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Abstract: Transient responses of stiffened panels with piezoelectric sensors and actuators are studied
under normal blast loads. The air vehicles could be exposed to blast pulses generated by an explosion
or shock-wave disturbances. Thus, active vibration suppression of the vehicles is important under blast
loadings. The structural model is designed as a laminated composite panel with lead zirconate titanate
(PZT) piezoceramic layers embedded on both top and bottom surfaces. A uniformly distributed blast
load is assumed over the whole of the panel surface. The first-order shear deformation theory of
plate is adopted, and the extended Hamilton’s principle is applied to derive the equations of motions.
The numerical model is verified by the comparison with previous data. Using linear quadratic
regulator (LQR) control algorithm, vibration characteristics and dynamic responses are compared. As
piezoelectric patches are attached on the whole of the surface, the effect of the stiffener’s location is
studied. Furthermore, the influences of the patch’s positions are also investigated through subjection
to the blast wave. From various results, in order to get the best control performances, the research
aims to find the optimum position of sensor and actuator pairs that is most effective under blast
load environments.

Keywords: active vibration control; suppression; stiffener locations; blast loads

1. Introduction

Recently, the research relevant to the piezoelectric materials to control the vibration of structures
is actively reported in the literature. The applications of the piezoelectric materials are vibration
suppression, shape control, active damping, size control, and energy harvesting, etc. The materials
can be used as sensors and actuators. At first, direct piezoelectric effect means that the materials
generate an electric charge while the model is subjected to a mechanical deformation. Conversely, they
could be deformed when some electric charges are applied to structures. This is called the converse
piezoelectric effect.

Many engineers have studied composite structures with piezoelectric sensors and actuators.
Reddy [1] investigated theoretical formulations and finite element models using the shear deformation
plate theories. They analyzed the laminated plates with sensors and actuators under mechanical and
electrical loads. Liu et al. [2] presented the active vibration suppression of the laminated composite
plates. Lam and Ng [3] also simulated theoretical formulation for the plates with piezoelectric materials.
Balamurugan and Narayanan [4] showed the mechanics analysis and performances of piezolaminated
plate and shell structures. In addition, Tolliver et al. [5] described the finite element analysis of
the piezoelectric transducer. The model of multilayer piezoelectric actuators is derived based on
the physical analysis by Zhang et al. [6]. The proposed methods are easy to handle and apply the
piezo models. Furthermore, Qian [7] presented the design, optimization, and testing of piezoelectric
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harvesters for energy scavenging from human walking. Also, Xie et al. [8] designed a self-powered and
wireless radio frequency (RF) transmission device using by combination of triboelectric nanogenerator
(TENG) and off-the-shelf piezoelectric element.

On the other hand, the dynamic responses of structures under air blast loads have been studied
for many years. Luccioni et al. [9] showed the evaluation of pressures and impulses produced by blast
loads with the aid of hydrocodes. The numerical and experimental research of a stiffened laminated
composite panel under a shock wave was represented by Turkmen and Mecitoglu [10]. Furthermore,
Jacinto et al. [11] analyzed numerical responses of metallic panels subjected to explosive loadings.

Recently, research and development of stiffened structures is one of the important subjects in
aircraft and aerospace industries. Globally, many engineers have tried to increase the stiffness by using
composite stiffened structures in the space launch vehicle. Nowadays, Ma et al. [12,13] studied active
vibration control and sound radiation from a rib stiffened panel using velocity feedback method. Also,
Liu et al. [14] presented the dynamic analytical solution of piezoelectric stack using piezo-elasticity
theory. In addition, Chung et al. [15] studied the dynamic behaviors of stiffened composite model with
piezoelectric patches under airflow. The blast loads applied a sharp pressure to the composite structure
in a moment.

Though numerous studies on piezoelectric stiffened models have been performed widely up until
now, research to suppress the vibrations of stiffened models caused by aerodynamic flows such as blast
loads has been studied in a limited range. In other words, many studies have been focused on damages
to the structures. Therefore, active vibration suppression of piezoelectric stiffened laminated panels
subjected to normal blast waves is studied in this paper. Due to the characteristics of piezoelectric
materials as fast responders, the vibration behaviors of stiffened composite panels could be controlled
easily by piezoelectric actuators under a blast loading. A stiffened panel with piezoelectric effect
is formulated using finite element method. Numerical formulations and results are verified with
previous data. Then, vibration behaviors and transient responses are controlled using linear quadratic
regulator (LQR) algorithms. Furthermore, numerical results for vibration suppression of stiffened
panels under blast load are discussed in detail. The effect of the stiffeners location of the cantilevered
model is considered like as general wings of aircrafts. Furthermore, the influences of the piezoelectric
patches position also investigated. Consequently, these studies could be easily applied to various types
of structures.

