
http://dx.doi.org/10.1109/TNET.2016.2594235
http://dx.doi.org/10.1109/ICNP.2013.6733609
http://dx.doi.org/10.1016/j.jnca.2016.04.014
http://dx.doi.org/10.1016/j.bjp.2013.11.008
http://dx.doi.org/10.1145/1672308.1672325
http://dx.doi.org/10.1145/1644893.1644918
http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/2999572.2999609
http://dx.doi.org/10.1109/JLT.2013.2279203
http://dx.doi.org/10.1109/GLOCOM.2014.7037145
http://dx.doi.org/10.1145/2018436.2018466
http://dx.doi.org/10.1109/GLOCOMW.2013.6825161
http://dx.doi.org/10.1109/LCOMM.2016.2585480
http://dx.doi.org/10.1109/LANMAN.2014.7028620
http://dx.doi.org/10.1145/2674005.2674985
http://dx.doi.org/10.1109/HPSR.2016.7525638

Appl. Sci. 2020, 10, 171 22 of 22

30. Carpio, F.; Engelmann, A.; Jukan, A. DiffFlow: Differentiating short and long flows for load balancing in
data center networks. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM),
Washington, DC, USA, 4–8 December 2016; pp. 1–6. [CrossRef]

31. Benson, T.; Anand, A.; Akella, A.; Zhang, M. MicroTE: Fine grained traffic engineering for data centers. In
Proceedings of the Seventh COnference on Emerging Networking EXperiments and Technologies, Tokyo,
Japan, 6–9 December 2011; p. 8. [CrossRef]

32. Suh, J.; Kwon, T.T.; Dixon, C.; Felter, W.; Carter, J. OpenSample: A low-latency, sampling-based measurement
platform for commodity SDN. In Proceedings of the 2014 IEEE 34th International Conference on Distributed
Computing Systems (ICDCS), Madrid, Spain, 30 June–3 July 2014; pp. 228–237. [CrossRef]

33. Afek, Y.; Bremler-Barr, A.; Feibish, S.L.; Schiff, L. Detecting heavy flows in the SDN match and action model.
Comput. Netw. 2018, 136, 1–12. [CrossRef]

34. Wang, W.; Sun, Y.; Salamatian, K.; Li, Z. Adaptive path isolation for elephant and mice flows by exploiting
path diversity in datacenters. IEEE Trans. Netw. Serv. Manag. 2016, 13, 5–18. [CrossRef]

35. Bai, W.; Chen, L.; Chen, K.; Han, D.; Tian, C.; Sun, W. PIAS: Practical information-agnostic flow scheduling
for data center networks. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks, Los Angeles,
CA, USA, 27–28 October 2014; pp. 25:1–25:7. [CrossRef]

36. Tan, L.; Su, W.; Gao, S.; Miao, J.; Cheng, Y.; Cheng, P. Path-flow matching: Two-sided matching and
multiobjective evolutionary algorithm for traffic scheduling in cloud date center network. Trans. Emerg.
Telecommun. Technol. 2019, e3809. [CrossRef]

37. Zhang, J.; Ren, F.; Yue, X.; Shu, R.; Lin, C. Sharing bandwidth by allocating switch buffer in data center
networks. IEEE J. Sel. Areas Commun. 2014, 32, 39–51. [CrossRef]

38. Zhang, Y.; Cui, L.; Zhang, Y. A stable matching based elephant flow scheduling algorithm in data center
networks. Comput. Netw. 2017, 120, 186–197. [CrossRef]

39. Curtis, A.R.; Kim, W.; Yalagandula, P. Mahout: Low-overhead datacenter traffic management using
end-host-based elephant detection. In Proceedings of the International Conference on Computer
Communications, Shanghai, China, 10–15 April 2011; Volume 11, pp. 1629–1637. [CrossRef]

40. Chen, L.; Lingys, J.; Chen, K.; Liu, F. Auto: Scaling deep reinforcement learning for datacenter-scale
automatic traffic optimization. In Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 191–205. [CrossRef]

41. Lucas, J.M.; Saccucci, M.S. Exponentially weighted moving average control schemes: Properties and
enhancements. Technometrics 1990, 32, 1–12. [CrossRef]

42. Liu, Z.; Gao, D.; Liu, Y.; Zhang, H.; Chao, H.C. Optimizing Elephant Flow Sch3yuefen eduling for SDN-Based
Data Center Network. J. Internet Technol. 2017, 18, 1–9. [CrossRef]

43. Tan, L.Z.; Tan, Y.Y.; Yun, G.X.; Zhang, C. An improved genetic algorithm based on k-means clustering for
solving traveling salesman problem. In Proceedings of the 2016 International Conference on Computer
Science, Technology and Application (CSTA2016), Changsha, China, 18–20 March 2016; pp. 334–343.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/GLOCOM.2016.7841733
http://dx.doi.org/10.1145/2079296.2079304
http://dx.doi.org/10.1109/ICDCS.2014.31
http://dx.doi.org/10.1016/j.comnet.2018.02.018
http://dx.doi.org/10.1109/TNSM.2016.2517087
http://dx.doi.org/10.1145/2670518.2673871
http://dx.doi.org/10.1002/ett.3809
http://dx.doi.org/10.1109/JSAC.2014.140105
http://dx.doi.org/10.1016/j.comnet.2017.04.018
http://dx.doi.org/10.1109/INFCOM.2011.5934956
http://dx.doi.org/10.1145/3230543.3230551
http://dx.doi.org/10.1080/00401706.1990.10484583
http://dx.doi.org/10.6138/JIT.2017.18.1.20161130
http://dx.doi.org/10.1142/9789813200449_0042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Software Defined Networking
	Data Center Network
	Load Balancing

	Related Work
	System Design and Analysis
	Synergetic Software-defined Sampling and Detection Approach
	Synergetic Sampling
	Self-Adaption Sampling
	Lifecycle Management

	Optimal Network Utilization Mechanism
	Long Flow Scheduling and Network Utilization Analysis
	Optimal Network Utilization Model
	Heuristic Somun algorithm

	Performance Evaluation
	Performance of Synergetic Software-defined Sampling Approach
	Performance of Optimal Network Utilization Mechanism

	Discussion
	References