2. Stiffened Laminated Panel with Piezoelectric Materials

In aircraft vehicles, there are many skins with an array of stiffening ribs in the wings and
fuselage. These structures have been widely used because of their light weight and ability to withstand
dynamic loads. In most cases, the catastrophic disaster of the air vehicles was due to the failure of the
fuselage under blast loads. The overpressure of the blast loading generated typically acts during few
milliseconds. Thus, active vibration control of stiffened composite structures is an important problem.
In this regard, a piezo-laminated composite model is designed with stiffeners (shown in Figure 1).

The stiffeners are placed parallel to the geometric coordinates x and y. In this figure, the thickness
of the model, the thickness of stiffener, the width of the x-stiffener, and the width of the y-stiffener are
tp, tys, bxs, and bys, respectively. The model is a laminated composite structure with lead zirconate
titanate (PZT) piezoceramic layers embedded on both top and bottom surfaces to act as a sensor and
an actuator, respectively. In addition, the sensor and actuator layers are designed as a single layer.
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Figure 1. Stiffened model with piezoelectric sensors and actuators.
2.1. Finite Element Formulations

First of all, the k* layer’s piezoelectric coupling relations between the elastic and the electrical
fields could be presented, and the equations can be written as follows [15]:

Dy = erex + 1By 1)

o=0Q¢— ezEk )

where ¢, o, D, and E are the strain, stress component, electric displacement, and electrical field
vectors, respectively. In addition, e, €, and Q are piezoelectric constants, permittivity coefficients, and
reduced elastic constants matrices, respectively. Equation (1) means the direct piezoelectric effect, and
Equation (2) indicates the converse piezoelectric effect.

The stiffened plate elements are derived with the plate element and stiffener elements.
The first-order shear deformation theory (FSDT) applied, the displacement fields are defined as

follows:
u(x, y,2) = uy(x,y) + 205 (%, y),
o(x,y,2) = vy(x, ) + 20y (x, ), ®)
w(x,y,z) = wy(x,y,2).

where ul‘;, vg, and wz are the mid-plane displacements, and 6y, and 6, are the rotations of transverse

normal about x and y, respectively. The displacement fields of the x-directional stiffener and y-directional
stiffener are expressed as follows:

Uys(x,2) = u%s(x) + 260x5(x), wys(x,z) = wis(x)

0 (1,2) = s () + 20s(y), Wys(y,2) = () @)

where x-axis is taken along the x-directional stiffener center line and z-axis is its upward normal line.
The detailed formulations can be found in reference [16].
The strains are presented as a function of the nodal displacement variables.

Exx uz,x pr,x
g =3 ey ¢ = Uy +z Oyp,y = &) +zKp = By +2By5)
0 0
)/xy P up,y + Up,x exp,y + Gyp,x (5)

_ ) Yx _f wp=6px |
YP{V } {ng—G = B
vz ), Py~ Oy

where B, By, and B; are the derivative operators between the strain and nodal displacements.
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The stress resultant can be written as
F= A”sp + Bijkp — ftp eEdz
M = B;je; + Djjkp —ft ze'Edz 6)
P
V, =Sy,

l]p

n
2 _ Zk . L. o
where (A,],BZ],D ) § fzk, Qij(l,z,z )dz and S;; = k:§1 Kka—l Qijdz with (i,j = 4,5). k, =5/6

is shear correction factor A ir Bi]-, D; i and Sl-]- are extensional stiffness, bending-extension coupling
stiffness, bending stiffness, and shear stiffness matrix, respectively.
Then, the electric field vector considering the piezoelectric actuator layers can be derived as follows:

Ex 0
E={ E, ;=-{ 0 (¢a=-Bygy @)
E; 1/t

where f, and ¢, are the thickness of the actuator and the electric potential, respectively. The present
element has elastic degrees of freedom ul‘;, vr“,, Oxp, Oyp, and wf, per node and electrical degree of freedom
¢ per piezoelectric layer.

On the other hand, the strains of the x-stiffener are indicated as follows [17]:

0

uxs,x
Exx 1 z 00 st X 0
p— p— 4 p— H 8
s { Vxz }xs [ 0011 ] 9955 w5 ( )
wgcs,x
The stress resultant can be derived as follows:
F XS Axs,ll Bxs,ll 0 0
My = Bxs,ll st,ll 0 0 5?(5 = Dy 525 )
Vs 0 0 st,55 st,55

WhereAxszp xs,ijs Dasijs xsz] Z f Qij(lr z, Zz/sz)dZ-

To obtain the energy equat1ons the strain energy function is derived using the variational
principles as follows:

Ve = ViV
;5 fA(BmTAl]Bm + B, B;;B;, + B, B;;B,, + B,'D;;B; + BSTSist)dAsf,
+38,7 fA(BmTE1B¢ + BbTEzB(p)dA(z)e + 3857 [ T TBys  DysBus Trsdx 85,
— 1 6§TK;6167 41 SeTKe(P(Pe Se TKe §¢

(10)
XsTp

where Eq, E; = fz , eijT(l, 2)dz, Dys = bys ftxs HXSTstHxsdz. K:, is the element stiffness matrix of plate

and K7 , is the element elastic-electric coupling stiffness matrix. K, is the element stiffness matrix of
the x-stiffeners.
The element kinetic energy can be written as

T = T+TS
= 16 TL[ (Npu Npu + va va + pr pr) +I(Np0 Np@ + Np@ Npﬂy)]dAé

+ szTfL b[P(Nxsu Nxsu + Nxsw Nxsw) + INstX xs@x]dexs 86
= %5PTM;5,, +18,TM:8,

xsp

(11)
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n J—
where P,I = }, fz ik ) p(l, zz)dz and N is the shape function matrices relating the primary variables.
k=1""""

M;, is the element mass matrix of plate and M, is the element mass matrix of the stiffeners.
The element electrical energy is calculated as follows:

Wg = 3J, E'(es, + eEJV
_ _%(PETIA(BKPTEle + B¢TEsz)dA6; + %(PeTfA B¢TE3B¢dA(Pe (12)
= =30 TKpu 85, + 30 K

where K, is element elastic-electric coupling stiffness matrix and Ky, is element electric stiffness
matrix. E3 = fz g;jdz and V), is the volume of the piezoelectric layer.
P

The virtual work and the applied electrical charge density are derived as follows:

AWS = A8 i By f.dA - AGT [ ByTq.dA 13
= A8 FS + A¢TF,
where S; and S; are the surface areas that the surface forces and electrical charges are applied,
respectively. F; is the applied mechanical force due to surface forces, and F; is the applied
electrical charge.

The governing equation can be described using the Hamilton’s principle.

e
M, 8, + K5, 85 + K ¢ = F (14)
K, 8 + K¢, ¢f = F; (15)

where M}, = My + Mg, K, = K}, + Kj,.
Then, the global dynamic equation is obtained as follows:

Muusp + Cuusp + (Kuu =+ KugbK(f)(f)_lK(pu)sp =F+ Kuqb(Pa (16)

where damping matrix Cy;, is assumed as Cy;;, = aMy,;, + K.
Next, modal transformations and state-space formulations are derived. The nodal displacement
is represented by
&y = @n (17)

The global dynamic equation can be transformed to the reduced modal space form as follows:
®™™M,, ®n + ®7C,, 1 + <I>T(KW + Km,)quq;qum)q)n = ®"F, + ® K,y s (18)
Mﬂ + Eﬂ + Kﬂ = I_:s + Kuqbqba (19)

T
Introducing the state-space variable & = { nm } , state-space form of the global dynamic
equation is given by
&= Ast& + Bstpy + Uy (20)

where ¢, is the control input and some valuables are defined as follows:

A 0 ! B Y U 0 (1)
st — —M_1K —M_la s Dst — M_lﬁu(f) 7 f - M_lﬁs
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The output equations can be written in the physical coordinates and state space coordinates as

_ C,® —
y = Codp,y = { 0 }a =G, (22)

where C, is the output matrix.
Finally, the linear quadratic regulator (LQR) control algorithm [4,18] is applied. The control gain
can be obtained. L (e
=3 f (E7QE + TRy, )it 23)
0
where R and Q are positive definite weighting matrices and semi-positive definite, respectively. The
actuating voltage can be derived as follows:

¢a(t) = —Gc& = -R7'By Pg, (24)
Which is determined by the constant solution P of the Riccati equation.
Ay'P+PA; -PB4R 'B;'P+Q =0 (25)

2.2. Blast Loads

The air vehicles could be exposed to blast pulses generated by an explosion or shock-wave
disturbances. Figure 2 presents the expected form of an ideal blast wave. It is increased at the shock
front by an abrupt pressure. A negative phase follows, and oscillations quickly die away. These
oscillations are not dominant compared with the first positive phase. The pressure is also assumed
to be distributed over the whole of the surface. The total pressure is defined by Friedldander decay
function [19] as follows:

P(t) st = Pm(l - é)e—a’t/tp (26)
where py, t,, and a’ are peak pressure, positive phase duration, and the waveform parameter,
respectively. The parameters of the Friedlander decay equation are chosen as p;; = 28.9 kPa, t, = 1.8
ms, and ' = 0.35 [10].
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Figure 2. Variations of blast loading according to time [20].
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3. Numerical Results and Discussions

3.1. Code Verifications

To verify the accuracy of the present numerical results, three cases are compared with the previous
data in the literature. The first case is the cantilevered composite model with the upper and lower
surfaces by piezoelectric ceramics. The plates have four composite layers [-45/45/ —45/45]. The
total thickness of the composite model is 1 mm and each layer has the same thickness of 0.25 mm.
The two outer piezoelectric layers are of 0.1 mm thickness. In addition, the adhesive layers are
neglected. The panel consists of T300/976 graphite-epoxy composites, and the piezoelectric material
is PZT F1195N, as presented in Table 1 [21]. The centerline deflections of the composite model with
various input voltages are presented in Figure 3. The results are in good agreement with the data
obtained by Lam et al. [21].

Table 1. Material properties [21].

Properties PZT Piezoceramic T300/976

Young’s modulus (GPa): Eqg 63.0 150

Eyy = E33 63.0 9.0

Poisson’s ratio: v1p = vq3 0.3 0.3

Vo3 0.3 0.3

Shear modulus (GPa): G, = Gi3 24.2 7.10

Gos 24.2 2.50

Density (kg/m3): p 7600 1600
Piezoelectric constants (m/V): d3; = d3; 254 x 10712 -
Electrical permittivity (F/m): €11=¢€2 15.3 x 1077 -
€33 15.0 x 1077 -

Deflection (mm)

0.0 -

-0.5 4

-1.0 4

-1.54

-2.0+

-2.54

—— Present
e Lametal. [21]
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T
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Distance x (mm)

Figure 3. The centerline deflections with various input voltages.

Secondly, the deflection responses of the model under blast loads. The material properties of E, v,
and p are 206.84 GPa, 0.3, and 7900 kg/m?, respectively. The dynamic response is calculated using
mode superposition method, and time step is 0.05 ms. Figure 4 shows the deflection history at the
center of the model. The present results are almost same with the previous works by Sheikh et al. [22].
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Figure 4. Displacement-time responses of the center of the square model subjected to air blast.

The last case is the polyester model with stiffeners placed at the center. Two opposite edges are
free, and the others are clamped. The structure and stiffeners are made with the isotropic materials
as follows: E =7.0 GPa, G = 2.6 GPa, p = 1504.2 kg/m3 and v = 0.345. The natural frequencies of the
model are well-matched with the previous data [16,23], as shown in Table 2.

Table 2. Natural frequencies of stiffened models.

Natural Frequency (Hz)  Ref. [16] Ref. [23] Present
1st 68.61 68.47 68.13
2nd 71.20 68.66 68.77
3rd 124.70 119.59 117.55
4th 150.40 162.16 160.128
5th 183.20 177.11 177.45
6th 184.80 177.39 178.31

3.2. The Evaluation of Stiffeners’ Locations

Figure 5 shows the cantilevered laminated composite panel with two x-stiffeners. Piezoelectric
ceramics are boded at the upper and lower surfaces of the structure. The material properties of the
composite panel (T300/976 graphite-epoxy) and the piezoceramic (PZT G1195N) are already presented
in Table 1. The structural model is consist of four layers (15°/ —15°/ —15°/15°) with (0.4/0.4/0.4/0.4)
mm layers. The stiffeners with width 6 mm and depth 12 mm are made of the same materials.
The thickness of each piezoceramic layer is 0.2 mm.



Appl. Sci. 2020, 10, 387

Sensor layer

400mm

Ws

Aetuator lqyer

—
(2]
—

I

7/////////////[

9of 15

Figure 5. Cantilevered piezoelectric composite model and two cases of the stiffener’s location:

(a) Stiffened composite model; (b) Stiffener Case 1; (c) Stiffener Case 2.

As mentioned in advance, the upper piezo layer acts as a sensor and the lower layer is assumed
as an actuator. Jacinto et al. [11] investigated the experimental and computational analysis of a panel
under blast loads, and the data are used in this research. The LOR optimal control algorithm is
adopted to the structure. Modal superposition method is applied to the analysis. In addition, the initial
damping ratio is assumed to be 0.7%. The transient responses are calculated with the Newmark-direct

integration method.

At first, the effect of the stiffener’s location on the suppression of the model is studied. The two
kinds of cases are presented in Figure 5b,c. The stiffeners are placed at both end sides in Case 1, while
the stiffeners are located in the middle part in Case 2. Then, the first six natural frequencies of the
stiffened panel with different stiffener location listed in Table 3. It can be seen from Table 3 that the
natural frequencies of the Stiffener Case 1 are higher than that of the Stiffener Case 2. This means that
the stiffened panel in Case 1 is stiffer than Case 2.

Table 3. Natural frequencies of different stiffener cases.

Natural Frequency (Hz) Stiffener Case 1 Stiffener Case 2
1st 67.6098 39.6451
2nd 117.7273 78.6680
3rd 155.3218 133.6110
4th 212.1017 178.2795
5th 290.4140 214.3758
6th 379.4205 273.2984
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Figure 6 shows magnitude-frequency responses for the two cases of stiffened panel using LQR
method. The weighting matrices Q and R are as follows:

QZ
o 1[ 0

= , R=1x102and1x1072 27
7x10%5| 0 1 ] an @7)
where % is a diagonal matrix that stores the squares of the natural frequencies a)l.z and I is the unit
matrix with suitable size. When the location of the stiffeners is centered (Case 2), the magnitude of the
model is the higher than in the other case (Case 1). In addition, the peak point appeared earlier than
Case 1.

-20

uncontrolled

40

604

-804

Magnitude (dB)
Magnitude (dB)

-100

-120

-140 T T T T -140 T T T T
0 100 200 300 400 500 0 100 200

20
Frequency (Hz) Frequency (Hz)

(a) (b)

Figure 6. Magnitude-frequency responses with two locations of stiffeners using linear quadratic
regulator (LQR) control: (a) Stiffener Case 1; (b) Stiffener Case 2.

Figure 7 describes phase-frequency responses for the two cases of stiffened panel using LOR
method. The results represent that controlled responses have the lower magnitude of the first, second,
and third bending modes. When the stiffened panel is under uniformly distributed blast pressures, the
vertical displacement (W) at the tip (0.4, 0.1 m), the transverse bending and the lateral twisting for
various R are given in Figures 8-10. The transverse bending (W) and the lateral twisting (Wg) are
defined as in Ref. [4], and the equations are as follows:

_ Wz—(W1+W3)/2 We — Wi —Ws

= = — 2
Wr C , WR C (28)

where W;, Wy, and W3 are the vertical deflections at locations already shown in Figure 5a.
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Figure 7. Phase-frequency responses with two locations of stiffener using LQR control: (a) Stiffener
Case 1; (b) Stiffener Case 2.

6 6
uncontrolled uncontrolled
D O — R=1X107 o d e R=1x10"
—R=1X10° R=1X10°
i £
E E
T 0 g
£ £
Q (3
o o
© ©
g 24 & -
a i1 a
44 { 44
-6 T T T T T T T 6 T T T
0 200 400 600 800 0 200 400 600 800
Time (ms) Time (ms)
(a) (b)

Figure 8. Vertical displacement responses with two locations of stiffener using LQR control: (a) Stiffener
Case 1; (b) Stiffener Case 2.

Figure 8 represents vertical displacement responses with two locations of stiffener using LOR
control method. The vertical displacement is initially high in Case 1, however the displacement quickly
decreased according to time. This is due to the increased stiffness with stiffeners location. On the other
hand, both cases showed effective responses to the LQR controller. In other words, it can be seen that
the piezoelectric actuator works effectively.

Figure 9 shows transverse bending responses with two locations of stiffener using the LQR control
method. The results of the Stiffener Cases 1 and 2 show a similar tendency of vertical displacement
in Figure 8. The transverse bending is also initially high in Case 1, however the bending quickly
decreased according to time. The vibration oscillations are damped out more quickly with higher
control parameters.

Figure 10 shows lateral twisting responses with two locations of stiffeners using the LQR control
method. Unlike the previous results in Figures 8 and 9, the lateral twisting was of higher initial value
in Case 2. Overall, it could be mentioned that the bending modes can be controlled effectively by the
piezoelectric actuators, but the control of torsion is weak for two stiffener cases.
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Figure 9. Transverse bending responses with two locations of stiffener using LQR control: (a) Stiffener
Case 1; (b) Stiffener Case 2.
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Figure 10. Lateral twisting responses with two locations of stiffener using LOR control: (a) Stiffener
Case 1; (b) Stiffener Case 2.

3.3. Evaluation of Positions for Piezoelectric Patches

The effect of positions is studied for the piezoelectric patches on the transient behaviors of the
stiffened model under blast load. To investigate the effect of sensors and actuators locations on the
control performances, the stiffened model is performed for two different positions of piezoelectric pairs
that are attached on top and bottom surfaces, as shown in Figure 11. Each model has eight piezoelectric
patches, and the dimensions of each sensor and actuator patch are 0.05 m x 0.05 m. The center points
of the Models I and II are 0.05 m and 0.35 m away from the clamped edge, respectively. To investigate
the control effects, two parameters are chosen. One parameter is settling time that oscillation does
not exceed the limit value of each transient responses. The limit values of the vertical displacement,
the transverse bending, and the lateral twisting are 0.4 mm, 0.002, and 0.002, respectively. For other
parameter, the limit is the maximum response of the models.
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Figure 11. Two models of piezoelectric patch position.

Table 4 shows that the settling time of the two models is obtained using the LOR control algorithm
under uniformly distributed blast loads. The models I and II with Stiffener Case 1 have longer settling
time than that of the others in the vertical displacement and the transverse bending. The vertical
displacement and the transverse bending of the stiffener’s location at Stiffener Case 2 is damped
out more quickly for the Model I and II. Also, lateral twisting closed to the free end is damped out
more quickly.

Table 4. Settling time of two models for LOR control.

Stiffener Location Model I Model 11
Vertical displacement (s) Ezzz ; 8%?;2 giégi
e
T

Table 5 presents the comparison of maximum responses. These results indicate that Model II has
the lower peak response for many cases of stiffeners’ locations. From Tables 4 and 5, different control
performance results are obtained in various positions of piezoelectric pairs. It is important to obtain
the optimal design with maximum control effect.

Table 5. Maximum responses of two models for LQR control.

Stiffener Location Model I Model II
Maximum vertical case 1 8.0696 5.6853
displacement (mm) case 2 1.8378 2.6561
Maximum transverse case 1 0.0359 0.0183
bending (mm) case 2 0.0453 0.0127
Maximum lateral case 1 0.0070 0.0035
twisting (mm) case 2 0.0195 0.0056

4. Conclusions

This paper presents vibration suppression control of a stiffened model with piezoelectric sensors
and actuators under blast loads. The air vehicles could be exposed to blast pulses generated by
an explosion or shock-wave disturbances. The blast wave is assumed to be uniformly distributed
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on the panel surface. The linear quadratic regulator (LQR) method is chosen as a control algorithm.
As piezoelectric patches are distributed on the whole surfaces of the model, the effect of stiffener’s
location is investigated. Furthermore, the effect of piezoelectric patches position is also studied on the
transient responses of the stiffened structure under blast load. The most effective position of patches
can be determined with settling time and maximum responses. Consequently, this presented analysis
could be easily applied to various types of models. In order to get the best control performances, the
research aimed to find the optimum position of sensor and actuator pairs that is most effective under
blast load environments.
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